
Automatic On-Line Color Calibration using Class-

Relative Color Spaces∗

Pablo Guerrero, Javier Ruiz-del-Solar, Josué Fredes, Rodrigo Palma-Amestoy

Department of Electrical Engineering, Universidad de Chile

{pguerrer,jruizd,jfredes,ropalma}@ing.uchile.cl

Abstract. In this article we present an automatic on-line color calibration

system that makes extensive use of the spatial relationships between color
classes in the color space. First, we introduce the definition of class-relative

color spaces, where classes are represented in terms of their spatial relation to a

base color class. Then, using class-relative color spaces, the system is able to

remap classes from the already trained ones, which gives a starting point for

training the remaining classes. The color-calibrating system also uses a

feedback from the detected objects using the remapped (or partially trained)
classes. As a result, the system is able to generate a complete color look-up

table from scratch, and to adapt quickly to severe lighting condition changes. A

particularity of our system is that it does not need to solve the natural ambiguity

in color classes’ intersections, but it is able to keep and use it during color

segmentation using the concept of soft-colors.

1 Introduction

In the RoboCup Four Legged League, as in most of the RoboCup soccer leagues,

objects are specifically colored to allow robots to recognize them easily. Most of the

employed vision systems use color segmentation to take advantage of the color

information. There several approaches for segmenting colors in real time [5], a

common one is based in the use of a 3D look-up table (LUT). When the robot

operates in a controlled environment having fixed lighting conditions, a fixed LUT

performs well, and thus it can be trained off-line. However, this approach has two

main flaws: a lot of time is needed for a human to calibrate the LUT, and the

operation of the robot is strictly limited to artificial environments with highly

controlled illumination. In this context, the development of automatic or adaptive

color calibration systems has been intensely treated by the RoboCup community in

the last years. The motivation is very clear: RoboCup is supposed to increasingly

move to more realistic game conditions, which of course include natural lighting.

The presented work proposes an automatic on-line color calibration system, which

allows the robot to build a LUT on-line, and to adapt it quickly to severe lighting

condition changes. To our knowledge, the paper is innovative in three aspects: (i)

spatial relationships between color classes are used in a very general fashion, which

∗ This research was partially supported by FONDECYT (Chile) under Project Number 1061158.

allows the system to be easily adapted to any other application with different objects

and/or color classes, (ii) the intersections of the color classes (also called soft-colors

in the literature) are also automatically trained and stored in the LUT, and (iii) non

isotropic illumination is considered, and an automatic training procedure is proposed.

2 Related work

A main stage in any automatic color calibration system is the extraction of pixels

of colored objects to train the LUT or the classes’ statistics. To obtain these pixels,

some of the published approaches relay on the knowledge of the objects’ shape and

on the pose of the robot, and thus, on the relative positions of the fixed objects with

respect to the robot [6][2]. Some other systems use scan lines and predefined

transition rules based on simple spatial relations between color classes in the color

space (for example: “cyan has a higher U component than green”) [1]. Other systems

use a priori membership distribution to track the classes’ statistics by means of the

EM algorithm [3]. Some of the proposed approaches make use of incremental layers

or estimations of the color classes [1], where coarse layers are used to extract pixels

that are used to train more precise layers. Regarding color information representation,

there are several ways to represent color classes. The following are examples of

proposed class representations, sorted by complexity and flexibility: cuboids [1], non-

rotated ellipsoids (mean and uncorrelated variances of color components) [6], union

of rotated ellipsoids (Gaussian Mixture) [3], and hybrids that bounds in different ways

the different color coordinates [4]. Most of them do not allow intersection between

classes so ambiguity must be solved before filling the LUT, attempting to minimize

the expected classification error. Additionally, color constancy approaches (e.g. [8])

propose the existence of transformations or mappings, in a determined color space,

that describe what happen to colors of an image when the lighting changes. If one

applies such an approach literally to the color segmentation problem, one could

preprocess each image, and get a transformed one that should be easily segmented

with a previous LUT. But, this transformation should be applied to each pixel, which

is a prohibitive task in real-time robotics. However, we are using the color space

mapping idea to propose the remapping applied to color classes instead of pixels,

which is a task that can be performed in real time.

3 Proposed Approach

The proposed automatic color calibration system starts its operation with the

extraction of pixels corresponding to color classes that can be trained with a total lack

of a priori knowledge. These color classes are green and white in our application (in

the RoboCup soccer environment the field’s lines and carpet can be detected without

using color information), but from a more general point of view, they can be colors of

any objects that can be detected without use of color information. The extracted

classes’ statistics are used in combination with a priori knowledge of the spatial

relationships among the color classes to remap the rest of the classes. This remapped

color classes are then used for the on-line detection of objects. Then, the system takes

feedback from the detected objects to extract pixels of the respective classes, and

makes a smooth transition from the remapped estimations of the color classes to

trained estimations of the classes.

3.1 Basic Definitions: Colors, Color Classes and Color Classes Representation

The system works in the YUV color space because the AIBO camera takes images in

this format. A point in the YUV color space will be named a color. A color class is a

set of colors that can be observed in pixels corresponding to an object or an object

part having a given human-defined color. For example the class “yellow” is the one

that contains pixels belonging to a yellow goal or a yellow part of a beacon. The set of

color classes Ω is defined by the application. As discussed in [6] (even when they

chose a simpler representation), we have found that a correlated 3D Gaussian is

enough to represent a color class. Thus, we have chosen to represent each class

∈ΩK by a mean and a covariance in the YUV space, (),K Kµ Σ . An innovation

threshold λK is used to determine when a color belongs to any class K :

[] () (){ }3 10,255
T

λ−= ∈ − − <
K K K K

K c c µ Σ c µ
(1)

Note that the size of a class is determined by its covariance matrix KΣ and its

innovation threshold λK
. This class representation corresponds to an ellipsoid in the

YUV space with possibly rotated axes and different radiuses. A value of 10λ =K is

found to be optimal when the class statistics are reasonably well estimated.

When lighting conditions change, color classes change their position and size in

the color space. This makes a fixed color’s LUT inapplicable in those situations.

However, even when the lighting condition change drastically, and the color classes

suffer severe modifications, some spatial relationships between them in the color

space remain unaltered. Thus, given a color class K , we can define a K-relative color

space as one centered in Kµ and with a metric linearly transformed by a function of

KΣ . Any color c can be transformed to the K-relative color space:

()1−= Σ −K

K Kc c µ
(2)

Where the square root of a matrix A is defined as a lower triangular matrix that

satisfies:
T

=A A A . The square root is implemented using the Cholesky

factorization [9]. We call K
c the K-relative representation of c . Analogously, given

any color class D , with mean and covariance (),D Dµ Σ , it can have its K-relative

representation defined as (),K K

D Dµ Σ , where,

()1−= Σ −K

D K D Kµ µ µ ; 1 1
T

− −Σ = Σ Σ ΣK

D K D K
(3)

Note that in particular, () (), 0,=K K

K Kµ Σ I , with I the 3x3 identity matrix .

3.2 Off-Line Training

In the proposed system color classes are trained manually using a procedure as the

one described in [7]. The statistics (),K K

D Dµ Σ are calculated and stored for every pair

of classes () 2, ∈ΩK D . This procedure is intended so that the system learns the

spatial relationships between classes, and it is needed to be carried out it only once for

a determined set of color classes. This is why we associate this procedure to the one

when a human learns the colors for the first time. We have found that the system is

robust enough to small changes in the actual colors of the objects (for example, the

color of the carpet).

3.3 On-Line Operation

Our system maintains two estimations of the color classes, a remapped estimation and

trained estimation (see explanation in the next sections). These two estimations are

combined to obtain the resulting estimation that is used to fill a LUT. This resulting

LUT is the output of the system. Fig. 1 shows the system’s components and the

information flow. In the next sections the different modules will be explained.

Pixels Extraction and Statistics Calculation: In this stage, acquired images are

used to extract pixels from detected objects. A fixed maximum number of pixels

colors are stored for each color class. The number of stored colors is selected to

ensure that enough images are considered (approximately 10 images, with a mean

number of extracted pixels per image of ~200 green pixels and ~40 for the rest of the

classes). When necessary, oldest colors are rewritten by the newest ones. Green and

white are extracted using scan lines. Scan lines are perpendicular to the horizon line

and the scan is performed similarly as described in [1], but following upwards

direction. For the sake of brevity, we will not describe in detail this procedure since it

is not the focus of the paper. When using this procedure, it is not necessary to have a

priori knowledge about the lighting conditions to extract green and white pixels

because the visual sonar is based on Y channel transitions, thus we call green and

white self-sufficient classes. This is why the visual sonar is the starting point of the

system. Yellow, cyan, pink, orange, red and blue (or other colors in the case of

applications different than RoboCup soccer) are extracted from detected objects

having the corresponding color class. Of course, to detect these objects it is necessary

to have a previous estimation of those color classes, which is not possible when the

system starts or when the lighting conditions change. That is why we call these

classes dependent.

Pixels selected to train a class are filtered (using (1), but considering a higher

innovation threshold) according to their innovation with respect to the resulting

estimation, to prevent outliers from damaging classes’ statistics. Trained classes’

statistics are recalculated after each image is processed using the stored colors. This

recalculation is implemented in an efficient incremental fashion.

Fig. 1. Block diagram of the system. Trained and remapped color classes estimations are

combined to get a resulting estimation which is used to fill the resulting LUT. The system is

able to completely train and adapt the resulting LUT having prior knowledge of the spatial
relationships between colors.

Color Classes Remapping: As discussed in [8], a linear mapping is not enough to

cope with the possible color space transformations that may appear when lighting

changes, but, one could locally approximate such a mapping with a linear

transformation. We present a statistic method for remapping the non-trained color

classes. To overcome the lack of extracted pixels for the dependent classes, we make

use of the class-relative color spaces to create a first approximation of them. If any

class K is already trained, a remapped estimation of any other class D can be

obtained from its K-relative representation and the K trained estimation:

, , ,r t t= + ΣK K

D K K Dµ µ µ ;
, , ,

T

r t t
Σ = Σ Σ ΣK K

D K D K

(4)

When there is more than one trained class, the system uses remapping weights β K

D

to determine how relatively important is the K-relative color space to remap the class

D. Remapping weights are calculated as:

{ }

1

1

/

α
β

α

−

−′

′
′∈Ω

=

∑

K

K DK

D
K

K D

K D

µ

µ
;

N

T
α = K

K

K

(5)

Where TK
 is the maximum number of extracted pixels for the class K. Then, the

remapped estimation of D is calculated as:

{ }
, ,

/

r r
β ′ ′

′∈Ω

= ∑
K K

D D D

K D

µ µ ;
{ }

, ,

/

r r
β ′ ′

′∈Ω

= ∑
K K

D D D

K D

Σ Σ (6)

Every class is remapped in function of the existing trained colors. This remapped

estimation is stored to be combined with the trained estimation, if it already exists.

Classes Estimations Combining: A linear combination of remapped and trained

estimations is used to get the resulting color class estimation:

(), ,1t rα α= + −D D D D Dµ µ µ ; (), ,1t rα α= + −D D DΣ Σ Σ (7)

The use of αD
 allows a smooth transition from the use of the remapped estimation

of the class (when no pixel has yet been trained) to the use of the trained estimation

(when the maximum number of pixels has already been trained). This smooth

transition has the objective of avoiding mistakes in the association of training pixels

to partially trained classes.

LUT Filling: The LUT is filled when any of the classes’ resulting estimation

moves enough, from the used to build the current LUT, to make it obsolete. The LUT

filling is efficiently implemented: For each pair (),Y U , the two solutions
1V and

2V

of the quadratic equation () ()1T
λ−− − =K K K Kc µ Σ c µ are calculated, with

(), ,Y U V=c . If
1 2,V V ∈� , the LUT is filled in the (),Y U row, from

1V to
2V with

class K .

4 Results

We have tested our autonomous calibration system in real AIBO image sequences,

with both the robot and its camera moving and partially controlled lighting conditions.

To illustrate how the system creates a new LUT from scratch, figure 2 shows

important events in the color calibration process, and how the segmentation improves

as new images are processed. The whole sequence corresponds to a half turn of the

robot around itself (~2 sec). From testing the system in several image sequences as

the shown in fig. 2, we have concluded that the system is able to completely train a

LUT from scratch.

We compare the performance of the proposed method with Adaptive Color

Distribution Transformation (ACDT) [10]. Fig. 3 shows the evolution of the correctly

classified pixel rate (CCPR) over an image sequence2. The CCPR corresponds to the

rate of pixels correctly classified inside the regions of the image occupied by actual

objects. As can be seen from the curves, the system performs very similar to ACDT

(CCPR≈40%) when the off line stage was trained in a different environment (UChile
Lab). When the offline stage is performed in the same environment, the performance

of the system is noticeably superior (CCPR≈55%).
Processing time is a very relevant issue in mobile robotics systems, and even more

when having limited processing power. Thus, we limit the frequency in which each of

2 The image sequence and its correspondent ground truth information was downloaded from

http://www.dis.uniroma1.it/~spqr/cms/

the operations is executed. This limitation is flexible and it is possible to balance the

reactivity of the system versus the demanded processing time.

Fig. 2. Example pictures from a video sequence obtained while the robot is making calibration

from scratch (above), and the correspondent segmented images using the LUT obtained up to

that moment (bellow). Some relevant events are the first detections of: the blue goal (left), the

ball (center), and the pink yellow beacon (right).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

ACDT CRCS 1 CRCS 2

Fig. 3. Correctly Classified Pixel Rate evolution over a 394 image sequence for: Adaptive

Color Distribution Transformation (ACDT), Class-Relative Color Spaces with an off-line stage

in a different environment, with different illumination (CRCS1), and Class-Relative Color

Spaces with an off-line stage in the same environment, with the same illumination (CRCS2)

To convince the reader that the system is able to work on-line, table 1 shows the

processing time consumed by each of the stages of the process and the frequency in

which each of them is performed. The total time is presented with a frequency of 1Hz

because the operations are not performed at the same time, so the presented total time

is a mean over 1 second period. The presented processing times are measured in an

AIBO CPU (64bit RISC, 576 MHz, Aperios). It is important to note that the system

can be executed in real time over an AIBO CPU because, if necessary, some

frequencies could be further reduced without a noticeable impact on the performance

of the system, assuming that the lighting conditions will not change too often. With

no frequency limitations, the entire process takes approximately 35ms, which is not

good enough to play soccer but allows the robot to get a good LUT as quick as

possible.

Table 1. Processing times for each stage of the system.

Stage Frequency Mean processing time (AIBO)

Training Classes 10Hz 6ms

Remapping Classes 0.5Hz 1.6ms

Combining Estimations 0.5Hz 0.5ms

Filling the LUT ~0.1Hz 26ms

Total time 1Hz 70ms

5 Conclusions

We have presented a novel approach for automatic calibration of a color

segmentation system. Although the system is applied for a specific RoboCup soccer

league, the presented framework is general enough to be used in other soccer leagues,

and in other applications having any reasonable set of color labels. As is shown in the

results section, the system is able to work online and to completely train a LUT from

scratch. However, there are several efficiency improvements that may be achieved as,

for example, to perform the LUT filling only for the needed classes. Also, we are

planning to make our software architecture disconnect the automatic color calibration

when time demanding tasks, as pursuing the ball, are being performed.

Acknowledgments. We would like to thank Luca Iocchi for kindly providing us the

image sequence and the code for testing it with his method.

References

1. M. Jüngel. Using Layered Color Precision for a Self-Calibrating Vision System. RoboCup 2004: Robot

Soccer World Cup VIII. 209-220. 2005.
2. P. Heinemann, F. Sehnke, F. Streichert and A. Zell. Towards a Calibration-Free Robot: The ACT

Algorithm for Automatic Online Color Training. RoboCup 2006: Robot Soccer World Cup X, to appear.

2007.
3. F. Anzani, D. Bosisio, M. Matteucci and D. Sorrenti. On-Line Color Calibration in Non-Stationary

Environments. RoboCup 2005: Robot Soccer World Cup IX. 396-407. 2006.

4. C. Gönner, M. Rous and K. Kraiss. Real-Time Adaptive Colour Segmentation for the RoboCup Middle
Size League. RoboCup 2004: Robot Soccer World Cup VIII. 402-409. 2005.

5. J Bruce, T. Balch and M. Veloso. Fast and Inexpensive Color Image Segmentation for Interactive

Robots. Proceedings of the 2000 IEEE/RSJ International Conference on Inteligent Robots and Systems

(IROS ’00), volume 3, 116-122. 2000.

6. M. Sridharan and P.Stone. Towards Eliminating Manual Color Calibration at RoboCup. RoboCup 2005:

Robot Soccer World Cup IX . 673-681. 2006.

7. R. Palma, P. Guerrero and J. Ruiz del Solar. Context-Dependent Color Segmentation for AIBO Robots.

3rd IEEE Latin American Robotics Symposium – LARS 2006, Oct. 26 - 27, Santiago, Chile (CD

Proceedings). 2006.
8. K. Tieu, E. Miller. Unsupervised Color Constancy. Advances in Neural Information Processing

Systems. 2002.

9. W. Press, S. Teukolsky, W. Vetterling and B. Flannery. Numerical Recipes in C. Second Edition.
Cambridge University Press. 1992.

10. L. Iocchi. Robust color segmentation through adaptive color distribution transformation. Proceedings

of RoboCup Symposium. 2006. to appear.

