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Abstract. In this article we present an automatic on-line color calibration 

system that makes extensive use of the spatial relationships between color 
classes in the color space. First, we introduce the definition of class-relative 

color spaces, where classes are represented in terms of their spatial relation to a 

base color class. Then, using class-relative color spaces, the system is able to 

remap classes from the already trained ones, which gives a starting point for 

training the remaining classes. The color-calibrating system also uses a 

feedback from the detected objects using the remapped (or partially trained) 
classes. As a result, the system is able to generate a complete color look-up 

table from scratch, and to adapt quickly to severe lighting condition changes. A 

particularity of our system is that it does not need to solve the natural ambiguity 

in color classes’ intersections, but it is able to keep and use it during color 

segmentation using the concept of soft-colors. 

1   Introduction 

In the RoboCup Four Legged League, as in most of the RoboCup soccer leagues, 

objects are specifically colored to allow robots to recognize them easily. Most of the 

employed vision systems use color segmentation to take advantage of the color 

information. There several approaches for segmenting colors in real time [5], a 

common one is based in the use of a 3D look-up table (LUT). When the robot 

operates in a controlled environment having fixed lighting conditions, a fixed LUT 

performs well, and thus it can be trained off-line. However, this approach has two 

main flaws: a lot of time is needed for a human to calibrate the LUT, and the 

operation of the robot is strictly limited to artificial environments with highly 

controlled illumination. In this context, the development of automatic or adaptive 

color calibration systems has been intensely treated by the RoboCup community in 

the last years. The motivation is very clear: RoboCup is supposed to increasingly 

move to more realistic game conditions, which of course include natural lighting. 

The presented work proposes an automatic on-line color calibration system, which 

allows the robot to build a LUT on-line, and to adapt it quickly to severe lighting 

condition changes. To our knowledge, the paper is innovative in three aspects: (i) 

spatial relationships between color classes are used in a very general fashion, which 
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allows the system to be easily adapted to any other application with different objects 

and/or color classes, (ii) the intersections of the color classes (also called soft-colors 

in the literature) are also automatically trained and stored in the LUT, and (iii) non 

isotropic illumination is considered, and an automatic training procedure is proposed. 

2   Related work 

A main stage in any automatic color calibration system is the extraction of pixels 

of colored objects to train the LUT or the classes’ statistics. To obtain these pixels, 

some of the published approaches relay on the knowledge of the objects’ shape and 

on the pose of the robot, and thus, on the relative positions of the fixed objects with 

respect to the robot [6][2]. Some other systems use scan lines and predefined 

transition rules based on simple spatial relations between color classes in the color 

space (for example: “cyan has a higher U component than green”) [1]. Other systems 

use a priori membership distribution to track the classes’ statistics by means of the 

EM algorithm [3]. Some of the proposed approaches make use of incremental layers 

or estimations of the color classes [1], where coarse layers are used to extract pixels 

that are used to train more precise layers. Regarding color information representation, 

there are several ways to represent color classes. The following are examples of 

proposed class representations, sorted by complexity and flexibility: cuboids [1], non-

rotated ellipsoids (mean and uncorrelated variances of color components) [6], union 

of rotated ellipsoids (Gaussian Mixture) [3], and hybrids that bounds in different ways 

the different color coordinates [4]. Most of them do not allow intersection between 

classes so ambiguity must be solved before filling the LUT, attempting to minimize 

the expected classification error. Additionally, color constancy approaches (e.g. [8]) 

propose the existence of transformations or mappings, in a determined color space, 

that describe what happen to colors of an image when the lighting changes. If one 

applies such an approach literally to the color segmentation problem, one could 

preprocess each image, and get a transformed one that should be easily segmented 

with a previous LUT. But, this transformation should be applied to each pixel, which 

is a prohibitive task in real-time robotics. However, we are using the color space 

mapping idea to propose the remapping applied to color classes instead of pixels, 

which is a task that can be performed in real time. 

3   Proposed Approach 

The proposed automatic color calibration system starts its operation with the 

extraction of pixels corresponding to color classes that can be trained with a total lack 

of a priori knowledge. These color classes are green and white in our application (in 

the RoboCup soccer environment the field’s lines and carpet can be detected without 

using color information), but from a more general point of view, they can be colors of 

any objects that can be detected without use of color information. The extracted 

classes’ statistics are used in combination with a priori knowledge of the spatial 

relationships among the color classes to remap the rest of the classes. This remapped 



color classes are then used for the on-line detection of objects. Then, the system takes 

feedback from the detected objects to extract pixels of the respective classes, and 

makes a smooth transition from the remapped estimations of the color classes to 

trained estimations of the classes. 

3.1   Basic Definitions: Colors, Color Classes and Color Classes Representation 

The system works in the YUV color space because the AIBO camera takes images in 

this format. A point in the YUV color space will be named a color. A color class is a 

set of colors that can be observed in pixels corresponding to an object or an object 

part having a given human-defined color. For example the class “yellow” is the one 

that contains pixels belonging to a yellow goal or a yellow part of a beacon. The set of 

color classes Ω  is defined by the application. As discussed in [6] (even when they 

chose a simpler representation), we have found that a correlated 3D Gaussian is 

enough to represent a color class. Thus, we have chosen to represent each class 

∈ΩK  by a mean and a covariance in the YUV space, ( ),K Kµ Σ . An innovation 

threshold λK  is used to determine when a color belongs to any class K : 
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Note that the size of a class is determined by its covariance matrix KΣ  and its 

innovation threshold λK
. This class representation corresponds to an ellipsoid in the 

YUV space with possibly rotated axes and different radiuses. A value of 10λ =K  is 

found to be optimal when the class statistics are reasonably well estimated. 

When lighting conditions change, color classes change their position and size in 

the color space. This makes a fixed color’s LUT inapplicable in those situations. 

However, even when the lighting condition change drastically, and the color classes 

suffer severe modifications, some spatial relationships between them in the color 

space remain unaltered. Thus, given a color class K , we can define a K-relative color 

space as one centered in Kµ  and with a metric linearly transformed by a function of 

KΣ . Any color c  can be transformed to the K-relative color space: 

( )1−= Σ −K
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Where the square root of a matrix A is defined as a lower triangular matrix that 

satisfies: 
T

=A A A . The square root is implemented using the Cholesky 

factorization [9]. We call K
c  the K-relative representation of c . Analogously, given 

any color class D , with mean and covariance ( ),D Dµ Σ , it can have its K-relative 

representation defined as ( ),K K

D Dµ Σ , where, 
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Note that in particular, ( ) ( ), 0,=K K

K Kµ Σ I , with I  the 3x3 identity matrix . 

3.2   Off-Line Training 

In the proposed system color classes are trained manually using a procedure as the 

one described in [7]. The statistics ( ),K K

D Dµ Σ  are calculated and stored for every pair 

of classes ( ) 2, ∈ΩK D . This procedure is intended so that the system learns the 

spatial relationships between classes, and it is needed to be carried out it only once for 

a determined set of color classes. This is why we associate this procedure to the one 

when a human learns the colors for the first time. We have found that the system is 

robust enough to small changes in the actual colors of the objects (for example, the 

color of the carpet). 

3.3   On-Line Operation 

Our system maintains two estimations of the color classes, a remapped estimation and 

trained estimation (see explanation in the next sections). These two estimations are 

combined to obtain the resulting estimation that is used to fill a LUT. This resulting 

LUT is the output of the system. Fig. 1 shows the system’s components and the 

information flow. In the next sections the different modules will be explained. 

 

Pixels Extraction and Statistics Calculation: In this stage, acquired images are 

used to extract pixels from detected objects. A fixed maximum number of pixels 

colors are stored for each color class. The number of stored colors is selected to 

ensure that enough images are considered (approximately 10 images, with a mean 

number of extracted pixels per image of ~200 green pixels and ~40 for the rest of the 

classes). When necessary, oldest colors are rewritten by the newest ones. Green and 

white are extracted using scan lines. Scan lines are perpendicular to the horizon line 

and the scan is performed similarly as described in [1], but following upwards 

direction. For the sake of brevity, we will not describe in detail this procedure since it 

is not the focus of the paper. When using this procedure, it is not necessary to have a 

priori knowledge about the lighting conditions to extract green and white pixels 

because the visual sonar is based on Y channel transitions, thus we call green and 

white self-sufficient classes. This is why the visual sonar is the starting point of the 

system. Yellow, cyan, pink, orange, red and blue (or other colors in the case of 

applications different than RoboCup soccer) are extracted from detected objects 

having the corresponding color class. Of course, to detect these objects it is necessary 

to have a previous estimation of those color classes, which is not possible when the 

system starts or when the lighting conditions change. That is why we call these 

classes dependent. 

Pixels selected to train a class are filtered (using (1), but considering a higher 

innovation threshold) according to their innovation with respect to the resulting 

estimation, to prevent outliers from damaging classes’ statistics. Trained classes’ 



statistics are recalculated after each image is processed using the stored colors. This 

recalculation is implemented in an efficient incremental fashion. 

 

Fig. 1. Block diagram of the system. Trained and remapped color classes estimations are 

combined to get a resulting estimation which is used to fill the resulting LUT. The system is 

able to completely train and adapt the resulting LUT having prior knowledge of the spatial 
relationships between colors. 

Color Classes Remapping: As discussed in [8], a linear mapping is not enough to 

cope with the possible color space transformations that may appear when lighting 

changes, but, one could locally approximate such a mapping with a linear 

transformation. We present a statistic method for remapping the non-trained color 

classes. To overcome the lack of extracted pixels for the dependent classes, we make 

use of the class-relative color spaces to create a first approximation of them. If any 

class K is already trained, a remapped estimation of any other class D  can be 

obtained from its K-relative representation and the K  trained estimation: 
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When there is more than one trained class, the system uses remapping weights β K

D
 

to determine how relatively important is the K-relative color space to remap the class 

D. Remapping weights are calculated as: 
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Where TK
 is the maximum number of extracted pixels for the class K. Then, the 

remapped estimation of D is calculated as: 
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Every class is remapped in function of the existing trained colors. This remapped 

estimation is stored to be combined with the trained estimation, if it already exists. 

 

Classes Estimations Combining: A linear combination of remapped and trained 

estimations is used to get the resulting color class estimation: 

( ), ,1t rα α= + −D D D D Dµ µ µ ; ( ), ,1t rα α= + −D D DΣ Σ Σ  (7) 

The use of αD
 allows a smooth transition from the use of the remapped estimation 

of the class (when no pixel has yet been trained) to the use of the trained estimation 

(when the maximum number of pixels has already been trained). This smooth 

transition has the objective of avoiding mistakes in the association of training pixels 

to partially trained classes. 

 

LUT Filling: The LUT is filled when any of the classes’ resulting estimation 

moves enough, from the used to build the current LUT, to make it obsolete. The LUT 

filling is efficiently implemented: For each pair ( ),Y U , the two solutions 
1V  and 

2V  

of the quadratic equation ( ) ( )1T
λ−− − =K K K Kc µ Σ c µ  are calculated, with 

( ), ,Y U V=c . If 
1 2,V V ∈� , the LUT is filled in the ( ),Y U  row, from 

1V  to 
2V with 

class K . 

4   Results 

We have tested our autonomous calibration system in real AIBO image sequences, 

with both the robot and its camera moving and partially controlled lighting conditions. 

To illustrate how the system creates a new LUT from scratch, figure 2 shows 

important events in the color calibration process, and how the segmentation improves 

as new images are processed. The whole sequence corresponds to a half turn of the 

robot around itself (~2 sec). From testing the system in several image sequences as 

the shown in fig. 2, we have concluded that the system is able to completely train a 

LUT from scratch. 

We compare the performance of the proposed method with Adaptive Color 

Distribution Transformation (ACDT) [10]. Fig. 3 shows the evolution of the correctly 

classified pixel rate (CCPR) over an image sequence2. The CCPR corresponds to the 

rate of pixels correctly classified inside the regions of the image occupied by actual 

objects. As can be seen from the curves, the system performs very similar to ACDT 

(CCPR≈40%) when the off line stage was trained in a different environment (UChile 
Lab). When the offline stage is performed in the same environment, the performance 

of the system is noticeably superior (CCPR≈55%). 
Processing time is a very relevant issue in mobile robotics systems, and even more 

when having limited processing power. Thus, we limit the frequency in which each of 
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the operations is executed. This limitation is flexible and it is possible to balance the 

reactivity of the system versus the demanded processing time. 

   

   

Fig. 2. Example pictures from a video sequence obtained while the robot is making calibration 

from scratch (above), and the correspondent segmented images using the LUT obtained up to 

that moment (bellow). Some relevant events are the first detections of: the blue goal (left), the 

ball (center), and the pink yellow beacon (right). 
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Fig. 3. Correctly Classified Pixel Rate evolution over a 394 image sequence for: Adaptive 

Color Distribution Transformation (ACDT), Class-Relative Color Spaces with an off-line stage 

in a different environment, with different illumination (CRCS1), and Class-Relative Color 

Spaces with an off-line stage in the same environment, with the same illumination (CRCS2) 

To convince the reader that the system is able to work on-line, table 1 shows the 

processing time consumed by each of the stages of the process and the frequency in 

which each of them is performed. The total time is presented with a frequency of 1Hz 

because the operations are not performed at the same time, so the presented total time 

is a mean over 1 second period. The presented processing times are measured in an 

AIBO CPU (64bit RISC, 576 MHz, Aperios). It is important to note that the system 

can be executed in real time over an AIBO CPU because, if necessary, some 

frequencies could be further reduced without a noticeable impact on the performance 

of the system, assuming that the lighting conditions will not change too often. With 

no frequency limitations, the entire process takes approximately 35ms, which is not 

good enough to play soccer but allows the robot to get a good LUT as quick as 

possible. 



Table 1.  Processing times for each stage of the system. 

Stage Frequency Mean processing time (AIBO) 

Training Classes 10Hz 6ms 

Remapping Classes 0.5Hz 1.6ms 

Combining Estimations 0.5Hz 0.5ms 

Filling the LUT ~0.1Hz 26ms 

Total time 1Hz 70ms 

5   Conclusions 

We have presented a novel approach for automatic calibration of a color 

segmentation system. Although the system is applied for a specific RoboCup soccer 

league, the presented framework is general enough to be used in other soccer leagues, 

and in other applications having any reasonable set of color labels. As is shown in the 

results section, the system is able to work online and to completely train a LUT from 

scratch. However, there are several efficiency improvements that may be achieved as, 

for example, to perform the LUT filling only for the needed classes. Also, we are 

planning to make our software architecture disconnect the automatic color calibration 

when time demanding tasks, as pursuing the ball, are being performed. 
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