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Abstract. In this article a robust thermal face recognition methodology based 
on the use of local interest points and descriptors, is proposed. The 
methodology consists of the following stages: face segmentation, vascular 
network detection, wide baseline matching using local interest points and 
descriptors, and classification. The main contribution of this work is the use of 
a standard wide baseline matching methodology for the comparison of vascular 
networks from thermal face images. The proposed methodology is validated 
using a database of thermal images. This work could be of high interest for HRI 
applications related with the visual recognition of humans, as the ones included 
in the RoboCup @Home league, because the use of thermal images may 
overcome limitations such as dependency on illumination conditions and facial 
expressions. 
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1   Introduction 

Face analysis plays an important role in building HRI (Human-Robot Interaction) 
interfaces that allow humans to interact with robot systems in a natural way. Face 
information is by far the most used visual cue employed by humans. There is 
evidence of specialized processing units for face analysis in our visual system [1]. 
Face analysis allows localization and identification of other humans, as well as 
interaction and visual communication with them. Therefore, if human-robot 
interaction must achieve the same efficiency, diversity, and complexity that human-
human interaction has, face analysis should be extensively employed in the 
construction of HRI interfaces. 

Currently, computational face analysis is a very lively and expanding research 
field. Face recognition, i.e. the specific process for determining the identity of an 
individual contained in an image area which has been already identified as containing 
a face (by a face detection system) and already aligned (by a face alignment process 
which usually includes eye detection), is a functional key for personalizing robot 
services and for determining robot behaviors, usually depending on the identity of the 
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human interlocutor. Many different face recognition approaches have been developed 
in the last few years [1]-[5], ranging from classical Eigenspace-based methods (e.g. 
eigenfaces [6]), to sophisticated systems based on high-resolution images or 3D 
models. Many of these methods are well suited to specific requirements of 
applications such as biometry, surveillance, or security. HRI applications have their 
own requirements (variable illumination conditions, variable face expressions, just 
one image per person, in many cases), and therefore some approaches are better suited 
for them. It would be useful for developers of face recognition systems for HRI to 
have some guidelines about the advantages of some thermal methodologies over 
others. 

In this context, the aim of this work is to propose and evaluate the usage of 
vascular networks from thermal face images for recognition purposes, and the use of 
wide baseline methods for matching both, thermal images and vascular networks.  

The main contribution of this work is the use, for the first time, of a standard 
wide baseline matching methodology for the matching of vascular networks from 
thermal face images. This approach enables to build recognition systems using just 
one image per subject, which are robust to variable illumination and variable face 
expressions. 

This paper is organized as follows. The related work is described in section 2. 
The proposed system is explained in section 3. Description of the experiments and 
results are outlined in section 4. Finally, conclusions are given in section 5. 

2   Related Work 

Biometric techniques have attracted increasing interest from both research and 
industrial communities because of the strong immunity to forgery that they can 
achieve. Face recognition is one of the main topics in the set of biometric applications 
as it is one of the most human-used, non-intrusive and user-friendly approaches for 
biometric recognition and have been a very important issue in the computer vision 
community, generating a lot of related research on image processing and statistical 
classifiers and achieving encouraging results [1]-[4][6][7]. Visible-spectrum images 
have high variability because they are produced by reflection in surfaces, which has 
strong dependence on luminosity and spatial distribution of the light sources which 
usually have strong differences in time, and their dependence on reflectivity make 
possible to fool the system using some simple tricks like photographs or dummy 
faces. These problems encouraged the interest in the use of thermal images for face 
recognition because of the great resistance to forgery it can achieve and their high 
immunity to illumination changes and several other sources of variability in the 
acquisition of images that enables these systems to operate in real non-controlled 
environments [8][9]. Face recognition systems using thermal images use techniques 
adapted from visible-spectrum image face recognition [8]-[10], and new techniques 
that are specific for thermal images [18][19]. A comparison of several techniques for 
thermal faces is shown in [20]. Algorithms for obtaining vascular networks from 
thermal images using segmentation and morphologic operators [18][19] are a very 
useful tool for building face recognition techniques as they provide a very simple and 



repeatable imprint representation that is unique for each person, and enable 
recognition through the matching of these imprints using some specialized or general 
image matching methodology from the impressive rich variety of techniques that are 
devoted to this last task. 

Wide baseline matching (object recognition) approaches based on local interest 
points (invariant features) have become increasingly popular and have experienced an 
impressive development in the last years [14][11][16][21]. Typically, local interest 
points are extracted independently from both a test and a reference image, and then 
characterized by invariant descriptors, and finally the descriptors are matched until a 
given transformation between the two images is obtained. Most employed local 
detectors are the Harris detector [12] and the Lowe’s sDoG+Hessian detector [14], 
being the Lowe’s detector multiscale and the Harris detector single scale. Best 
performing affine invariant detectors are the Harris-Affine and the Hessian-Affine 
[17], but they are too slow to be applied in general-purpose applications. The most 
popular and best performing invariant descriptor [17] is the SIFT (Scale Invariant 
Feature Transform) [14]. For selecting the local detector and invariant descriptor to be 
used in a given application it should be taken into account the algorithm’s accuracy, 
robustness and processing speed. Lowe’s system [14] using the SDoG+Hessian 
detector, SIFT descriptors and a probabilistic hypothesis rejection stage is a popular 
choice, given its recognition capabilities, and near real-time operation. However, 
Lowe’s system main drawback is the large number of false positive detections. This is 
a serious problem when using it in real world applications. 

One of the main weaknesses of Lowe’s algorithm is the use of just a simple 
probabilistic hypothesis rejection stage, which cannot successful reduce the number of 
false positives. Loncomilla and Ruiz-del-Solar (L&R) propose a system that reduces 
largely the number of false positives by using several hypothesis rejection stages 
[15][21]. This includes a fast probabilistic hypothesis rejection stage, a linear 
correlation verification stage, a geometrical distortion verification stage, a pixel 
correlation verification stage, a transformation fusion procedure, and the use of the 
RANSAC algorithm and a semi-local constraints test. In [21] are compared the 
Lowe’s and the L&R systems using 100 pairs of real-world high-textured images 
(variations in position, view angle, image covering, partial occlusion, in-plane and 
out-of the-plane rotation). The results show that in this dataset the L&R system 
reduces the false positive rate from 85.5% to 3.74%, by increasing the detection rate 
by 5%. For this reason we choose to use this system in this work. 

3   Proposed Thermal Face Recognition System 

The proposed approach use wide-baseline matching of face vascular networks 
obtained from thermal images. The vascular networks are obtained through skin 
segmentation and morphological operators. The image matching stage uses SIFT 
descriptors and the L&R system for verifying correspondences and generating a final 
geometrical transformation that relate the vascular networks. A classifier makes a 
final decision about the recognition. The proposed approach mixes the uniqueness of 
the representation obtained through vascular networks, the robustness of the 



recognition based on local descriptors, and a classifier that make the final decision for 
providing a new methodology for thermal face recognition. A description of the 
system is provided in the next subsections. 

3.1   System Outline 

The system is composed by four stages: face segmentation, vascular network 
extraction, wide-baseline matching and a statistical classifier. A block diagram of the 
system is shown in figure 1.  

 

Fig. 1. Diagram of the proposed thermal face recognition system. 

3.2   Face Segmentation 

A skin detection model in the thermal spectrum is created by modelling both, the 
skin pixel intensity distribution, and the non-skin distribution, as mixtures of 
Gaussians (MoG). Both the skin and non-skin intensity distributions are modelled as 
the mixture of four Gaussians:  
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A pixel is detected as skin when its intensity has a larger probability of belonging 
to the skin class than to the non-skin class. The application of this scheme on a face 
thermal image enables the calculation of a skin mask: 

    (3) 

The skin image is obtained by multiplying the thermal image and the skin mask, as 
it is shown in (4). General parameters for the Gaussians cannot be obtained as they 
depend on the response of the particular camera to thermal intensity. 
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3.3   Vascular network extraction 

A smoothed skin image is calculated by filtering the skin image using a 3x3 
uniform low-pass filter: 

      (5) 

The smoothed image is eroded and dilated using morphological operations between 
the image and a 3x3 diagonal cross operator for obtaining a morphological opened 
image: 

    (6) 

 
Finally, the vascular network image is calculated by subtracting the smoothed 

image and the opened one:  
      (7) 

3.4   Wide baseline matching using local interest points 

SIFT descriptors are obtained from the vascular network image using the standard 
Lowe’s methodology [14]. Each SIFT descriptor represents a small patch in the 
image, and it contains a position (x0,y0), an orientation (θ), a scale (σ) and a vector of 
characteristics (v1,…,v128) calculated from the gradients in the patch. 
Correspondences between two vascular images are obtained by matching pairs of 
descriptors with similar vectors of characteristics using the Euclidean distance. 

Each correspondence between two descriptors has an associated translation (tX,tY), 
rotation θ, and scale change s that warps one patch into the other. Coherent groups of 
correspondences that generate similar warping parameters (tX,tY,θ,s) are found via a 
Hough transform. For each coherent group of correspondences a probability test is 
carried out. Following, the L&R methodology [15][21], additional geometrical and 
statistical verification tests are applied in order to eliminate wrong groups of 
correspondences, which do not represent similar patches in both images.  

In figure 2 are shown two examples of matches between pairs of thermal images 
and vascular network images, corresponding to the same person, and to different 
persons. 



3.5   Classification 

A final coherent group of correspondences is obtained for each test image by 
matching it to all gallery images. From all the final groups of correspondences, the 
most numerous one is selected in order to decide the correct gallery image, and to 
recognize the identity of the person. 

  

4    Results 

Results are obtained using the UXX Thermal Faces Database. This database 
contains 156 320x240 thermal face images that correspond to 6 images per subject 
and 26 subjects. The images were using a Cedip Jade UC infrared camera.  

The proposed methodology consisting on the matching of vascular networks of 
thermal images is compared with the matching of plain thermal images (see examples 
in fig. 2). In both cases the matching is implemented using Lowe’s system and the 
improved L&R system. Thus, the following four recognition systems are 
implemented and compared: 

- Lowe-Thermal: Lowe’s matching of plain thermal images. 
- L&R-Thermal: L&R’s matching of plain thermal images. 
- Lowe-VascularNet: Lowe’s matching of vascular networks of thermal images. 
- L&R-VascularNet: L&R’s matching of vascular networks of thermal images. 

4.1   Database 

The UXXX Thermal Faces Database was obtained by using a Cedip Jade UC 
infrared camera. This camera has a spectral range between 8-12 µm and a resolution 
of 320x240 pixels [22]. A video was recorded for each of the 26 subjects kept in a 
fixed position. The subjects gesticulated vowels (2,000 frames captured), and the 
happy/sad/anger expressions (100 frames captured). From the video for each subject, 
three frame images containing different vowels, and three frame images containing 
different expressions were selected to build the database. The images are divided into 
categories depending on the frame number in the video. 
‐ V1: Frame 100 in the vowel’s sequence video, 26 images 
‐ V2: Frame 1,000 in the vowel’s sequence video, 26 images 
‐ V3: Frame 1,500 in the vowel’s sequence video, 26 images 
‐ E1: Frame 45 in the happy expression video, 26 images 
‐ E2: Frame 45 in the sad expression video, 26 images 
‐ E3: Frame 45 in the anger expression video, 26 images 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Matching of pairs of thermal images ((a)-(b)), and the corresponding vascular 
network images ((c)-(d)). In (a) and (b) the images corresponds to the same person, while in (c) 

and (d) they correspond to different persons. 



4.2   Recognition Results 

Cross-validation is used for evaluating the performance of the different methods in 
the database. From the set of categories {V1, V2, V3, E1, E2, E3} all the possible 
pairs of categories (A,B) are formed. For each pair (A,B), the images in A are selected 
as test images, while the images in B are selected as gallery images. Each image in 
the test set A is recognized in the gallery B, which generate both correct and incorrect 
recognitions. The proportion of correct recognitions (recognition rate) for all the pairs 
of categories is shown in tables 1 to 4. The mean and variance of the overall 
recognition rates for the four methods are shown in table 5. 

 
Table 1: Recognition rates for Lowe-Thermal method. 

Test\Gallery V1 E1 V2 E2 V3 E3 
V1 100 84.6 96.1 80.7 100 96.1 

E1 92.3 100 92.3 92.3 96.1 100 

V2 100 88.4 100 92.3 100 96.1 

E2 84.6 96.1 80.7 100 80.7 100 

V3 100 92.3 96.1 76.9 100 88.4 

E3 96.1 100 96.1 100 96.1 100 

 
Table 2: Recognition rates for L&R-Thermal method. 

Test\Gallery V1 E1 V2 E2 V3 E3 

V1 100 92.3 100 80.7 100 88.4 

E1 96.1 100 96.1 88.4 88.4 100 

V2 96.1 100 100 80.7 100 100 

E2 88.4 100 80.7 100 84.6 100 

V3 92.3 88.4 100 80.7 100 84.6 

E3 88.4 100 92.3 96.1 96.1 100 

 



Table 3: Recognition rates for Lowe-VascularNet method. 
Test\Gallery V1 E1 V2 E2  V3 E3 

V1 100 88.4 100 84.6 96.1 100 

E1 96.1 100 96.1 100 96.1 96.1 

V2 100 92.3 100 92.3 100 96.1 

E2 96.1 100 88.4 100 73.0 100 

V3 100 84.6 100 84.6 100 92.3 

E3 100 96.1 100 96.1 100 100 

 
Table 4: Recognition rates for L&R-VascularNet method. 
Test\Gallery V1 E1 V2 E2  V3 E3 

V1 100 88.4 96.1 76.9 92.3 96.1 

E1 96.1 100 92.3 92.3 92.3 88.4 

V2 96.1 100 100 88.4 100 100 

E2 92.3 100 84.6 100 96.1 96.1 

V3 88.4 96.1 100 76.9 100 96.1 

E3 100 88.4 92.3 96.1 96.1 100 

 
Table 5: Overall recognition rates of the four methods. 

 
 
 
 
 
 
 

 
 
 
 

Method Mean Standard Deviation 

L&R-Thermal 95.7 6.2 

Lowe-Thermal 94.3 6.1 

L&R-VascularNet 94.2 6.8 

Lowe-VascularNet 93.9 6.9 



4.3   Recognition Analysis 

The L&R system applied directly over the thermal image generate the better 
results; however, the recognition rates for the four methods have comparable means 
and variances. The difference between the means of the better and the worst method is 
around 1.8, which is small compared to the variances around 6.5 obtained in the 
experiments. These experiments show that the transformation from the original 
thermal images to the vascular network representations preserve information that 
permit the recognition of the subjects. 

5   Conclusions 

The main contribution of this work is the use, for the first time, of a standard wide 
baseline matching methodology for the matching of vascular networks from thermal 
face images. This work is a preliminary step in the development of face recognition 
systems using vascular networks detection in thermal images followed by general 
image matching algorithms. All the variants compared in this work have similar 
performance for recognizing faces from thermal images. This results shows that 
vascular network images preserve important discriminative information about the 
original thermal images. As the vascular network representation has a simple and 
particular structure, specialized methods can be developed in future works for 
increasing dramatically the face recognition rates using thermal imaging systems. 

As future work we would like to increase largely the size of the database, and to 
include outdoor illumination. The proposed recognition methodology will be 
validated in this extended database. 
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