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Abstract Optical flow approaches calculate vector fields
which determine the apparent velocities of objects in time-
varying image sequences. They have been analyzed exten-
sively in computer science using both natural and synthetic
video sequences. In life sciences, there is an increasing
need to extract kinetic information from temporal image
sequences which reveals the interplay between form and
function of microscopic biological structures. In this work,
we test different variational optical flow techniques to quan-
tify the displacements of biological objects in 2D fluores-
cent image sequences. The accuracy of the vector fields is
tested for defined displacements of fluorescent point sources
in synthetic image series which mimic protein traffic in
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neuronal dendrites, and for GABABR1 receptor subunits in
dendrites of hippocampal neurons. Our results reveal that
optical flow fields predict the movement of fluorescent point
sources within an error of 3% for a maximum displace-
ment of 160 nm. Displacement of agglomerated GABABR1
receptor subunits can be predicted correctly for maximum
displacements of 640 nm. Based on these results, we intro-
duce a criteria to derive the optimum parameter combinations
for the calculation of the optical flow fields in experimental
images. From these results, temporal sampling frequencies
for image acquisition can be derived to guarantee correct
motion estimation for biological objects.

Keywords Optical flow · Motion estimation ·
Light microscopy · Fluorescence

1 Introduction

Partnerships between mathematical-computational and
experimental disciplines are increasingly important to meet
the challenges of modern life sciences. This is especially true
for fluorescence-based microscopy which has become a stan-
dard tool in bioscience and clinical diagnostics. Today, con-
focal microscopy techniques are widely available and open
the access to in vivo observation of three-dimensional bio-
logical processes from subcellular to supracellular levels. In
parallel to the advances in optics and hardware technologies,
improved understanding of the physics of fluorescence phe-
nomena, chemical synthesis of fluorescent molecules, and
the advances in molecular genetics have generated new fluo-
rescent probes and proteins which label virtually any cellular
component with a specific color. Through a combination of
mathematical and computational techniques, processes like
diffusion, protein assembly and colocalization [1], vesicle
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trafficking, or cellular migration can be studied in cell
cultures [2], tissue or entire organisms [3].

The resolution of diffraction limited microscopes is cou-
pled to the full width at half maximum (FWHM) value of the
optical point spread function (PSF) and yields ∼250 nm in
the xy-plane and ∼750 nm in the z axis. Resolution beyond
the diffraction limit can be obtained by novel techniques
such as structured illumination microscopy (SIM) [4] or
4π -microscopy [5] which improve resolution by a factor of
two. Other approaches such as photo-activated localization
microscopy (PALM) localize fluorescent point sources down
to the nm-scale [6]. Finally, stimulated emission depletion
(STED) [7] leads to theoretically unlimited resolution. In
terms of time scales, scanning technologies based on spin-
ning disk microscopy (SDM) or digital scanned laser light
sheet fluorescence microscopy (DSLM) [8] allow acquiring
3D images in time scales of milliseconds to seconds. This
permits visualizing many relevant dynamic processes in vivo
for the first time.

For object segmentation and feature extraction, app-
roaches based on partial differential equations (PDEs) [9]
yield excellent results for the analysis of morpho-topo-
logical descriptors in the field of lipid domain formation
[10–13], or developmental biology [3,8]. For motion esti-
mation of biological structures from a subcellular, cellular
to a supracellular level, PDE approaches based on optical
flow (OF) vector fields have become increasingly important
[14–23].

OF was introduced in 1981 by Horn and Schunck (HS)
as “… the distribution of apparent velocities of movement
of brightness patterns in an image” [24]. The idea contains
two basic assumptions: the “gray value constancy” and the
“smooth flow of the intensity values” between two succes-
sive images. Over the past decades, variations of the orig-
inal HS-OF approach have been published [25–29]. These
so-called combined local global (CLG) methods generalize
the “global” HS and the “local” Lucas and Kanade (LK) [30]
approaches. The CLG-OF aims to improve the accuracy of
the OF field for small-scale variations while retaining the
HS-OF benefits of dense and smooth vector fields. The CLG
methods still maintain the gray value constancy, while other
works report the necessity to loosen this assumption [31,32].

Gray value constancy and smooth flow assumptions make
OF especially attractive for the detection of movement of
fluorescent signals within image series obtained from opti-
cal microscopy. With respect to the gray value constancy, the
development of novel fluorescent probes, increasingly stable
fluorescent proteins, and improved illumination techniques
reduce the impact of photobleaching in many experimental
scenarios and the intensity decrease between two consecu-
tive frames becomes negligible [1,2,14,33,34]. With respect
to the smooth flow assumption, sophisticated deconvolution
algorithms remove Poisson noise to an imperceptible degree

prior to OF analysis [12,35–37]. In summary, microscopic
image series meet both fundamental assumptions of the OF
equations which make this approach extremely promising to
meet the requirements for motion estimation in fluorescence
microscopy.

In the following, we compare the HS-OF and different
CLG-OF approaches for motion estimation of fluorescent
point sources in 2D fluorescent images (see Tables 1 and 2).
The performance of the OF vector fields is tested with
different error measures for defined displacements in syn-
thetic image series which mimic fluorescent protein mobility,
and for the displacement of GABAB receptor subunits in
dendrites of hippocampal neurons. In addition, we suggest a
criterion to determine the value of the regularization param-
eter α, in order to minimize the error of the resulting flow
field. We determine the limits for the displacement predic-
tion of the OF approaches and relate them to the dimension
of the PSF of the microscopic system. Our analysis leads to a
suggestion for the optimum temporal acquisition frequency
of microscopic images for a given experimental setting.

2 HS- and CLG-approach formulations

The HS-OF approach minimizes a global energy functional
over the image data, solving a diffusion-reaction equation
that yields dense and homogeneous flow fields. The CLG-OF
approach proposed by Bruhn et al. [25,27,28] includes an
additional term (Jρ) that allows locally smoothed flows,
based on the Lucas and Kanade formulation [30], in addi-
tion to some minor variations that are summarized here. In
order to find an optimal solution via PDE systems that are
solved iteratively, both methods are defined using a varia-
tional formulation.

2.1 HS-OF approach

Horn and Schunck [24] assume “gray value constancy” and
“smooth flow” of the intensity values between two images
taken at times t1 and t2. For an image varying in time
I (x, y, t), and particularly for a confocal image, the “gray
value constancy”, dI (x, y, t)/dt = 0, can be expressed in
form of a first-order Taylor expansion that yields the basic
OF constraint equation and leads to the optical displacement
vector field V = [u(x, y, t), v(x, y, t), 1]T :

I (x + u, y + v, t + �t) − I (x, y, t) = 0

⇒ Ix u + Iyv + It = 0 (1)

Integrating over the image domain, �, the HS-approach
introduces the “smooth flow” constraint weighted by a
regularization parameter, α, to define a convex energy
functional
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Table 1 Discretization of the HS- and CLG-approaches for 2D OF computation

HS-approach CLG-approach

Gradient at I (xi , yi , tk) Spatial gradients: Spatial gradients:
Ix ≈ 1

4

(
Ixi+1,y j ,tk − Ixi ,y j ,tk + Ixi+1,y j+1,tk − Ixi ,y j+1,tk

+ Ixi+1,y j ,tk+1 − Ixi ,y j ,tk+1 + Ixi+1,y j+1,tk+1 − Ixi ,y j+1,tk+1

)

Iy ≈ 1
4

(
Ixi ,y j+1,tk − Ixi ,y j ,tk + Ixi+1,y j+1,tk − Ixi+1,y j ,tk

+ Ixi ,y j+1,tk+1 − Ixi ,y j ,tk+1 + Ixi+1,y j+1,tk+1 − Ixi+1,y j ,tk+1

)

Ix ≈ I ⊗ 1
12h [1 −8 0 8 −1]x

∣
∣xi ,y j ,tk+1

Iy ≈ I ⊗ 1
12h [1 −8 0 8 −1]y

∣
∣xi ,y j ,tk+1

Averaged spatial gradients:

Ix ≈ I ⊗ 1
12h

1
2

(
[1 −8 0 8 −1]x

∣∣xi ,y j ,tk
+ [1 −8 0 8 −1]x

∣
∣xi ,y j ,tk+1

)

Iy ≈ I ⊗ 1
12h

1
2

(
[1 −8 0 8 −1]y

∣∣xi ,y j ,tk
+ [1 −8 0 8 −1]y

∣∣xi ,y j ,tk+1

)

Time gradient: Time gradient:

It ≈ 1
4

(
Ixi ,y j ,tk+1 − Ixi ,y j ,tk + Ixi+1,y j ,tk+1 − Ixi+1,y j ,tk

+ Ixi ,y j+1,tk − Ixi ,y j+1,tk + Ixi+1,y j+1,tk+1 − Ixi+1,y j+1,tk

) It ≈ I
(
xi , y j , tk+1

) − I
(
xi , y j , tk

)

Laplacian at I (xi , y j , tk) �uxi ,y j ,tk ≈ U ⊗ M
∣
∣xi ,y j ,tk

�vxi ,y j ,tk ≈ V ⊗ M
∣
∣xi ,y j ,tk

Mh=1 = 3

⎡

⎣
1/12 1/6 1/12
1/6 −1 1/6

1/12 1/6 1/12

⎤

⎦

xy

Mh=1 =
⎡

⎣
0 1 0
1 −4 1
0 1 0

⎤

⎦

xy

Iterative scheme uk+1
i = ūk

i − Ix
(
Ix ūk

i +Iy v̄k
i +It

)

α2+I 2
x +I 2

y
uk+1

i =
∑2

l=1
α

h2
l

(
∑

j∈N−
l (i)

uk+1
j +∑

j∈N+
l (i)

uk
j

)
−(

J12i v
k
i +J13i

)

∑2
l=1

α

h2
l

|Nl (i)|+J11i

ūk
i = 1

3 �ui − ui

vk+1
i = v̄k

i − Iy
(
Ix ūk

i +Iy v̄k
i +It

)

α2+I 2
x +I 2

y
vk+1

i =
∑2

l=1
α

h2
l

(
∑

j∈N−
l (i)

vk+1
j +∑

j∈N+
l (i)

vk
j

)
−(

J21i uk
i +J23i

)

∑2
l=1

α

h2
l

|Nl (i)|+J22i

v̄k
i = 1

3 �vi − vi

h step size of the discretized space domain
U, V scalar matrices for u and v components of the OF field
Nl (i) neighbors of pixel i in direction of axis l belonging to �

N+
l (i) = { j ∈ Nl (i) | j > i } , N−

l (i) = { j ∈ Nl (i) | j < i }
A

∣∣x,y,t mask vector/matrix A applied to the image at point (x, y, t). The central element at each mask corresponds to point (x, y, t)
[ai ]x mask vector is convolved with the image along x axis[
ai, j

]
xy mask matrix is convolved with the image over xy-plane (image plane)

Table 2 Settings for the OF computation

Setting Iterative Laplacian Gradient Jρ

scheme mask mask

HS HS HS HS –

CLG-A CLG CLG HS ρ = 0 (HS-OF functional)

CLG-B CLG CLG CLG ρ = 0 (HS-OF functional)

CLG-C CLG CLG HS ρ > 0 (CLG functional)

CLG-D CLG CLG CLG ρ > 0 (CLG functional)

EHS(V )

=
∫

�

((
Ix u+ Iyv + It

)2+α
(
|∇u|2+|∇v|2

))
dxdy (2)

The regularization parameter α > 0 acts as a smoothing fac-
tor for the resulting OF.

2.2 CLG-OF approach

The HS functional can also be expressed as

EHS(V ) =
∫

�

(
V T

(
∇3 I∇3 I T

)
V

+α
(
|∇u|2 + |∇v|2

))
dxdy (3)

with

V = (u, v, 1)T (4)

and

∇3 I = (Ix , Iy, It )
T (5)

Using this notation, the combined local–global (CLG) energy
functional (ECLG) introduced by Bruhn et al. [27,29] is
defined as
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ECLG(V ) =
∫

�

(
V T Jρ(∇3 I )V

+α
(
|∇u|2 + |∇v|2

))
dxdy (6)

with

Jρ(∇3 I ) = Gρ ⊗
(
∇3 I∇3 I T

)
(7)

The convolution ⊗ of the derivative term ∇3 I with a normal-
ized 2D Gaussian kernel Gρ (ρ works as a size parameter),
results in a spatio-temporal smoothing of the flow field. It is
derived from the LK approach [30]: a weighted least squares
system that approximates the flow in a small spatial neighbor-
hood ρ. The term of Jρ can be seen as a local regularization
of the flow field. With ρ = 0 the Gaussian kernel becomes a
matrix with a single element Gρ = [1]; no smoothing occurs,
and ECLG becomes equal to EHS.

2.3 Discrete Euler–Lagrange equations

By taking advantage of the notation of Eq. 6 for ECLG defini-
tion, which generalizes the definition of the HS-OF approach,
a PDE system can be formulated to obtain a solution of a flow
field that guarantees the energy minimization of both func-
tionals.

The flow field V = [u(x, y, t), v(x, y, t), 1]T satisfies the
Euler–Lagrange equations:

α�u − (J11u + J12v + J13) = 0

α�v − (J21u + J22v + J23) = 0
(8)

where Jkl denotes the elements of the matrix Jρ . Neumann
boundary conditions are assumed:

∂nu = 0, ∂nv = 0 (9)

At this point, the HS-OF and CLG-OF approaches differ in
their discrete formulation and iterative scheme for the Euler–
Lagrange equations. This leads to different results for the
computed OF field, even when ρ = 0 is used in the ECLG

formulation (Eq. 6). We summarize the remaining differences
in detail in Table 1.

3 Materials and methods

This section describes the preparation and transfection of
primary hippocampal neurons, the parameter settings for
microscopic data acquisition and deconvolution, and the gen-
eration of artificial model dendrites with motile and static
point sources.

3.1 Neuronal cultures and transfection

Adult pregnant female Sprague-Dawley E18 rats were pur-
chased from the Catholic University of Chile and killed in
CO2 chambers according to the Guide for Care and Use
of Laboratory Animals (1996, USA National Academy of
Sciences). Primary hippocampal neurons were prepared,
cultured, and transfected with the fluorescent recombinant
GABAB receptor subunit GABABR1-mRFP as described in
[2]. Movement of GABABR1 receptor subunits was analyzed
24 h post-transfection with SDM.

3.2 Confocal microscopy and deconvolution

Time lapse microscopy was performed with an Olympus
BX61WI DSU (Disk Scanning Unit), using a 60x/0.9 LUMP-
LFL water objective and cellˆR software. Images were
recorded with intensity I (x, y) ∈ [0, 255], and pixel
size �x/�y = 107/107 nm, slightly above the Nyquist
sampling distance. Acquired images were 1376×1038 pix-
els and were cropped afterwards to 585×180 pixels to
focus on a specific region. For GABABR1-mRFP, excita-
tion and emission wavelength was λexc = 543 nm and λem =
560 nm. We guaranteed that I (x, y) did not saturate and that
image background was slightly above zero. Microscopic raw
images were deconvolved with Huygens Scripting Software
(SVI, Hilversum, Netherlands). The signal-to-noise ratio was
adjusted until the deconvolved images were free of pixel
noise. Consecutive xy frames were acquired every 30 s over
a period of 30 min.

3.3 Model dendrites with defined signal densities, signal
trajectories, and optimum microscopic settings

We developed image-processing routines with Interactive
Data Language (IDL) (ITT, Boulder, CO). For the genera-
tion of synthetic image series with defined degrees of signal
densities and trajectories, model dendrites were generated
in 128×128 pixel frames at a Nyquist resolution of 40 nm
per pixel (uncompressed TIFF files in 8-bit gray scale, see
Figs. 1/2). Microscopic PSFs and Nyquist resolution were
calculated with commercial Huygens Scripting Software for
a 63x/NA = 1.4 oil objective and an excitation/emission
wavelength of 488/520 nm. The selected dendrite diameter
of 0.84 µm represents a typical value for dendrites of pri-
mary hippocampal neurons [1]. As shown in Fig. 1b, three
basic elements are needed to construct a model of dendrite
point sources: (i) the normalized PSF for the focal xy-plane
of the microscopic setup, (ii) the dendrite shaft with a basal
initial fluorescence ID = 1, and (iii) randomly seeded point
sources with a signal intensity of IS = 50. When the sum of
the dendrite image and the signal image are convolved with
the microscopic PSF ((ID + IS) ⊗ PSF), images were found
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to be very similar to those of the neuronal system (compare
Fig. 1c left and right column) with respect to size, shape,
and density of the point signals (Fig. 1c). 10 point signals
with IS = 50 were seeded inside the area of the model den-
drite (ID = 1) using the Box-Muller transform for uniformly
distributed random numbers [38]. For each frame, the sum
of dendrite and point signal (ID + IS) was convolved with
the microscopic PSF. Two of the point sources were set to
perform uniform movement of one pixel per frame along the
dendrite axis (see arrows in Fig. 1c right column). In addi-
tion, we generated single, moving point sources without the
underlying dendrite in order to evaluate and compare the dif-
ferent OF approaches (Table 2) with the simplest possible
model (Figs. 3, 4 and Online Resource 1–3). The analysis
of vertically moving point sources along the model dendrite
was identical to the analysis of isolated point sources regard-
ing the maximum prediction of the confined displacement
(compare Fig. 3d and Online Resource 1e).

3.4 Error measures for OF fields for motion estimation

We used three different error measures to evaluate the accu-
racy of the OF field for motion estimation: the average end-
point error (AEE), the average angular error (AAE), and
a simplified error for motion only in the vertical axis, the
absolute difference error, in the following named “predic-
tion error”.

Prediction error will consider a region of interest (ROI)
resulting from segmentation of point signals. The predic-
tion error is defined as the absolute difference between the
ground truth (defined vertical displacement) vgt and the aver-
age value of the estimated vertical component v̄est inside a
ROI:

prediction error (ROI) = ∣
∣vgt − v̄est(ROI)

∣
∣ (10)

AEE measures the average magnitude of the vector differ-
ence between ground truth and estimated flow vectors, while
the AAE measures the error as average angular deviation
between velocities represented as 3D space–time vectors as
defined previously [39].

3.5 Image and data processing

HS-OF was implemented in IDL while the CLG-OF
approaches were implemented in C/C++ as dynamic link
libraries using Visual Studio 2005 (Microsoft Corp., Red-
mond, WA). We used SCIAN-Soft implemented in IDL for
image handling, segmentation of fluorescent point sources
in ROIs, visualization of OF fields, and data analysis. The
results were generated on a PC with Windows 7 64-bit and
the calculations were represented internally with double pre-
cision numbers. Data plots were generated with OriginPro
8.0 (OriginLab Corp., Northampton, MA).

4 Results and discussion

In this section, we describe the experiments performed with
synthetic and experimental microscopic images in order to
test the accuracy of the computed OF using the HS- and the
CLG-approaches summarized in Table 2. In addition, we dis-
cuss the suitability of these approaches to capture the move-
ment of fluorescent proteins in a biological dataset acquired
with confocal microscopy. Figures 2, 3 and 4 show the results
of OF computations with synthetic models performed to ana-
lyze the differences between the HS- and CLG-approaches.
Figure 5 shows the application of CLG-approaches for the
motion estimation of GABABR1 receptor subunits inside a
neuronal dendrite.

4.1 Fluorescent point sources in neuronal
and model dendrites

Figure 1 shows examples for the motion of point sources
in neuronal and model dendrites. A representative confocal
image of a temporal sequence for GABABR1 receptors in a
neuronal dendrite is shown in Fig. 1a. For the calibration of
the applied OF techniques, we simulated motion of two point
sources inside the model dendrite that mimics the kinetics of
fluorescent GABABR1 signals in the primary hippocampal
neurons (see arrows in Fig. 1c), or we used a single moving
point source with a background of zero (Figs. 3, 4).

Similarly generated synthetic model images have been
used previously for the calibration of algorithms to quan-
tify colocalization of point sources in different fluorescent
channels [1,40,41]. The calculated microscopic PSF and the
Nyquist distance guarantee the optimum parameters for the
acquisition of diffraction limited microscopy images. We
restricted our experiments to these optimum settings since
the effects of different scale levels and resolution on OF
fields have been discussed in detail before [21,42]. For micro-
scopic images, different scales (generated by different PSFs)
change the size of point sources in an image which improves
the motion estimation of OF-fields for increasing diameters
[21]. Variation of the Nyquist sampling frequency induce
over- or undersampling of the point sources and was there-
fore neglected in this study.

In addition, we did not consider the effect of Poisson noise
in our study for two reasons: (i) we consider that the removal
or smoothing of Poisson noise is part of the image restoring
through PSF deconvolution prior to motion estimation by OF.
During deconvolution, the signal-to-noise ratio can be set in
order to generate images which are almost free of pixel noise.
To this end, sophisticated deconvolution software based on
solid physical and probabilistic criteria should be preferred
[1,43,44]. (ii) Gerencser and Nicholls [21] presented images
with different signal-to-noise ratios and discussed the impact
on OF fields. In their study, wider spatial differentiation
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Fig. 1 Motion of point sources in neuronal and model dendrites.
a Representative image of a dendrite of a primary hippocampal neu-
ron from an experimental movie acquired with spinning disk micros-
copy (30 min, one frame per 30 s, pixel size is 107 nm in x and y,
image size is 585 × 180 pixels). Fluorescence intensity corresponds to
the fluorescent GABAB receptor subunit GABABR1-mRFP. The rect-
angle indicates the image section presented in (c). b Generation of a
model dendrite. Left channel specific point spread function (PSF), cal-
culated for the acquisition parameters of the microscopic setting used

in (a). Right binary image of a model dendrite with intensity ID = 1
(right top) and 10 point signals with intensity IS = 50 (right bottom).
c Motion of GABABR1 subunits in neuronal dendrite (left column) and
motion of point sources in model dendrites (right column). The model
dendrite was generated by the convolution of the sum of the dendrite
image and the point signals (ID + IS) with the PSF (see b). For the neu-
ronal dendrite, two moving point sources are pointed out by arrows for
three consecutive time intervals (t1–t3). For the model dendrite, t1–t3
represent randomly selected shots of the time sequence

kernels (Savitzky-Golay kernels) improve noise tolerance
due to additional smoothing effects. For our study, an addi-
tional smoothing parameter within the OF scheme would
distract from the principal goal of comparing the HS and the
CLG approaches and was therefore neglected.

4.2 HS-OF approach for the prediction of displacements
of synthetic and fluorescent point sources

Figure 2 shows HS-OF fields for moving fluorescent point
sources in neuronal dendrites (Fig. 2a–c) and model dendrites
(Fig. 2d–f). In order to evaluate if a flow field can estimate
the movement of the point sources reliably, we segmented
fluorescent point signals in ROIs with previously described
procedures [1]: in short, we applied Laplace filters in com-
bination with threshold settings in the intensity intervals of
the filtered images. Our approach yields much better results

than direct setting of thresholds in the intensity image and
has been applied successfully for the segmentation of differ-
ent fluorescent structures in microscopic images in the past
[2,35–37]. Figure 2c, f shows representative HS-OF fields
calculated with 200 iterations and regularization parameter
α = 10. 200 iterations were used for all performed exper-
iments, since the relative change of the OF field decreases
below 0.4% (see Online Resource 1d). In both cases, smooth
and regular vector field patterns are generated. In order to
obtain a single value for the prediction of the displacement
of the point sources by the OF vector fields, we calculated
the average vertical values of the OF fields inside the ROIs
v̄est (see Sect. 3.4).

HS-OF vector fields are sensitive to the value of the global
regularization parameter α. Figure 3 shows the effect of α for
the prediction of point source displacements. HS-OF fields
were calculated for defined displacements of the point source
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Fig. 2 HS-OF approach for detection of moving point sources in neu-
ronal dendrites and model dendrites. a Fluorescence image I (x, y, ti )
of a neuronal dendrite with moving point source (square). b Zoom of
a moving point source (square in a). The white line marks the ROI of
the fluorescent point source after segmentation. c HS-OF field calcu-
lated for image in (b) at time ti (I (x, y, ti )) and time ti+1(I (x, y, ti+1)).
The background image shows the time derivative of the image inten-
sities I (x, y, ti+1) − I (x, y, ti ). The minimum and maximum values
of the time derivative were scaled to I ∈ [0, 255]. Orientation of the

vector field is color coded (see f, bottom right). HS-OF field was cal-
culated with 200 iterations, regularization parameter α was set to 10.
d Model dendrite I (x, y, ti ) with moving point sources. e Zoom of a
moving point source (square in d). The white line marks the ROI of the
point source after segmentation. f HS-OF field calculated for image in
e (I (x, y, ti )) after the translation of the point source one pixel towards
the top (I (x, y, ti+1)). Direction is color coded (bottom right). The
background image and the HS-OF field were calculated as described
in (c)

between 1 and 8 pixels (Fig. 3d). Each data point represents
the average vertical value of the HS-OF (v̄est), calculated
inside the segmented ROIs (see Fig. 2e). As can be observed,
high α-values (α = 200) attenuate the OF field severely:
the predicted point source displacement is underestimated
for all displacements (see Fig. 3c, d). With decreasing α,
the prediction of the displacement improves, until it reaches
an optimum for α = 90 (see Fig. 3b, d). The optimum α

can be chosen from the prediction error-plot which shows
a common minimum at α = 90 for displacements of 1–4
pixels (Fig. 3e). With α = 90, displacements from 1–4 pix-
els are predicted almost perfectly by the flow field (see Fig.
3d, e). With α < 90, the prediction for the displacements of
1–2 pixels shows almost the same precision as with α = 90,
but increasingly overestimates displacements from 3–4 pix-
els. Correct predictions of displacements above 4 pixels can
only be obtained by chance due to the crossing of the pre-
diction curves for α < 90 with the control (Fig. 3d, black
circles); this effect is due to the corresponding OF fields,
which produce vectors with crossing directions (see Fig 3a
right).

For displacements of 1–4 pixels, the maximum predic-
tion error yields 0.11 pixels. Such errors can be regarded
small for practical purposes: considering the resolution
of diffraction limited microscopy and the corresponding
Nyquist sampling distance of 40 nm per pixel (correct sam-
pling distance for experiments on a sub cellular or cellular
level [45]), the prediction error is less than 4.4 nm. Since the
diffraction limited resolution of optical microscopy is cou-
pled to the FWHM-value of the corresponding PSF (200 nm
for the selected settings, see Fig. 1b), the HS-OF approach
predicts point source displacements up to 160 nm with
an error below 3%. For point source displacements above

160 nm, the HS-OF fields start to produce vector crossings
and points of convergence or divergence (Fig. 3a, b, d ≥ 5).

We have also checked the performance of HS-OF fields
for 12-bit images after rescaling 8-bit to 12-bit images. The
results obtained for 12-bit images show no substantial differ-
ence to the 8-bit plots; the sensitivity to the global regulari-
zation parameter α shifts to higher orders (compare Online
Resource 1c and Fig. 3d).

4.3 CLG-OF approaches for the prediction
of displacements of microscopic point sources

We analyzed different CLG-OF approaches (CLG-A-D),
under the variation of the global regularization parameter α,
the local derivative smoothing parameter ρ, and different
gradient masks (see Table 2):

• CLG-A: OF fields were calculated without derivative
smoothing Jρ (ρ = 0) and with the gradient mask of
the HS-OF approach, as a function of point source dis-
placement d and the regularization parameter α. The
results show very similar characteristics to the HS-OF
approach presented in Fig. 3d, e (see Online Resource
2a, b). The remaining differences can be explained by the
Laplacian discretization and the iterative scheme used
for the CLG-OF approach (see Table 1). The computed
CLG-OF fields are optimized with a slightly higher reg-
ularization parameter α = 110. Again, the prediction of
the point source displacement is reliable for distances of
up to 4 pixels, and the minimum prediction error value is
very close to the HS-OF approach (compare Fig. 3e and
Online Resource 2b). In summary, both approaches lead
to virtually the same results.

123



682 J. Delpiano et al.

d

a α=10 d=4

c α=200 d=4

b α=90 d=4

0

1

2

3

4

5

6

7

8

9

10

av
er

ag
e 

H
S

-O
F

 in
 R

O
I [

pi
xe

l]

step distance d [pixel]

 α = 10
 α = 25
 α = 60
 α = 90
 α = 100
 α = 200
 control

e

d=5 d=6

d=5 d=6

0

1

2

3

4

5

6

7

pr
ed

ic
tio

n 
er

ro
r 

[p
ix

el
]

regularization parameter α

 d = 1      
 d = 2      
 d = 3      

d=5 d=6

1 2 3 4 5 6 7 8 10 20 30 40 50 60 70 80 90 100 110 120

 d = 4
 d = 5
 d = 6

Fig. 3 Flow fields and prediction of point source displacement by HS-
OF varying the global regularization parameter α. a–c HS-OF vector
fields for different defined vertical displacements d = 4–6 pixels and
different global regularization parameter values α = 10 (a), α = 90 (b),
and α = 200 (c). The background image was calculated as described in
Fig. 2c. Direction of the vector fields are color coded (c, bottom right).
d Prediction of point source displacement by the HS-OF approach.
Point source displacements were calculated as the average of the verti-
cal component of the HS-OF field inside the ROI (Fig. 2e) depending

on the step distance d and varying the global regularization parameter
α = 10, 25, 60, 90, 100, 200 (gray lines and symbols). The ground truth
displacement of the model point source was plotted for displacements
d = 1–8 pixels (black lines and symbols). e Prediction error of point
source displacement by HS-OF in dependence on the global regulariza-
tion parameter α. The absolute values of the prediction errors between
the HS-OF fields and the displacement of the point source were plot-
ted as a function of the global regularization parameter α and different
ground truth displacements d = 1–6 pixels (see symbols)
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Fig. 4 Prediction of point source displacements and flow fields by
CLG-OF varying the global regularization parameter α, gradient masks
by Bruhn, and without local derivative smoothing. a Prediction of
point source displacement as calculated by the CLG-OF approach by
Bruhn depending on the step distance d and varying the global reg-
ularization parameter α = 10, 30, 45, 60, 100, 150. The CLG-OF
field was calculated without local derivative smoothing Jρ(ρ = 0)

and the gradient mask used by Bruhn applied only in the second
image frame (see Table 1). The ground truth displacement of the
model point source was plotted for displacements d = 1–8 pixels
(black lines and symbols). b Prediction error of point source displace-
ment by CLG-OF presented in a with respect to the global regulari-
zation parameter α. The absolute values of the errors for the predic-
tion between the CLG-OF fields and the displacement of the point
source were plotted as a function of the global regularization param-
eter α and different ground truth displacements d = 4, 5, and 6.
c CLG-OF vector fields for different displacements d = 4–6 pix-
els were calculated without Jρ(ρ = 0), α = 45 and with the gra-
dient mask used by Bruhn applied only in the second image frame
(see Table 1). The background image was calculated as described in

Fig. 2c. Direction of the vector fields are color coded (f bottom right).
d Prediction of point source displacement as calculated by the CLG-
OF approach by Bruhn depending on the step distance d and varying
the global regularization parameter α = 10, 30, 45, 60, 100, 150.
The CLG-OF field was calculated without local derivative smooth-
ing Jρ (ρ = 0) and the averaged gradient mask of two consecutive
frames used by Bruhn (see Table 1). The ground truth displacement
of the model point source was plotted for displacements d = 1–8
pixels (black lines and symbols). e Prediction error of point source
displacement by CLG-OF presented in d with respect to the global
regularization parameter α. The absolute values of the errors for the
prediction between the CLG-OF fields and the displacement of the
point source were plotted as a function of the global regularization
parameter α and different ground truth displacements d = 4, 5, and 6.
f CLG-OF vector fields for different displacements d = 4–6 pixels were
calculated with Jρ (ρ = 0), α = 100, and with the averaged gradient
mask of two consecutive frames used by Bruhn (see Table 1). The back-
ground image was calculated as described in Fig. 2c. Direction of the
vector fields are color coded (f bottom right)
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Fig. 5 Prediction of point source displacements by CLG-OF in
neuronal dendrites. a Left Section of the neuronal dendrite shown in
Fig. 2. Center CLG-OF field calculated between the original image
and the same image with a displacement d = 4 pixels towards the
top with α = 5, ρ = 1, and the gradient mask of the HS-approach
(see Table 1). The background image was calculated as described in
Fig. 2c. Right CLG-OF shown in segmented ROIs. Direction of the
vector fields are color coded (bottom right). b Point source displace-
ment as calculated by the average of the vertical component of the
CLG-OF field inside the ROIs depending on the step distance d and
varying the global regularization parameter α = 0.1, 2, 5, 10, 25
(gray lines and symbols). The CLG-OF-field was calculated with local
derivative smoothing Jρ(ρ = 1) and the gradient mask of the HS-
approach (see Table 1). The ground truth displacement was plotted
for displacements d = 1–8 pixels towards the top (black lines and

symbols). c Point source displacement as calculated by the average of
the vertical component of the CLG-OF field inside the ROIs depending
on the step distance d and varying the global regularization parameter
α = 0.1, 2, 5, 10, 25. The CLG-OF-field was calculated with local
derivative smoothing Jρ(ρ = 1), the averaged gradient mask between
two consecutive frames used by Bruhn (see Table 1), and using the gra-
dient mask calculated only in one of the image frames. The ground truth
displacement was plotted for displacements d = 1–8 pixels towards the
top (black lines and symbols). d Left Neuronal dendrite region shown
in a for t1. Inset shows the displacement of the GABAB receptor sub-
unit GABABR1-mRFP at t2. Center CLG-OF vector field calculated
between images at t1 and t2 with α = 5, ρ = 1, and the gradient mask
of the HS-approach (see Table 1). The background image was calculated
as described in Fig. 2c. Right CLG-OF shown at ROIs. Arrow direction
is color coded (bottom right)

• CLG-B: OF fields were calculated without derivative
smoothing Jρ (ρ = 0), and two different ways of
calculating the image gradients. As introduced by Bru-
hn et al. [25,28,46], the gradients Ix and Iy were cal-
culated as shown in Table 1: the second-order Taylor
approximations of the derivatives were calculated only
in one image. Our results show OF fields with gradients

calculated at time ti+1. As can be observed in Fig. 4a, b,
this approach leads to results that are very different from
the HS-OF approximation. The predicted displacements
are more sensitive to α, but for an optimum α = 45,
the prediction improves for displacements of up to 5
pixels. The OF fields show a fundamental difference:
they are insensitive to the convergence induced by the
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“intensity sink” (dark spot in Fig. 4c), but maintain sensi-
tivity to the divergence induced by the “intensity source”
(bright spot in Fig. 4c). This can be explained by the cal-
culation of the gradient at time ti+1 that does not take
into account time ti . If the gradient is calculated at time
ti , the OF fields are sensitive to the convergence, and
insensitive to the divergence (not shown).
In order to circumvent this problem, we calculated Ix

and Iy as the average of the gradients calculated at
time ti and ti+1. The results shown in Fig. 4d–f are
very similar to the HS-OF approximation (3d/e) and do
not reveal any significant improvement. Similar to the
CLG-A approach, the computed CLG-B-OF fields are
optimized for a slightly higher α-value (α = 110) and
allow the prediction of the point source displacements
up to 4 pixels. However, the computed CLG-B-OF fields
show an improved vertical alignment compared with the
results of HS-OF, which is reflected by a lower AAE (see
Online Resource 2h).

• CLG-C: OF fields were calculated with derivative
smoothing Jρ (ρ = 1), and with gradient mask of the
HS-OF approach. As Online Resource 2c/d shows, the
setting leads to results that are similar to the HS-OF
and CLG-A approaches (Fig. 3d, e and Online Resource
2a/b). CLG-C does not improve the prediction errors
nor does it allow to predict step distances greater than 4
pixels. The vector fields show a slightly improved align-
ment in the direction of the vertical displacement (not
shown) which results in a slightly lower AAE (see Online
Resource 2h).

• CLG-D: OF fields were calculated with derivative
smoothing Jρ (ρ = 1), and the two different ways of
calculating the image gradients (see CLG-B). For both
gradients, the results were similar to those obtained by
CLG-B (see Fig. 4a–f). Using the averaged gradient
mask, the optimum regularization parameter α = 120
permits the prediction of the point source displacement
up to 4 pixels (Online Resource 2e/f). For this case, we
also show the dependence of the OF fields for different ρ-
values (Online Resource 3): increasing ρ does not permit
to predict step distances greater than 4 pixels, but results
in a decreased sensitivity to α. In addition, increasing ρ

leads to a lower AAE (Online Resource 2h), probably
due to the effect of enhanced local smoothing by Jρ .

In summary, the HS approach and all tested CLG-approaches
show very similar behaviours (except those based on sin-
gle image gradient masks). None of the methods allows the
prediction of step distances greater than 4 pixels (160 nm).
However, they are all able to make very precise step pre-
dictions for distances less than or equal to 4 pixels. Despite
observed differences with respect to the sensitivity to α and
the variations of the AAE, the AEE-plot shows that all data

points are distributed within a narrow band (AEE <0.25,
Online Resource 2g).

4.4 OF approaches for the prediction of GABABR1-mRFP
mobility in neural dendrites

The determination of dynamic parameters of organelle
mobility (trajectory length, continuity, direction, and veloc-
ity) from image series has been elusive in most biologi-
cal cases. Previous works have performed particle tracking
by either manual or semiautomatic methods [47–49], or by
using kymographs [50]. Both techniques work well in sys-
tems where the moving structures are clearly distinguishable,
for example, mitochondria transport in axons; however, they
fail to give accurate measurements on more complex scenar-
ios. This had precluded the study of the dynamics of most
organelles in densely populated regions like the soma or the
mobility of cargo inside of highly interconnected structures
such as the endoplasmic reticulum, which synthesizes and
transports secreted and membrane proteins. The application
of optical flow techniques to address organelle mobility has
been tested in at least two studies, the first concerning the
traffic of the endoplasmic reticulum-Golgi intermediate com-
partment (ERGIC) [19], and the second addressing the trans-
port of mitochondria in hippocampal neurons [21]; the latter
specifies the parameters for image acquisition in order to opti-
mize optical flow calculations. Here we show an application
of the optical flow for the transport of GABAB receptors,
whose GABABR1 subunit is retained and transported inside
the endoplasmic reticulum of hippocampal neurons [2]. The
densely packed particles resulting from the transfected fusion
protein GABABR1-mRFP in dendrites of hippocampal neu-
rons make this system difficult to track, but still suitable
for optical flow analysis under optimal image acquisition
parameters. Thus, fundamental questions relating dynamical
transport of neurotransmitter receptors in dendrites with their
function modulating synaptic transmission can be addressed
quantitatively, giving insights into their tight underlying tem-
poral and spatial regulation.

We tested CLG-C and CLG-D approaches to predict
GABABR1-mRFP mobility in hippocampal dendrites from
DSU image sequences. Considering the results in the previ-
ous section, CLG-C was used in representation of all other
approaches, as well as CLG-D, in order to test the appar-
ent advantage of the gradient calculated at time ti+1for the
prediction of point source movements. For biological image
sequences, ground truth data for moving point sources cannot
be generated per se, which impedes the identification of opti-
mum values for the global regularization parameter α. Some
of the GABABR1-mRFP subunits are immobile, while others
move along the dendrite shaft with unknown displacements.

In order to find the optimum α-values in such sequences,
we mimic ground truth data by the following strategy: first
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we segment ROIs of fluorescent point sources as described
previously [1,2] in a representative image (Fig. 5a); then we
apply defined pixel displacements d of the entire image frame
to generate the time component ti+1 and calculate the OF
fields; finally, we plot the predicted value (average) inside
these ROIs in dependence of the displacements d and the
prediction error as a function of α (Fig. 5a–c).

An example of the flow fields calculated inside the ROIs
for a vertical displacement of d = 4 pixels can be observed in
Fig. 5a (right). From Fig. 5b, it becomes clear that α = 5 min-
imizes the prediction errors for all distances. For our exam-
ple, the approach includes GABABR1-mRFP displacements
of up to 6 pixels. Taking into account the pixel size of the DSU
setting (107 nm per pixel), the maximum displacement of the
GABABR1-mRFP subunits which can be predicted correctly
is approximately 650 nm. In comparison with the model den-
drite, the experimental image series is undersampled by a
factor of 2, due to the optical setup of our DSU. In addition,
GABABR1-mRFP trafficking apparently does not occur on a
single subunit basis, since the observed fluorescence signals
provide FWHM-values beyond the limits of the theoretical
PSF (Fig. 1b). Under these conditions, the maximum dis-
tance for precise motion prediction increases from 160 nm
in model dendrites to 650 nm under the specific experimen-
tal settings. These results are in agreement with the findings
published by Gerencser and Nicholls [21] where the maxi-
mum distance for precise motion prediction increases with
the size of the point sources. In addition, displacements of up
to 11 pixels were predicted in fluorescent image sequences of
subcellular chromatin structures (nucleoli) with AAE < 4◦
using a CLG-OF approach with α = 6 [14]. Unfortunately,
the authors do not comment on pixel size. This rather large
estimation can be explained by the broad intensity distribu-
tion of the nucleoli. Our experiments for the point source
show equally low AAE < 4◦ using CLG-OF.

The same regularization parameter α = 5 optimizes the
CLG-D approach for the averaged gradient mask and cor-
rectly predicts the displacement up to 6 pixels (Fig. 5c, closed
gray symbols). In contrast, the CLG-D approach for the sin-
gle gradient mask at ti+1 (Fig. 5c, open gray symbols), fails
for displacements d ≥ 2 pixels. The apparent advantage of
the single gradient mask approach which we observed for the
synthetic point sources in Fig. 4a–c could not be validated
in real microscopic sequences. These findings suggest that
time averaging of the spatial image gradients is necessary in
order to obtain reliable predictions within the limits.

For practical purposes of many cell biological experiments
which might or might not meet the Nyquist distance, our
approach to mimic ground truth by defined displacements
in combination with the segmentation of selected ROIs can
determine optimum α-values and the maximum range for
reliable motion estimation by the OF fields. From the maxi-
mum range for reliable motion estimation and the expected

object velocities, the optimum time sampling rate can be
determined to ensure that the object displacements are cap-
tured accurately by the OF fields.

We used the optimum α-value to predict GABABR1-
mRFP trafficking in our microscopic sample sequence. The
example in Fig. 5d shows the calculated CLG-OF field for
two consecutive image frames (Fig. 5d, center) and the pre-
diction of the GABABR1-mRFP displacement towards the
top of the image (compare Fig. 5d, left and right image).
The obtained results fit the observation in the natural image
sequence within the limits of the pixel resolution.

5 Conclusions

The comparison of the HS-OF and different CLG-OF
approaches for the accurate prediction of displacements of
point sources in model dendrites did not reveal substantial
differences among the methods: point source displacements
were predicted up to a maximum of 4 pixels (160 nm) with
very low prediction errors below 3%. In an experimental
image series, displacements of moving GABABR1 receptor
subunits in neuronal dendrites could be predicted correctly
up to 6 pixels (642 nm). From these values, the temporal sam-
pling frequencies can be calculated for a given experiment in
order to guarantee correct motion estimation of fluorescent
objects.

One advantage of the CLG-OF approach consists in a
reduced sensibility towards the global regularization param-
eter α. In order to ease the access to the correct parameter
settings for the α-values and the parameter ρ for local deriva-
tive smoothing, we are currently implementing an automated
algorithm to mimic ground truth for defined displacements of
signals in biologic image data. Finally, we are expanding the
HS- and CLG-OF approaches on a 3D level in order to access
vesicle, nucleus, and membrane displacements for appli-
cations in different biologic disciplines. Promising results
in this field based on OF approaches have been published
recently [20].
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