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Abstract. Decision making is an important issue in robot soccer, which has not 

been investigated deeply enough by the RoboCup research community. This 

paper proposes a probabilistic approach to decision making. The proposed 

methodology is based on the maximization of a game situation score function, 

which generalizes the concept of accomplishing different game objectives as: 

passing, scoring a goal, clearing the ball, etc. The methodology includes a 

quantitative method for evaluating the game situation score. Experimental 

results in a high-level strategy simulator, which runs our four-legged code in 

simulated AIBOs’ robots, show a noticeable improvement in the scoring 

effectiveness achieved by a team that uses the proposed approach for making 

decisions.  

1   Introduction 

The aim of this paper is to propose a general methodology for taking decisions 

probabilistically in robot soccer. In a robotic soccer match, a player needs to take 

several decisions as for example: (i) where to position itself in the field when not 

having the ball, (ii) when to approach the ball, (iii) when to act as a support player, 

either supporting an attacker or a defender, (iv) what movements to do with the ball 

when having it, and (v) when and (vi) to which position to kick the ball. The decisions 

must take into account the role of the robot (defender, attacker, etc), the state of the 

game (score), the robot surround (position of teammates, opponents and the ball), and 

the teammates actions. In addition, decisions should be taken as fast as possible. 

Most of the existent work related with decision making in robot soccer has focused 

in resolving specific tasks such as pass selection, and has not taken enough care of the 

big picture. The few approaches that consider several tasks at the same time, start 

their reasoning by considering a lot of reasonable decision criterions, and finally 

trying to mix them as best as possible. On the contrary, we believe that any strategy 

must start by defining a clear and general objective to be accomplished. Then, this 

general objective may be decomposed in more specific ones. In soccer, the general 

objective is to win the match, which can be also said as: “to score more goals than the 

opponent”. Thus, instead of making a detailed list of possible risks, gains and costs, 

and then trying to take them all into account in the best way, we are proposing to 

reason in the opposite way: to clearly define the general objective to achieve, and then 
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to find the more relevant criterions that can lead us to right decisions in order to 

accomplish this objective. 

 When the problem is faced in this fashion, it is clear how to balance the specific 

objectives as passing the ball, shooting to the goal, etc., and a wide spectrum of 

decisions’ classes can be performed. Probabilities are nice to define such an approach, 

because in a probabilistic framework the natural uncertainties found in the process 

can be easily considered. The here-proposed methodology considers a score function 

of a given game situation. Decisions are taken in order to maximize the expected 

value of this score function. To make the kick decisions probabilistically, Montecarlo-

based algorithms are used to integrate the PDFs (Probability Density Functions) of the 

available kicks over the field space. Another particularity of the proposed system is 

the way it takes opponents into account: they are not merely seen as possible blockers 

of the intended actions. Instead, we consider that the opposite team is intending, as 

much as the own, to score goals. Thus, we evaluate their possibilities with the same 

deepness that we do with the own: all of our analysis is symmetric for both teams. As 

a result, the presented approach is able to naturally balance defensive and offensive 

behaviors, and furthermore, it is able to change this balance according to the present 

situation. As human players do, robots following our approach will be more averse to 

risk when facing a defensive situation, and will gradually become more prone to take 

risks as the situation gets more offensive. Finally, the proposed methodology provides 

a quantitative method for evaluating the game situation score. 

The advantages of the proposed system are the following: (i) the method relays 

only on the expected scored goal difference, and not in others conventionally taken 

into account such as pass success or ball possession time length; (ii) as stated in [8], 

when the space of the possible decisions is explored with a grid, it is possible to 

balance the accuracy of the decision and the computational cost; (iii) the uncertainty 

in the kicks result is considered; and (iv) the symmetric analysis of the situations 

allows a natural balancing between offensive and defensive behaviors. One 

disadvantage of the proposed method is the assumption of arbitrary models for the 

calculation of several of the probabilities. However, we believe this disadvantage may 

be corrected, by redefining if necessary the model of these probabilities, without 

affecting the core of the proposed system. 

This paper is organized as follows. In section 2 is presented some related work. 

The proposed probabilistic methodology for decision making is described in section 

3. In section 4, experimental results are presented. Finally, in section 5 conclusions of 

this work are given. 

2   Related work 

For simulated soccer there have been proposed several interesting approaches that 

take into account several factors to make decisions ([4][7][8] to name a few). Some of 

them are based in reward functions, but finally, they use heuristics to mix 

probabilities (for example it is not clear how to compare the reward of a successful 

pass with the one of a successful shoot to the goal). Besides, they do not consider the 

uncertainty in the kicks’ result. 



When choosing an appropriate kick for an objective, most of the teams consider the 

time that it takes to be realized, the ball departure angle, and the shoot power, which 

is reflected on the ball speed after the kick (see for example the Team Description 

Papers in [2]). This information is usually acquired using statistics of data obtained 

from the repetition of a particular kick, and calculating the mean values of the 

distance and the angle of the final ball position for each available punch. There are 

different ways to choose the kick as a function of these parameters. From the strategic 

point of view there are differences at the moment of choosing a kick. For instance, the 

method implemented by the German Team [5] to pass the ball does not only use the 

information provided by its team partners; it uses in addition some visual information 

about the position of the receiver. Then it chooses the pass so that the objective is 

exactly the position of the receiving robot, which has to be warned right on that 

moment to react, and go back to the initial position for a better control of the ball. 

In [1], it is proposed an interesting approach to deal with kicks uncertainty, based 

on a MonteCarlo sampling. The probabilities of accomplishing some prioritized 

objectives (passing, self-passing, shooting, and clearing) were estimated for each 

kick. We have incorporated the idea of the MonteCarlo sampling to our work, but 

instead of using a prioritized list of objectives for the objective and kick selection, we 

are proposing the use of a generalized objective which takes into account 

simultaneously all the listed objectives considered in [1], plus other possible 

objectives which are very difficult to consider in such an approach, as for example 

leading passing (passing not directly to the teammate but to a point ahead). 

3   Proposed Approach 

3.1   Game Segment 

A RoboCup soccer match may be split into game segments. A game segment is the 

interval between two kick offs (kick offs occur when the match starts, and after a goal 

is scored). Every game segment may end in two ways: time out or goal. We can then 

define the score obtained in the current game segment as: 
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Where gω ′
 , tω  and gω  are respectively the events: “the opposite team scores”, 

“time is out before anyone scores” and “the own team scores”. 



3.2   Ball Control Action 

A ball control action (BCA) is what a robot does after catching the ball, and it 

consists in a relative displacement ( ),
T

x y∆ = ∆ ∆x  and rotation θ∆  of the robot 

holding the ball, and a kick k of the ball: 

( ),
T

a = d k ; ( ),
T

θ= ∆ ∆d x  (2) 

Each game segment may be seen as a succession of BCA’s { }k
a . We have a 

limited set of kicks { }l
=Ω k . Let ( ),

l l
r θ  be the polar coordinates, relative to the 

kicking robot, to what the ball will arrive, if it is allowed to roll freely, after the kick 

l
k  is performed. We assume that 

l
r  and

l
θ  are independent Gaussian random 

variables with respective means 
,r l

µ  and 
,lθµ , and variances 

2

,r l
σ  and 

2

,lθσ . Then, the 

kick  
l

k  can be parameterized using: ( )2 2

, , , ,, , ,l r l l r l lθ θµ µ σ σ=Π . The parameters 
l

Π  

have to be calculated previously for each of the available kicks. Figure 1.a shows our 

current available set of kicks and their parameters.  

3.3   Score Function 

Let us define a game situation as a vector ( ),
T

=S R b  where b is the estimated 

position of the ball and ( )1 1,..., , ,...,
R R

T

N N
′ ′=R x x x x  is a vector containing the 

estimated poses of all robots, being 
R

N  the number of robots per team. In particular, 

each robot may have an estimation of S . In our implementation, teammate robots 

share their own estimated positions, the observations of the ball and of the other 

robots, and each robot tracks all the mobile objects using an EKF based approach. We 

propose that any situation of the game may be evaluated in terms of how 

advantageous it is. We will call this measurement the Game Situation Score (GSS). 

The GSS is defined as: 

( ) ( ) ( ) ( )g g
GSS E P Pβ ω ω ′= = −S S S S  (3) 

We are especially interested in situations when the ball just arrived to a new 

position, after a BCA. We define ( ),
T

k k k
=S R b  as the situation produced by 

k
a , in 

the moment when the ball stops rolling. The event “a goal is scored by means of 
k

a ” 

is defined as g

k
ω  or g

k
ω ′

, depending on which team scored. The events g

k
ω +  and g

k
ω ′

+  

correspond to a goal scored, by means of a later BCA than 
k

a , by respectively the 

own team and the opposite team. Then ( )g

kP ω S  is calculated as (the calculation of 

( )g
P ω ′

S  is symmetrical): 
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k k k k k k k
P P P Pω ω ω ω += + −S S S S  (4) 

It is straightforward from the previous definitions that the immediate goal 

probability ( )g

k kP ω S  is 1 or 0 depending on whether 
k

b  is inside or outside the 

opposite goal. 

The future scoring probability of the own team may be calculated in a recursive 

form: 

( ) ( ) ( )1 1 1

g g

k k k k k k kP P P dω ω+ + + + += ∫S S S S S  (5) 

It is impractical to calculate the former integral, so we make some simplifications: 

(i) after the ball arrives to 
k

b , the closest robot of each team, will lead to 
k

b  until one 

of them catches the ball, (ii) as the pose of the rest of the robots at k+1 is 

unpredictable, we will assume they will remain static, and (iii) 
1k

a + , and thus 
1k +b , 

are totally determined by the team of the robot which will perform 
1k

a +  and by all the 

robots’ poses. Therefore, 
1k +S  is only a function of which robot will capture the ball 

and consequently perform 
1k

a + . Two events are defined: “the closest robot of the own 

team will catch the ball”, called 
1

c

k
ω + , and “the closest robot of the opposite team will 

catch the ball”, called 
1

c

k
ω ′

+ . Then, equation (5) can be rewritten as: 

( ) ( ) ( ) ( ) ( )1 1 1 1
, ,g g c c g c c

k k k k k k k k k k k k
P P P P Pω ω ω ω ω ω ω′ ′

+ + + + + + +≈ +S S S S S  (6) 

The catching probabilities 
( )( )'

1

c c

k k
P ω + S  are approximated as (analogous for 

1

c

k
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Where ( )c k
t S  and ( )c k

t′ S  are the amounts of time required to arrive to 
k

b  for the 

closest robot of respectively the own team and the opposite team: 

( )
( ), ,, i k k i ki k k
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t
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Where 
,i k

x  and 
,i k

θ  are respectively the position and orientation of the robot of the 

own team closest to the ball at time k. Note that the time required for displacing and 

for rotating are considered in terms of the estimated robot linear speed 
R

v  

(=40cm/sec) and angular speed 
R

ω  (=120°/sec) (these values correspond to AIBO 

ERS7 robots). The calculation of ( )c k
t′ S  is analogous. 

The future scoring probabilities 
( )( )1

,
c cg

k k k
P ω ω

′

+ + S  can be calculated using (4): 



( )( ) ( )( ) ( )( )( ) ( )( )1 1 1 1 1 1 1, , 1 , ,
c c c c c c c cg g g g

k k k k k k k k k k k kP P P Pω ω ω ω ω ω ω ω
′ ′ ′ ′

+ + + + + + + + += + −S S S S  
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This leads to a possibly infinite recursion, therefore we will approximate all the 

remaining probabilities as a function of some coarse indicators of how advantageous 

the resulting situations are. We introduce the expected free time (
f

t  or 
f

t′ ) of the 

robot that catches the ball, as the amount of time that the robot will be able to hold the 

ball without the direct presence of a rival, and is calculated as (analogous for 
f

t′ ): 

( ) ( )( )0; ;f k kt bnd t t′= − ∞S S  (10) 

With ( ); ;bnd c d e  defined as the quantity d lower bounded by c and upper 

bounded by e. We also define the aligning time (
a

t  or 
a

t′ ) of the robot that catches the 

ball as the amount of time that it will need for aligning to its opposite goal. If ′g  is 

the position of the opposite goal , 
a

t  is calculated as (analogous for 
a

t′ ): 

( ) ( ),k i k ka
a

R R

t
θ

ω ω

′− − −
= =
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(a) (b) 

Fig. 1. (a) Set of available kicks with their relative means and variances, each plotted polar 

rectangle is bounded by ( ), , , ,,r l r l l lθ θµ σ µ σ± ± . (b) illustration of 'φ  and 
a

θ  for two objective 

points (A and B, respectively). 

We approximate ( )1 1
,g c

k k k
P ω ω+ + S  as a function of the opening angle φ ′ , which is 

the angle difference between the two posts of the goal from the point of the ball. 
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Where θσ  is the mean of the angle variances of the available kicks, and u is the 

step function, which will become 1 if it is possible to reach the goal, considering the 

maximum mean distance reached by an available kick. 

The remaining probabilities are even fuzzier, therefore we make use of coarser 

indicators. We approximate ( )1 1
,g c

k k k
P ω ω+ + + S  as: 

( ) ( )
( )
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With a selected value of 
1

0.3Hzν = . For the calculation of ( )1
,g c

k k k
P ω ω ′

+ + S , we 

assume that a robot will not score in its own goal. Thus,  

( )1 1
, 0g c

k k k
P ω ω ′

+ + =S   (14) 

⇒ ( ) ( )1 1 1
, ,g c g c

k k k k k k
P Pω ω ω ω′ ′

+ + + + +=S S  (15) 

The future crossed score probability ( )1 1
,g c

k k k
P ω ω ′

+ + + S  is approximated as: 
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Where a value of 0.3secτ =  is found to yield satisfactory results. Summarizing, 

( )k
GSS S  may be calculated using equations (3), (4), (6), (7), (8), (9), (10), (11), (12), 

(13), (15), (16). Figure 1.b illustrates some of the variables used in the calculation of 

the GSS. 

3.4   Decision Map 

In the moment where a robot holds the ball, it has infinite possible BCA’s that 

should be evaluated in order to decide for the best. We make a discretization of this 

space to be able to explore it. The discretization consists in a polar grid, where the 

distance is limited by the maximum distance that the ball can be kicked considering 

the available kicks, and the amount of time that the ball can be held. This grid is 

called decision map and consists in M objective points 
m

p . Figure 2 shows some 

examples of decision maps. Accomplishing the generalized objective is defined as 

maximizing the expected GSS of the final position of the ball. The decision map is 

used to explore the space of feasible final positions of the ball after a BCA. 



3.5   Objective and Ball Control Action Selection 

If we leave R  fixed, GSS may be seen as a function of the ball position b, ( )GSS
R

b . 

Then, for each objective point 
m

p  in the decision map, its ideal score 
m

π  is 

calculated as: 

( )( )m mGSS repπ = R pɶ  (17) 

If 
m

p  is out of the field, the ball will be replaced by a human referee in an arbitrary 

point (see [3] for details). Thus ( )m
rep p  is the expected ball replacement position if 

m
p  is out of the field, and in other case it is equal to 

m
p .  

(a) 
 

(b) 

Fig. 2. Examples of decision maps and taken decisions, using the developed high-level 

strategy’s simulator. The polar grid is around the red robot that holds the ball. Lighter points 

correspond to higher scores in the decision map. The big red points correspond to the selected 

points. (a) Defensive situation, the red robot holding the ball is blocked by two blue robots, thus 

points out of the field are selected (even preferring them over a possible but risky pass to the 

goalie), because its partner will be very close to the ball after the referee replace it. (b) 

Offensive situation, where a leading pass is selected, preferring it over a direct pass. 

Taking into account objective points out of the field, the rep function has the nice 

effect, often observed in human players, that in some situations the robot may decide 

to kick the ball out of the field (see a simulated example en figure 2.a). Let us define 

the filtered score of the objective point 
m

p  as: 

( )( )( )m m
E GSS repπ =

R
b p  (18) 



Note that 
m m

π π≠ ɶ  since there is an uncertainty in the final position of the ball after 

performing any kick. To consider this uncertainty, 
m

π  is calculated as the result of 

applying a Gaussian low-pass filter over each polar coordinate to 
m

πɶ . Consequently, 

smooth maxima of 
m

πɶ  are preferred over sharp ones.  

For the sake of simplicity, to calculate 
m

πɶ  and 
m

π  we use R as the estimation of 

the poses of all the robots in the moment when the decision is taken. However, R will 

probably vary from the moment when the robot makes de decision of where to kick 

the ball, to the moment when the ball finally arrives to its final position b. We assume 

that the variation of R when time passes will always diminish the maxima of 
m

π , 

which is a reasonable assumption since as time passes by, other robots may block the 

way from the robot holding the ball to any given objective point. Thus, for each 

objective point 
m

p  in the decision map, we select the index ( )m
l p  of the required 

kick ( )ml p
k  as: 

( ) ( )( )arg min , ,m d l m
l

l t=p k p R  (19) 

Where ( ), ,
d l m

t k p R  is the required dribbling time for kicking to the objective 

point 
m

p , using the kick 
l

k , and given the robots (teammates and opponents) poses 

R , and is calculated as: 

( ) , ,
, ,

m l m l

d l m

R R

t
v

θ

ω

∆ ∆
= +

x
k p R  

(20) 

With 
,m l

∆x  and 
,m l

θ∆  being respectively the required displacement and rotation of 

the robot to perform 
l

k  and reach 
m

p , if the kick results in its expected values 
,r l

µ , 

,lθµ . If the way from the robot to 
m

p  is free, 
,m l

∆x  just aims to adjust the distance to 

m
p  (the robot moves in the axis between it and 

m
p ). If the way to 

m
p  is blocked, 

,m l
∆x  also considers an obstacle-avoiding component, which means that the robot 

will move to the closer free axis to 
m

p , to the point at a distance 
,r l

µ  of 
m

p . In both 

cases, 
,m l

θ∆  is calculated to align the robot with the needed angle to kick to 
m

p  using 

l
k . Once ( )m

l p  is selected, the minimum dribbling time, ( )( ), ,
m

d ml
t

p
k p R , is used to 

punish the final score 
m

π  of the objective point 
m

p . 

( )( ) ( )( )2
, , , , 3

1

m m
m d m d ml l

m

t tπ ν
π

 − <
= 

−

p p
k p R k p R

∼
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With a selected value of 
2

0.12Hzν = . The condition in (21) ensures that only 

feasible points are considered (the robot is allowed to hold the ball for a maximum of 



3 seconds [3]). The selected objective point 
m

p  is selected as the one that maximizes 

m
π . Figure 2 shows some examples of the calculation of 

m
π  in determined situations.  

4   Results 

As we have defined the decision making problem –in terms of maximizing the 

expected score advantage obtained– results should show that a team using the 

presented decision making framework is able to beat, getting as much score advantage 

as possible, another team using another decision making framework. The complete 

benefits of the system should be noticeable in a standard 4 versus 4 robots match. To 

test the system and to be able to present comprehensive results, we have developed a 

high-level strategy simulator, UChile HL-SIM, which runs our four-legged code in 

simulated AIBO’s robots. Differing from our realistic simulator, UChilSim [6], 

UChile HL-SIM is not focused in realistic 3D visualization of scenes, neither in 

realistic dynamic interactions simulation, but it is intended for debugging specifically 

high-level strategy and behaviors. For that purpose, each simulated robot runs our 

strategy and actuation code, and the simulator brings them error-free perception and 

world modeling information. The result of the intended displacements of the robot is 

also simulated as error-free. Dynamic interactions between objects (ball, robots, and 

goals) are modeled in an idealized but comprehensive fashion (simplified 2D 

geometry). In order to provide a normal game flow, refereeing is also simulated, 

taking into account the RoboCup 2006 Four Legged League Competition Rules [3]. 

Figure 3 shows a screenshot of UChile HL-SIM. 

 

Fig. 3. UChile HL-SIM: High Level simulator used for testing the proposed strategy. 

For testing and validation purposes, we tested the described probabilistic-based 

decision making strategy, in 10 simulated matches between a team which uses this 

new strategy against a team which uses the decision making system proposed in [1] 

(probabilistic kick selection). The matches were always won by the proposed 



approach with an average goal difference of 8.5 (see Table 1 for details on the 

results). In the simulated matches, it was evident how some of the described 

improvements, as leading passes and clearing outside the field, appeared. 

Table 1.  Detailed results of the simulated matches. The proposed strategy score goes first. 

Match Score Goal Difference 

1 12 - 5 7 

2 14 - 3 11 

3 6 - 4 2 

4 7 - 3 4 

5 9 - 2 7 

6 15 - 2 13 

7 14 - 1 13 

8 16 - 3 13 

9 9 - 3 6 

10 10 - 1 9 

Average 11.2 - 2.7 8.5 

 

5   Conclusions 

We have presented a novel approach for general decision making in robot soccer, 

based on the definition of a game situation score function, and the consequent 

discrimination of more specific objectives as passing and shooting to the goal. 

The main advantage of the proposed system is that it relays only on the scored 

goals probability, and not in others conventionally taken into account such as pass 

success or ball possession time length. Additional advantages are the possibility of 

balancing the accuracy of the decision and the computational cost, by modifying the 

decision map resolution, and the consideration of the kicks’ result uncertainty. The 

assumption of arbitrary models for the calculation of some of the probabilities should 

be corrected in future works, for example by using a machine learning approach. 

The presented approach takes into account the uncertainty in the actions’ results 

(kicks PDF’s), but it does not take into account the uncertainty in the perception of 

the situations (vision, objects tracking and localization). We are planning to extend 

our work to make it able to consider the perceptual uncertainty. 

The presented high-level strategy simulator is very well suited for testing high-

level strategy and behaviors. We are planning to extend its capabilities in order to 

learn the parameters and morphology of the decision-making’s algorithms inside the 

behaviors of different levels. 

The preliminary results encourage us to continue developing our system. In 

particular, more factors may be included to better estimate some probabilities, but 

always keeping the conceptually hierarchized approach. On the other hand, some of 

the parameters used for calculating probabilities may be learned during a game, in 

order to adapt the strategy to the opponent characteristics. 
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