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The recognition of faces in unconstrained environments is a challenging problem. The aim of this work

is to carry out a comparative study of face recognition methods working in the thermal spectrum

(8–12 mm) that are suitable for working properly in these environments. The analyzed methods were

selected by considering their performance in former comparative studies, in addition to being real-

time, to requiring just one image per person, and to being fully online (no requirements of offline

enrollment). Thus, in this study three local-matching methods based on histograms of Local Binary

Pattern (LBP) features, on histograms of Weber Linear Descriptors (WLD), and on Gabor Jet Descriptors

(GJD), as well as two global image-matching method based on Scale-Invariant Feature Transform (SIFT)

Descriptors, and Speeded Up Robust Features (SURF) Descriptors, are analyzed. The methods are

compared using the Equinox and UCHThermalFace databases. The use of these databases allows

evaluating the methods in real-world conditions that include natural variations in illumination, indoor/

outdoor setup, facial expression, pose, accessories, occlusions, and background. The UCHThermalFace

database is described for the first time in this article and WLD is used for the first time in face

recognition. The results of this comparative study are intended to be a guide for developers of face

recognition systems. The main conclusions of this study are: (i) all analyzed methods perform very well

under the conditions in which they were evaluated, except for the case of GJD that has low performance

in outdoor setups; (ii) the best tradeoff between high recognition rate and fast processing speed is

obtained by WLD-based methods, although the highest recognition rate in all cases is obtained by

SIFT-based methods; and (iii) in experiments where the test images are acquired in an outdoor setup

and the gallery images are acquired in an indoor setup, or vice versa, the performance of all evaluated

methods is very low. As part of the future work, the use of normalization algorithms and calibration

procedures in order to tackle this last issue will be analyzed.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The recognition of human faces in unconstrained environ-
ments has attracted increasing interest in the research commu-
nity in recent years. Several studies have shown that the use of
thermal images can solve limitations of visible-spectrum based
face recognition, such as invariance to variations in illumination
and robustness to variations in pose [37,38], which are two of the
major factors affecting the performance of face recognition
systems in unconstrained environments [36]. This is possible,
thanks to the physical properties of thermal technology (long-
ll rights reserved.

ology Center, Universidad de

olar).
wave infrared spectrum, 8–12 mm), and the anatomic character-
istics of the human body:
–
 Thermal sensors collect the energy emitted by a body instead
of the reflected light, and the emissivity of human skin is
between 8–12 mm,
–
 thermal sensors are invariant to changes in illumination; they
can even work in complete darkness, and
–
 the anatomic and vascular information that can be extracted
from thermal images is unique to each individual [13].

In addition, in recent years, the price of thermal cameras has
decreased significantly, and their technology has improved,
obtaining better resolution and quality, and the fixed pattern
noise that was produced by old thermal cameras has been
eliminated using non-uniformity correction techniques (NUC)
[28,29]. Thus, the interest in the use of thermal technology in
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face recognition applications has increased in recent years. Never-
theless, thermal face images still have undesirable variations due
to (i) changes in ambient temperature, (ii) modifications of the
metabolic processes of the subjects, (iii) camera susceptibility on
extrinsic factors such as wind, and (iv) variable sensor response
overtime when the camera is working for long periods of times
[10,13,39].

In this general context, the aim of this article is to carry out a
comparative study of thermal face-recognition methods in uncon-
strained environments. The main motivation is the lack of direct1

and detailed comparisons of these kinds of method working
under the same conditions. The results of this comparative study
are intended to be a guide for developers of face recognition
systems. This study concentrates on methods that fulfill the
following requirements: (i) Full online operation: No offline
enrollment stages. All processes must run online. The system
has to be able to build the face database incrementally from
scratch; (ii) Real-time operation: The recognition process should
be fast enough to allow real-time interaction in case of HRI
(Human-Robot Interaction) applications, and to search large
databases in a reasonable time (a few milliseconds or some
seconds depending on the application and the size of the
database); (iii) Single image per person problem: One thermal face
image of an individual should be enough for his/her later
identification. Databases containing just one face image per
person should be considered. The main reasons for this are
savings in storage and computational costs, and the impossibility
of obtaining more than one face image from a given individual in
certain situations; and (iv) Unconstrained environments: No
restrictions on environmental conditions such as illumination,
indoor/outdoor setup, facial expression, scale, pose, resolution,
accessories, occlusions, and background are imposed.

Thus, in this study three local-matching and two global image-
matching method are selected by considering their fulfillment of
the previously mentioned requirements, and their good perfor-
mance in former comparative studies of face recognition methods
[35,36,41,46]. Two local-matching methods, namely, histograms
of LBP (Local Binary Pattern) features [3] and Gabor Jet Descrip-
tors with Borda count classifiers [46] are selected based on their
performance in the studies reported in [36,46]. The third local-
matching method, histograms of WLD (Weber Linear Descriptor)
features, recently proposed in [12], has shown very good perfor-
mance in face detection applications, and is used here for the first
time in face recognition. The SIFT (Scale-Invariant Feature Trans-
form) image-matching method [26] is included following its good
performance in a former face recognition study [36]. Finally, the
SURF (Speeded Up Robust Features) image-matching method [5],
which is inspired by the SIFT method, is included because in many
applications in which the SIFT method is used, SURF obtains a
similar performance and a higher speed.

The comparative study is carried out using the Equinox and
UCHThermalFace databases. The Equinox database [16] was
selected because it is one of the most frequently employed
thermal face databases, and therefore it allows comparing the
obtained results with former studies. The UCHThermalFace data-
base was specially designed to study the problem of uncon-
strained face recognition in the thermal domain. The database
incorporates thermal images acquired in indoor and outdoor
setups, with natural variations in illumination, facial expression,
pose, accessories, occlusions, and background. This database will
1 We mean a comparison carried out by a single research group, that makes an

objective comparison of the methods, without considering particular details or

tricks used in the different implementations.
be made public for future comparative studies, which is also a
contribution of this paper.

This comparative study intends to be a complement to the
recently published comparative study on visible-spectrum face
recognition methods in unconstrained environments [36].

The paper is structured as follows: Related works are outlined
in Section 2. The methods under analysis are described in Section
3. In Sections 4 and 5 the comparative analyses of these methods
in the Equinox and UCHThermalFace databases are presented.
Finally, in Section 6 results are discussed, and conclusions
are given.
2. Related work

Several comparative studies of thermal face recognition
approaches have been developed in recent years [37,38,40]. Most
of the developed approaches make use of appearance-based
methods, such as PCA (Principal Component Analysis), LDA
(Linear Discriminant Analysis), and ICA (Independent Component
Analysis), which project face images into a subspace where the
recognition is carried out. These methods achieve a �95%
recognition rate in experiments that do not consider real-world
conditions (unconstrained environmental conditions), as in
[37,38,40], or when using the Equinox thermal face database
[16]. The Equinox database is de facto standard database in
thermal face recognition. It consists of indoor images of 91
individuals, captured with 3 different expressions and 3 different
illumination conditions (see details in Section 4).

Other reported thermal face recognition approaches are based
on the use of local-matching: Local Binary Pattern (LBP) [27] and
Gabor Jet Descriptors (GJD) [2,20]. In the Equinox thermal
database, a recognition rate of �97% for the LBP approach [27]
and �80% for the GJD approach [2,20] has been reported.
Methodologies based on global matching, such as Scale Invariant
Features Transform (SIFT), have also been used for thermal face
recognition [19,20]. These approaches are based on the use of
local feature descriptors that are invariant to rotation, translation
and scale changes. These local descriptors are used to match pairs
of images by considering geometrical and probabilistic restric-
tions. In [19] the SIFT methodology is used to obtain the
descriptors directly in the thermal face images, while in [20] they
are computed in the vascular images generated by processing the
thermal images. These approaches obtained a recognition rate
that depended strongly on the database used; �80% when using
Equinox [20] and �95% when using a non-public database [19].

Recent work uses vascular information of the face in order to
develop thermal face recognition systems. This is accomplished
by detecting thermal minutia points, and then matching them
using a similar approach to the one used for fingerprint identity
verification [8–11]. This kind of methodology achieves a �80%
recognition rate in a non-public database. In [4], an efficient
approach for the extraction of physiological features from thermal
face images is presented. The features represent the network of
blood vessels under the skin of the face. This network is unique to
each individual, and can be used to develop thermal face recogni-
tion systems. In [14] a similar approach based on thermal
faceprints is presented. This approach uses new feature sets to
represent the thermal face: the bifurcation points of the thermal
pattern and the center of gravity of the thermal face region. The
current study does not consider methods that are based on
vascular information, because they still need to be improved in
order to achieve the same performance as local-matching meth-
ods. They will be considered in a future version of this study.

In addition, in [6,15,31] methodologies based on the fusion of
visible and thermal spectrum images are proposed. In [6,15]
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standard appearance-based methods are used together with
genetic algorithms for the analysis and fusion of visible and
thermal data. The method achieved a recognition rate of �96%
in the Equinox database. In [1] two schemes of fusion, data fusion,
and decision fusion, are applied. The algorithm is designed to
detect and replace eyeglasses with an eye template in the case of
thermal images. Commercial face recognition software, FaceIt, is
used in the evaluation of the fusion algorithm. In [22], the fusion
of visual and thermal images using the Discrete Wavelet Trans-
form (DWT) domain is described. The results of the experiments
demonstrate that the fusion method is effective in terms of visual
quality compared to conventional fusion approaches. In [2], Gabor
filters are used to extract facial features in the thermal and visual
domains. In [7] different levels of fusion between visual and
thermal data are analyzed. In [31] the advantages of combining
thermal and visible face recognition are analyzed, and the
recognition is achieved using a k-nearest neighbor classifier. The
current study focuses on pure thermal-based methods. However,
its results could be used in order to select the best thermal
method to be used with methods that use visible images.

Although, it is out of the scope of this study, it is worth
mentioning that thermal face images have also been used for
facial expression recognition [21,42–44]. Some of the face recog-
nition methodologies under analysis could be adapted for facial
expression recognition. In [45] features extracted from thermal
images, in addition to visible images, are used as inputs to a
neural network that is in charge of recognizing facial expressions.
In [44] the local temperature-difference caused by the rearrange-
ment of facial muscle and inner temperature change is used as
input data for a neural network used for face expression recogni-
tion. In [42] an unsupervised local and global feature extraction to
solve the problem of facial expression is proposed, and the
classification is made using Support Vector Machines. In [21]
the facial skin temperature is used for recognizing and classifying
positive and negative expressions. The classification results
suggest that facial skin temperature can be used to help distin-
guish between positive and negative facial expressions and can
assist in interpreting affective states. In [43] a wavelet transform
is used to analyze multi-scale, multi-direction changes of thermal
texture regarded as texture features of images.

In [20] the authors presented a preliminary comparative study
of thermal face recognition methods that did not consider real-
world conditions (it did not use the UCHThermalFace database; it
only used the Equinox database), nor the use of the recently
proposed WLD descriptors. The current work is an extension of
that work that overcomes all these limitations.
3. Methods under comparison

As mentioned above, the methods under comparison were
selected considering their fulfillment of the defined requirements
(real-time, fully online, just one image per person), and their
performance in former comparative studies of face-recognition
methods [35,36,41,46] and in face detection applications [12].

3.1. LBP histograms

Face recognition using histograms of LBP (Local Binary Pattern)
features was originally proposed in [3], and has been used by
many groups since then. In the original approach, three different
levels of locality are defined: pixel level, regional level, and
holistic level. The first two levels of locality are achieved by
dividing the face image into small regions from which LBP
features are extracted and histograms are used for efficient
texture information representation. The holistic level of locality,
i.e. the global description of the face, is obtained by concatenating
the regional LBP extracted features. The recognition is performed
using a nearest neighbor classifier in the computed feature space,
using one of the three following similarity measures: histogram
intersection, log-likelihood statistic, or Chi square. We implemen-
ted this recognition system, without considering preprocessing
(cropping using an elliptical mask and histogram equalization are
used in [3]), and by choosing the following parameters: (i) images
divided in 10 (2�5), 40 (4�10), or 80 (4�20) regions, instead of
using the original divisions which range from 16 (4�4) to 256
(16�16), and (ii) using the mean square error as the similarity
measure, instead of the log-likelihood statistic, in addition to
histogram intersection and Chi square.

3.2. Gabor jet descriptors

Local-matching approaches for face recognition in the visible
spectrum are compared in [46]. The study analyzes several local
feature representations, classification methods, and combinations
of classifier alternatives. Taking into account the results of their
study, the authors implemented a system that integrates the best
possible choice at each step. That system uses Gabor Jet Descrip-
tors as local features, which are uniformly distributed over the
images, one wave-length apart. In each grid position of the test
and gallery images, and at each scale (multiscale analysis), the
Gabor jets are compared using normalized inner products, and
these results are combined using the Borda-Count method. In the
Gabor feature representation, only Gabor magnitudes are used,
and 5 scales and 8 orientations of the Gabor filters are adopted.
We implemented this system using all parameters described in
[46] (i.e. filter frequencies and orientations, grid positions, face
image size).

3.3. SIFT descriptors

Wide-baseline matching approaches based on local interest
points and descriptors have become increasingly popular and
have experienced impressive development in recent years. Typi-
cally, local interest points are extracted independently from both
a test and a reference image, and then characterized by invariant
descriptors, and finally the descriptors are matched until a given
transformation between the two images is obtained. Lowe’s
system [26], using SIFT descriptors and a probabilistic hypothesis
rejection-stage, is a popular choice for implementing object-
recognition systems, given its recognition capabilities, and near
real-time operation. However, the main drawback of Lowe’s
system is the large number of false positive detections. This
drawback can be overcome using several hypothesis rejection
stages, as for example in the L&R system [33]. This system has
already been used in the construction of robust fingerprint
verification systems [33], for off-line signature verification [32]
and for face recognition [36]. In this work, we use Lowe’s system
and the L&R system to build a face-recognition system. In the
SIFT-Lowe case, we use only the number of matched key points to
evaluate the performance of recognition (matches flavor). In the
SIFT-L&R case, we consider 2 variants: the number of matched
key points (matches flavor) and the number of matched key
points after several probabilistic hypothesis rejection stages
(simple flavor). See description in [33].

3.4. SURF descriptors

The SURF (Speeded Up Robust Features) method [5] proposes
procedures to compute local interest points and descriptors at a
higher speed than the SIFT approach. This is achieved using:
(i) the so-called Fast-Hessian detector, which approximates



Fig. 1. Sample images from the Equinox database (taken from [17]). Top row: visible; bottom row: thermal. (a) speaking (frontal illumination), (b) smile (right

illumination), (c) frown (frontal illumination), (d) surprise (left illumination).
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Gaussians filters by box-filters and convolutions by the use of
integral images, and (ii) SURF descriptors that are simpler to
compute than SIFT descriptors, and correspond to the distribution
of Haar-wavelets responses within the interest-point neighbor-
hood. In addition, SURF descriptors have a lower number of
components than SIFT descriptors. In this work we use the
OpenSURF implementation provided by [30]. As in the SIFT-Lowe
case, we use only the number of matched descriptors as a
similarity measure in order to evaluate the performance of
recognition (matches flavor).

3.5. WLD histograms

The WLD (Weber Linear Descriptor) descriptor [12] is inspired
by the Weber’s Law, and computes a two dimensional histogram
of local intensity (differential excitations) and orientations. First,
for a given pixel, the differential excitation component is
computed as the ratio between the relative intensity differences
of a current pixel against its neighbors, and the intensity of the
current pixel descriptor. The orientation component is the
gradient orientation of the current pixel. Afterwards, the 2D
histogram of differential excitations and orientations is built.
Thus, like LBP, WLD is a dense descriptor computed for every
pixel, which makes it different from SIFT which corresponds to a
sparse descriptor. In addition, WLD has much smaller pixel-
granularity than SIFT, given that it is computed in a smaller
region. In this work, the recognition is performed using a nearest
neighbor classifier in the computed feature space using one of the
following similarity measures between histograms: histogram
intersection, Euclidean distance, or Chi square. As in the case of
LBP, images are divided into a variable number of regions (10, 40,
or 80), and the obtained histograms for each region are concate-
nated to obtain the descriptor. The 2D histograms are quantized
to 8 orientations and 64 differential excitation values.

3.6. Notation: Methods and variants

We use the following notation to refer to the methods and their
variations: A–B–C. (i) A describes the name of the face-recognition
algorithm: LBP—Histogram of LBP features, WLD—Histogram of WLD
features, GJD—Gabor Jet Descriptors, SIFT-Lowe—Lowe’s original
system with SIFT descriptors, SIFT-L&R—L&R system with SIFT
descriptors, and SURF; (ii) B denotes the similarity measure or
classification approach: HI—Histogram Intersection, XS—Chi square,
EU—Euclidian Distance, BC—Borda Count, except for the case of SIFT
and SURF, methods which do not use any explicit distance measure;
(iii) C describes additional parameters: number of divisions in the
case of the LBP-based and WLD-based methods, and matching
method in the case of SIFT and SURF methods (M: number of
matches; S: simple).
4. Comparative study using the equinox database

The performance of the methods is analyzed using the Equinox
database [16], which has already been used to validate several
face recognition methods for thermal images. This allows the
direct comparison of the selected methods with face recognition
methods implemented in previous works: in [37,38] methods
based on LDA (Linear Discriminant Analysis), LFA (Local Feature
Analysis), and ICA (Independent Component Analysis) have been
compared. PCA (Principal Component Analysis) has been analyzed
in [6,37,40]. Other methods that have been analyzed using this
database are KPCA (Kernel PCA) and KFLD (Kernel Fisher Linear
Discriminant) in [15], LBP (Local Binary Patterns) in [27], and
Wavelets in [6].

The Equinox database consists of 18,629 thermal images
(8–12 mm) and 18,629 visible images of 240�320 pixel size. All
thermal images were radiometrically calibrated (see [40]). The
database contains images of 91 individuals obtained under
3 different illuminations (frontal, left lateral, and right lateral),
3 different expressions (smile, frown, surprise), and also 40-frame
sequences (4 s) in which the subject is speaking (vowels). People
using eyeglasses were captured twice, with and without glasses.
Fig. 1 shows some examples of IR and visible images obtained
under different conditions. For 3 of the 91 individuals, there are
only images where the subjects wear glasses. Therefore, it was
not possible to perform the complete evaluation for these sub-
jects. To have a fair evaluation, we removed these 3 individuals
from the database, which finally contains 88 individuals.

The Equinox evaluation methodology names the thermal face
images as frames. Following the Equinox terminology, frames 0, 3,



Table 1
Equinox frames (face images) description (see main text for details).

VA Vowel frames All subjects All illuminations

EA Expression frames All subjects All illuminations

VF Vowel frames All subjects Frontal illumination

EF Expression frames All subjects Frontal illumination

VL Vowel frames All subjects Lateral illumination

EL Expression frames All subjects Lateral illumination

VG Vowel frames Subjects using glasses All illumination

EG Expression frames Subjects using glasses All illuminations

RR 500 frames Chosen at random All illuminations

Table 2
Equinox database. Full gallery experiments (the galleries include between 3 and

9 images of each individual). The diagonals (where gallery and test sets corre-

spond to the same set) and the cases containing test sets that are subsets of gallery

sets are not considered. Mean/SDV: Mean and standard deviation values of top-1

recognition rates of 54 gallery/test set pairs (see main text for details).

Methods Mean
(%)

SDV VL/EF
(%)

EF/VL
(%)

VF/VG
(%)

EF/EG
(%)

PCA [40] 96.0 3.2 86.8 91.2 99.7 98.3

PCA [38] 95.0 2.8 90.5 91.3 99.3 97.3

LDAg [38] 97.0 – – – – –

LDAt [38] 98.0 1.67 95.6 95.8 99.3 99.7

LFAe [38] 93.0 – – – – –

LFAb [38] 93.0 4.6 83.5 82.7 97.7 95.9

ICA [38] 94.0 3.9 87.9 85.7 99.3 96.8

PCA [37] 95.0 2.6 90.9 91.6 99.3 97.3

LDAt [37] 97.0 2.2 91.4 92.9 99.0 98..7

LDAg [37] 98.0 1.8 95.1 95.6 99.3 99.7

LFAb [37] 91.0 4.8 83.5 82.9 97.0 96.1

LFAe [37] 92.0 4.9 84.2 82.9 97.7 95.1

ICA [37] 94.0 3.9 86.8 86.2 99.3 96.6

Wavelets [6]b 93.5 4.4 91.2 90.4 – –

PCA [6]b 92.9 4.3 91.2 90.4 – –

KPCA [15]c 82.7 – – – – –

KFLD [15]c 96.3 – – – – –

LBP [27]d 97.3 1.8 99.2 96.6 – –

LBP [27] with

NUCd

93.3 4.3 93.6 90.2 – –

LBP-EU-10 95.3 2.9 88.9 90.4 97.4 93.0

LBP-HI-10 98.4 1.0 96.2 97.4 99.3 97.1

LBP-XS-10 98.8 0.8 97.6 98.0 99.5 97.1

LBP-EU-40 97.2 1.8 92.7 95.7 98.8 94.7

LBP-HI-40 98.5 1.0 96.5 98.1 99.5 96.2

LBP-XS-40 98.3 1.2 95.5 97.8 99.8 95.2

LBP-EU-80 97.9 1.3 94.8 97.4 99.0 95.4

LBP-HI-80 98.7 0.9 96.7 98.5 99.5 96.6

LBP-XS-80 98.1 1.2 94.6 98.1 98.6 96.4

GJD-BCa 91.2 4.8 85.3 82.4 97.1 91.1

WLD-EU-10 98.1 1.4 96.5 96.8 100 96.2

WLD-HI-10 99.0 0.8 98.1 98.9 100 97.8

WLD-XS-10 98.9 0.8 98.3 98.6 100 96.9

WLD-EU-40 98.5 1.1 96.5 98.2 99.3 96.4

WLD-HI-40 98.9 0.7 97.9 99.1 99.5 97.8

WLD-XS-40 98.7 1.0 97.2 98.1 99.8 96.4

G. Hermosilla et al. / Pattern Recognition 45 (2012) 2445–2459 2449
9 (from the 40 frames where the subject was speaking) will be
called vowel frames, and frames ‘‘smile’’, ‘‘frown’’, ‘‘surprise’’ will
be called expression frames. Multiple sets, as shown in Table 1 are
built and used as test and gallery sets. For more details see [40].
Thus, each of these sets (VA, EA, VF, EF, VL, EL, VG, EG, and RR)
may be used in the different experiments, and they can be part of
a gallery set or a test set. The recognition experiments are carried
out following the Equinox methodology [38,40] and for each of
the 54 gallery-test set experiments, the top-1 recognition rate is
computed.

Mean and standard deviation values of the top-1 recognition
rates for the 54 gallery-test set experiments, as well as results for
the most difficult test/gallery pairs (VL/EF, EF/VL, VF/VG, EF/EG)
are presented in Table 2. These results were obtained using the
same experimental conditions reported in previous works
[37,38,40]. This experiment consists of a full gallery experiment
that includes a gallery with between 3 and 9 images of each
individual for each case. We use the evaluation methodology
proposed by Equinox, which consists of evaluating the cross
validation using all subsets. However we do not include the
subsets VA or EA when they are subsets of the gallery or the test
set, as in the results reported in [37,38,40]. Some results
presented in these studies include those subsets in the evaluation,
but the correct procedure would be to not consider them in order
to avoid over-fitting. The obtained results can be summarized as:
WLD-EU-80 98.9 0.7 97.4 98.7 99.3 97.6

WLD-HI-80 99.1 0.7 98.1 99.3 99.8 97.8

WLD-XS-80 98.9 0.8 97.4 98.7 99.8 96.6
–
SIFT-L&R-Ma 87.8 3.3 87.2 85.3 91.8 86.3
WLD-X-X variants show the best performance, even in difficult
cases (e.g. glass). WLD-HI-80 obtains the best results.
SIFT-L&R-Sa 93.9 2.6 93.1 91.2 96.9 92.8
–
 LBP-X-X variants obtain the second best results.

SIFT-Lowe-Ma 91.9 3.3 84.9 92.0 96.2 92.8

a

–

SURF-M 80.5 6.7 75.2 69.9 88.2 68.8

NUC: Non uniformity correction.
a Histogram stretching, range 0–255.
b The used subsets do not include glasses neither some cross relationship.
c It used eyes glasses and expression test subsets.
d The used subsets do not include glasses.
SIFT-based, SURF-based, and Gabor-based methods do not
obtain good results compared to WLD-X-X and LBP-X-X. It
seems that these methods are affected by the quality of the
face images, in this case the low quality of Equinox images.
When these methods are used in other databases, such as
those in the results presented later in Section 5, these methods
show higher performance.
–
 Appearance-based methods also do not obtain good results
compared to WLD-X-X and LBP-X-X. As it can be observed,
appearance-based methods cannot properly handle variations
produced by facial expressions or artifacts (e.g. eyeglasses).

In a second set of experiments the methods are compared with
each other by considering more realistic conditions: just 1 image
per individual in the gallery and with images of size 150�81
pixels. The same evaluation methodology described above is used,
but in this case the comparison is restricted to the five methods
under comparison since appearance-based methods are not able
to work properly when just 1 image per individual in the gallery
is used (They need at least 2–3 images in order to build a proper
face model). From Table 3 it can be observed that:
–
 Best results are obtained by WLD-HI-80. All WLD-X-X variants
have good recognition performance in this case.
–
 The LBP-X-40 and LBP-X-80 obtain good results, followed by
the other LBP and SIFT variants.
–
 GJD-BC and SURF-M present the worst results.

In summary, this first comparison includes aspects such as
variable illumination, facial expression variations, facial varia-
tions observed when speaking, and the use of eyeglasses, aspects
that directly influence face recognition accuracy. The best results
are obtained using WLD-X-X and LBP-X-X. When compared to
their behavior in other databases, GJD-BC, SIFT-X-X, and SURF-M
obtain a lower performance. The main reason seems to be the low
variability in the pixel values of the Equinox thermal images (the
pixel values are highly quantized). Even when histogram stretch-
ing is applied, GJD-BC, SIFT-X-X, and SURF-M do not improve their
performance. Therefore, the five methods under comparison are



Table 3
Equinox database. The galleries include just 1 image of each individual. All

galleries, except VG, EG, and RR are used. Mean/SDV. Mean and standard deviation

values of top-1 recognition rates of 36 gallery/test set pairs (see main text for

details). The best variant of each method under analysis is presented in bold type.

Methods Mean (%) SDV VL/EF (%) EF/VL (%) EL/VF (%) VA/EF (%)

LBP-EU-10 77.1 6.0 75.1 66.7 76.4 75.1

LBP-HI-10 88.4 3.5 86.7 83.0 85.4 87.7

LBP-XS-10 91.4 3.7 92.6 85.9 87.2 91.9

LBP-EU-40 84.6 5.2 84.2 76.2 81.9 83.9

LBP-HI-40 91.0 3.6 90.9 85.6 86.8 90.9

LBP-XS-40 91.0 3.7 91.2 85.9 87.8 89.8

LBP-EU-80 88.1 4.2 83.0 86.3 82.1 85.5

LBP-HI-80 92.5 3.0 88.7 90.9 89.7 90.0
LBP-XS-80 89.8 3.6 85.6 88.4 85.0 86.9

GJD-BCa 71.7 7.4 63.9 63.4 66.3 70.9
WLD-EU-10 88.1 4.1 88.4 83.5 83.7 86.7

WLD-HI-10 92.2 2.6 92.3 89.4 88.2 91.6

WLD-XS-10 92.8 3.2 94.0 88.9 87.8 93.3

WLD-EU-40 91.5 4.1 91.6 87.2 87.2 93.3

WLD-HI-40 93.5 3.3 94.0 90.3 88.9 94.0

WLD-XS-40 93.2 3.6 94.4 89.4 89.2 94.0

WLD-EU-80 93.9 3.2 91.0 95.4 90.3 92.2

WLD-HI-80 95.0 2.9 91.7 95.8 92.9 92.9
WLD-XS-80 94.4 3.2 90.5 94.4 91.2 92.1

SIFT-L&R-Ma 77.4 9.9 75.8 75.0 74.3 79.6
SIFT-L&R-Sa 76.6 6.2 72.3 74.1 67.7 76.1

SIFT-Lowe-Ma 82.2 5.2 70.9 82.1 80.9 79.3
SURF-Ma 63.3 8.7 55.4 54.8 55.2 59.3

a Histogram stretching, range 0–255.

Fig. 2. Experimental setup for image acquisition at different yaw (y) and pitch (f)

angles. The distance between the individual and the observed point P6 is 120 cm.

D1 is 32.15 cm and D2 is 69.28 cm. See main text for details.
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further analyzed in the following section using the UCHThermal-
Face database.
5. Comparative study using the UCHThermalFace database

The methods under study are analyzed considering real-world
conditions that include indoor/outdoor setups and natural varia-
tions on facial expression, pose, accessories, occlusions, and
background.

5.1. Database description

The UCHThermalFace database is divided into three sets,
Rotation, Speech, and Expressions. The Rotation and Speech sets
consist of indoor and outdoor thermal face images of 53 subjects
obtained under different yaw and pitch angles, as well as a set of
images captured while the subjects were speaking. The Expres-
sions set consists of thermal images of 102 subjects captured in
an indoor setup. The thermal images were acquired using a
FLIR 320 TAU Thermal Camera2 , with sensitivity in the range
7.5–13.5 mm, and a resolution of 324�256 pixels.

The Rotation set contains 22 images per subject, each one
corresponding to a different rotation angle acquired in indoor and
outdoor sessions (see experimental setup in Fig. 2). In both cases,
indoor and outdoor, the distance from the subject to the thermal
camera was fixed at 120 cm, and the thermal camera was situated
at position P6 (see Fig. 2). The face images were acquired while
subjects were observing positions 1–11 (see Fig. 2), which
correspond to the following rotation angles: R1: (yaw¼�151,
pitch¼151), R2: (yaw¼01, pitch¼151), R3: (yaw¼151,
pitch¼151), R4: (yaw¼�301, pitch¼01), R5: (yaw¼�151,
pitch¼01), R6: (yaw¼01, pitch¼01), R7: (yaw¼151, pitch¼01),
R8: (yaw¼301, pitch¼01), R9: (yaw¼�151, pitch¼�151), R10:
2 /http://www.flir.com/cvs/cores/uncooled/products/tau/S
(yaw¼01, pitch¼�151), R11: (yaw¼151, pitch¼�151). Fig. 3
shows an example of 11 thermal face images corresponding to
one individual of the database, acquired under different yaw and
pitch angles in an indoor session. In addition to the rotation set, a
video sequence was captured while each subject was observing
point P6 and speaking the word, ‘‘Pa-ra-le-le-pi-pe-do’’, in the
indoor and in the outdoor session. Later on, three frames were
randomly selected from the video sequence of each individual in
each session (indoor and outdoor). These images form the Speech
set, which essentially contains images with different facial
expressions.

The Expression is captured in a different setup. In this setup
subjects observe frontally the camera at a fixed distance of
150 cm. First, images were acquired while subjects were expres-
sing three different expressions ‘‘Happy’’, ‘‘Sad’’, and ‘‘Angry’’. In
addition a video sequence was captured while each subject was
speaking different vowels. Later on, three frames were randomly
selected from the video sequence of each individual.

In summary, for the Rotation and Speech sets, 14 indoor and
14 outdoor subsets are defined in order to carry out face
recognition experiments. For the indoor session and the outdoor
session, 11 subsets correspond to the different yaw-pitch combi-
nations of the Rotation set (subsets R1 to R11), and 3 to the
different images captured in the Speech set (subsets S1 to S3). In
the Expressions sets, 3 expressions (‘‘Happy’’, ‘‘Sad’’, and ‘‘Angry’’;
E1 to E3) and 3 vowels (V1 to V3) subsets are defined. The
experiments reported in the next section make use of the 34
defined subsets. In each experiment a given subset is used as a
test set, and a second one as a gallery set.

5.2. Description of experiments

In order to evaluate the face recognition methods under
analysis, six kinds of experiments were carried out: (i) variable
window size, (ii) partial face occlusions, (iii) eye detection
accuracy, (iv) indoor versus outdoor galleries, (v) facial expres-
sions, and (vi) variable distance. In all experiments face images
are aligned using the annotated eye position; faces are aligned by
centering the eyes in the same relative positions, at a fixed
distance of 42 pixels between the eyes, except in the case of the
variable distance experiments where the distanced between the
eyes is decreased accordingly with the reduction in the image
resolution. The experiments are:

Variable Window Size. The effect of using different window
sizes in the performance of the methods is analyzed. Increasing
the size of the windows corresponds to adding or removing
different amounts of background to the region being analyzed,
given that we are not decreasing the scale of the faces (there is no
change in image resolution). Thus, experiments were performed
including window sizes of 81�150 pixels, 100�185 pixels, and
125�225 pixels (see Fig. 4 for examples).

Partial Face Occlusions. In order to analyze the behavior of
the different methods in response to partial occlusions of the face
area, images were divided into 10 different regions (2 columns

http://www.flir.com/cvs/cores/uncooled/products/tau/


Fig. 3. Example of the 11 thermal face images of the rotation set of one individual of the UCHThermalFace database, captured at the indoor session.

Fig. 4. Examples of faces with different cropping sizes (UCHThermalFace database). (a) Indoor session. Window size (in pixels): 81�150, 100�185, 125�225.

(b) Outdoor session. Window size (in pixels): 81�150, 100�185, 125�225.

Fig. 5. Example of images with partial occlusion (UCHThermalFace database).

(Left) Indoor session. Window size 125�225. (Right) Outdoor session. Window

size 125�225.

Fig. 6. Examples of aligned images after adding noise in the eyes’ position

(UCHThermalFace database). Indoor session. Window size 125�225 pixels.

(a) No noise; (b) 2.5% noise; (c) 5% noise; (d) 10% noise.
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and 5 rows), and one of the regions was randomly selected and its
pixels set to 0 (See Fig. 5 for some examples). This experiment
analyzes the behavior of the different methods in response to
these partial occlusions.

Eye Detection Accuracy. Most face-recognition methods are
very sensitive to face alignment, which depends directly on the
accuracy of the eye detection process; eye position is usually the
primary, and sometimes the only, source of information for face
alignment. In order to analyze the sensitivity of the different
methods on eye position accuracy, we added white noise to the
position of the annotated eyes in the test images. The noise was
added independently to the x and y eye positions of each eye,
using the procedure described in [36]. In the different experi-
ments, the noise can take up to 2.5%, 5%, or 10% of the distance
between the eyes. Examples are shown in Fig. 6. Note that this
affects both the position and the scale of the face in the image.

Indoor versus Outdoor Galleries. The performance of face
recognition methods depends largely on environmental condi-
tions, particularly under the indoor or outdoor conditions. In
these experiments the test and gallery images correspond to
images taken in an indoor session or in an outdoor session. When
the test images are indoor images, then the gallery images are
outdoor images, and vice versa. The outdoor images were
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captured in summer (with high temperatures up to 30 1C), and at
times the faces, as well as the camera, were receiving direct
sunlight.

Facial Expressions. The effect of having different facial expres-
sions in the subjects is analyzed. The experiments consider
subjects with different facial expressions, as well as subjects
speaking different vowels.

Variable Distance. The sensitivity of the methods to the
distance between the subject and the camera is analyzed. The
effect of having variable distances between the subject and
the camera is simulated by decreasing the resolution of the
thermal images.

The Expressions set is used (E1–E3, V1–V3) in the facial
expressions experiments, while in all other experiments the
Rotation and Speech datasets are used (R1–R11, S1–S3).

5.3. Recognition results

The performance of the different methods is evaluated using
the top-1 recognition rate. In all experiments the rotation subset
R6, without any occlusion and without noise in the eye position,
is selected as a gallery set because it contains clean frontal views
of the faces. Naturally, in the indoor experiments the indoor R6
subset is used, while in the outdoor experiments the outdoor R6
subset is employed.

In Tables 4–9, the top-1 recognition rate is given separately for
the 2 different sets, Rotation and Speech. For each category a
mean value is calculated: the mean recognition rate over all
rotation subsets for the rotation set, and the mean recognition
Table 4
UCHThermalFace database. Experiment using different windows sizes. Indoor session. T

best variant of each method under analysis is presented in bold type.

Methods Rotation

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R

LBP-EU-80 81�150 54.72 77.36 54.72 50.94 81.13 100 9

LBP-HI-80 81�150 73.58 88.68 73.58 64.15 96.23 100 9
LBP-XS-80 81�150 64.15 90.57 73.58 62.26 88.68 100 9

GJD-BC 81�150 66.04 96.23 75.47 50.94 92.45 100 8

WLD-EU-80 81�150 77.36 96.23 90.57 64.15 96.23 100 9
WLD-HI-80 81�150 73.58 96.23 88.68 64.15 94.34 100 9
WLD-XS-80 81�150 73.58 94.34 90.57 64.15 88.68 100 9

SIFT-L&R-M 81�150 86.79 96.23 84.91 73.58 96.23 100 9

SIFT-L&R-S 81�150 86.79 100 81.13 56.60 98.11 100 9

SIFT-Lowe-M 81�150 92.45 100 84.91 73.58 98.11 100 9

SURF-M 81�150 69.81 94.34 67.92 50.94 86.79 100 7

LBP-EU-80 100�185 45.28 75.47 41.51 45.28 81.13 100 6

LBP-HI-80 100�185 67.92 86.79 67.92 54.72 98.11 100 9

LBP-XS-80 100�185 71.70 90.57 62.26 56.60 96.23 100 9

GJD-BC 100�185 83.02 98.11 84.91 50.94 94.34 100 9

WLD-EU-80 100�185 79.25 90.57 79.25 54.72 88.68 100 9

WLD-HI-80 100�185 69.81 88.68 81.13 56.60 92.45 100 9

WLD-XS-80 100�185 81.13 92.45 84.91 60.38 96.23 100 9

SIFT-L&R-M 100�185 94.34 98.11 83.02 77.36 98.11 100 9

SIFT-L&R-S 100�185 86.79 98.11 86.79 60.38 100 100 9

SIFT-Lowe-M 100�185 86.79 100 96.23 79.25 98.11 100 9

SURF-M 100�185 79.25 98.11 71.70 64.15 96.23 100 8

LBP-EU-80 125�225 39.62 73.58 37.74 24.53 66.04 100 6

LBP-HI-80 125�225 58.49 84.91 58.49 37.74 86.79 100 8

LBP-XS-80 125�225 60.38 90.57 58.49 39.62 90.57 100 9

GJD-BC 125�225 84.91 98.11 84.91 49.06 96.23 100 9
WLD-EU-80 125�225 62.26 92.45 69.81 49.06 88.68 100 8

WLD-HI-80 125�225 58.49 88.68 71.70 47.17 90.57 100 9

WLD-XS-80 125�225 67.92 94.34 73.58 50.94 92.45 100 9

SIFT-L&R-M 125�225 86.79 100 94.34 73.58 100 100 9
SIFT-L&R-S 125�225 92.45 100 90.57 67.92 100 100 9

SIFT-Lowe-M 125�225 90.57 98.11 96.23 88.68 100 100 9
SURF-M 125�225 83.02 100 84.91 67.92 100 100 9
rate over all speech subsets. In addition, the average between
these two results is given. Figs. 8 and 9 include just this average
value. Table 10 reports average results obtained using the
Expressions set.

Variable Window Size. Table 4 shows the performance of the
different methods when different window sizes are used in the
test and gallery sets. In these experiments all gallery and test sets
correspond to indoor images.

It can be concluded from the experiments that the best
window size depends on the method. For SIFT-X-X, SURF-M,
and GJD-BC the best size is 125�225, while for WLD-X-X and
LBP-X-X the best size is 81�150. These results are consistent
with the ones obtained in [36] for GJD-BC and LBP-X-X methods.
As noted in that study, GJD-BC works better with windows that
contain large portions of background. The reason is three-fold:
(i) the Gabor-filters encode information about the contour of the
face, (ii) large regions allow the use of large filters, which encode
large-scale information, and (iii) the Borda Count classifier may
reduce the effect of regions (or jets) that are not relevant for the
recognition. For the LBP-X-X variants, adding some background
does not help, and in most cases reduces the performance. We can
observe that WLD variants have similar behavior compared to
that of LBP variants in terms of optimal window size. This seems
to be due to the similar kind of analysis of the face information
that both methods carry out, which basically computes histo-
grams of local features over non-overlapping regions of the face
area. In the cases where the histograms include background
information (as in larger croppings of the image), the discrimin-
ability of the methodology decreases. Regarding SIFT-X-X
op-1 recognition rate. Rotation and speech test sets. (See main text for details). The

Speech

mean (%)

Average

(%)

7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

0.57 39.62 73.58 92.45 84.91 72.73 81.76 77.24

6.23 50.94 90.57 100 96.23 84.56 92.45 88.51
2.45 41.51 86.79 100 81.13 80.10 89.94 85.02

8.68 33.96 81.13 98.11 69.81 77.53 98.11 87.82

2.45 71.70 90.57 98.11 90.57 87.99 95.60 91.80
6.23 66.04 90.57 100 92.45 87.48 95.60 91.54
2.45 62.26 92.45 96.23 84.91 85.42 94.97 90.20

2.45 66.04 92.45 98.11 83.02 88.16 94.97 91.57

6.23 50.94 86.79 98.11 81.13 85.08 98.11 91.59

6.23 66.04 94.34 100 90.57 90.57 99.37 94.97

1.70 30.19 83.02 92.45 71.70 74.74 89.94 82.19

9.81 30.19 77.36 90.57 66.04 65.69 81.76 73.73

2.45 39.62 94.34 100 84.91 80.62 93.08 86.85

4.34 33.96 90.57 100 81.13 79.76 91.82 85.79

6.23 37.74 79.25 98.11 79.25 81.99 100 91.00

4.34 47.17 86.79 100 84.91 82.33 91.82 87.08

6.23 45.28 90.57 100 86.79 82.50 92.45 87.48

2.45 49.06 90.57 98.11 94.34 85.42 92.45 88.94

6.23 71.70 92.45 100 81.13 90.22 94.34 92.28

4.34 47.17 90.57 100 77.36 85.59 97.48 91.54

6.23 75.47 94.34 100 94.34 92.80 100 96.40

8.68 49.06 84.91 100 83.02 83.19 97.48 90.34

2.26 24.53 58.49 84.91 49.06 56.43 81.76 69.10

3.02 39.62 79.25 96.23 75.47 72.73 86.16 79.44

0.57 39.62 84.91 98.11 79.25 75.64 90.57 83.11

2.45 41.51 86.79 100 83.02 83.36 99.37 91.37
4.91 33.96 79.25 96.23 81.13 76.16 89.94 83.05

2.45 41.51 88.68 100 86.79 78.73 93.08 85.91

4.34 47.17 88.68 98.11 86.79 81.30 95.60 88.45

4.34 73.58 96.23 100 94.34 92.11 98.11 95.11
4.34 56.60 98.11 100 92.45 90.22 99.37 94.80

8.11 83.02 98.11 100 94.34 95.20 100 97.60
6.23 56.60 98.11 100 88.68 88.68 99.37 94.03



Table 5
UCHThermalFace database. Best results windows size. Outdoor session. Top-1 recognition rate. Rotation and speech test sets. (See main text for details.)

Methods Rotation Speech

mean (%)

Average

(%)

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

LBP-HI-80 81�150 86.79 86.79 83.02 60.38 98.11 100 96.23 73.58 88.68 98.11 90.57 87.48 90.57 89.03

GJD-BC 125�225 62.26 98.11 71.70 39.62 88.68 100 94.34 35.85 60.38 96.23 67.92 74.10 86.79 80.45

WLD-EU-80 81�150 62.26 73.58 79.25 47.17 84.91 100 84.91 58.49 77.36 84.91 64.15 74.27 72.96 73.62

WLD-HI-80 81�150 69.81 86.79 92.45 60.38 96.23 100 94.34 66.04 84.91 96.23 79.25 84.22 96.23 90.23

SIFT-L&R-M 125�225 94.34 100 92.45 81.13 100 100 100 75.47 98.11 98.11 88.68 93.48 98.11 95.80

SIFT-Lowe-M 125�225 92.45 100 96.23 84.91 100 100 100 81.13 94.34 100 90.57 94.51 98.11 96.31

SURF-M 125�225 94.34 100 96.23 86.79 96.23 100 98.11 75.47 94.34 100 88.68 93.65 97.48 95.57

Table 6
UCHThermalFace database. Partial occlusion. Indoor session. Top-1 recognition rate. Rotation and speech test sets. (See main text for details.)

Methods Rotation Speech

mean (%)

Average

(%)

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

LBP-HI-80 81�150 60.38 77.36 62.26 58.49 96.23 100 90.57 47.17 83.02 100 81.13 77.87 86.79 82.33

GJD-BC 125�225 71.70 86.79 66.04 35.85 71.70 100 83.02 26.42 66.04 92.45 64.15 69.47 93.71 81.59

WLD-EU-80 81�150 75.47 96.23 86.79 62.26 96.23 100 92.45 71.70 84.91 98.11 90.57 86.79 93.08 89.94

WLD-HI-80 81�150 75.47 94.34 86.79 62.26 94.34 100 94.34 71.70 90.57 100 90.57 87.31 96.23 91.77

SIFT-L&R-M 125�225 75.47 100 86.79 64.15 98.11 100 92.45 66.04 90.57 98.11 88.68 87.31 93.87 90.59

SIFT-Lowe-M 125�225 86.79 98.11 96.23 73.58 92.45 100 94.34 67.92 94.34 100 88.68 90.22 98.78 94.50

SURF-M 125�225 71.70 98.11 73.58 49.06 94.34 100 88.68 43.40 84.91 96.23 73.58 79.42 95.60 87.51
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methods, in [36] smaller window sizes obtain better performance
in the case of visible images. The reason is that the background
disturbs the recognition process in the case of visible images
because incorrect matchings between local interest points corre-
sponding to the face area and the background can be produced.
However, this is not the case for thermal images, in which the
background is usually uniform around the face area, because the
temperature in this region is lower than that the one in the face
and head of humans. This is an additional advantage of using
thermal images.

In terms of the best overall performance, SIFT-X-X variants are
the ones with the highest top-1 recognition rate, followed by
the SURF-M method. The third best performance is obtained by
WLD-X-X methods. In fourth place, GJD-BC and LBP-X-X obtain
similar performance.

It can also be observed in Table 4 that SIFT-X-X variants are the
most robust against rotations. The main reason seems to be that
the SIFT-matching paradigm is robust against out-of-plane face
rotations of up to �401. For moderate yaw and pitch rotations
(R2, R5, R7, and R10 test sets) most of the other methods behave
well, and in most of the cases, when the appropriate window size
is selected, top-1 recognition rates larger than 90% are obtained.

The SIFT-X-X and SURF-M methods are the most robust ones in
terms of facial expression variations (Speech sets); in many cases
these methods obtain a 100% top-1 recognition rate in the
experiments reported in Table 4. The main reason is the way in
which the SIFT/SURF matching paradigm works, by basically
matching pairs of interesting points, and finding a coherent
transformation between a subset of the matches (see example
in Fig. 7). GJD-BC variants are also robust to facial expressions.
One of the variants (GJD-BC, 100�185 pixels) obtains a 100%
top-1 recognition rate in the experiments reported in Table 4. This
robustness is achieved thanks to the use of an ensemble of
classifiers, which is implemented by the Borda Count voting of
the Gabor-jets. WLD-X-X and LBP-X-X variants also show some
invariance to facial expression variations. When a window size of
81�150 pixels is used, they achieve a top-1 recognition rate of
95.6% and 92.5%.
For each method, the best results in top-1 recognition rate are
obtained by the following variants (considering different para-
meters and window sizes):
–
 SIFT-Lowe-M, 125�225 pixels: 97.6%

–
 SIFT-L&R-M, 125�225 pixels: 95.1%

–
 SURF-M, 125�225 pixels: 94.0%

–
 WLD-EU-80, 81�150 pixels: 91.8%

–
 WLD-HI-80, 81�150 pixels: 91.5%

–
 GJD-BC, 125�225 pixels: 91.4%

–
 LBP-HI-80, 81�150 pixels: 88.5%.
In the case of the WLD and SIFT methods two variants are
selected, either because the performance of the two variants is
very similar (as in the WLD case), or they correspond to a
different approach for implementing the method (as in the SIFT
case). For the next experiments, results for only these seven
variants are presented and analyzed.

Table 5 shows the performance of the seven best variants of
the methods for the defined Rotation and Speech sets in the
outdoor case. Best results are obtained by SIFT-X-X and SURF-M
variants, followed by WLD-HI-80. Fourth best performance is
obtained by LBP-EU-80, and the fifth place is taken by GJD-BC.
The SIFT-Lowe-M method shows a high top-1 recognition rate
(96.3%), which is very similar to the one obtained in the indoor
case (97.6%). The SIFT-L&R-M and SURF-M methods show a
similar behavior. In the case of WLD-HI-80 and LBP-HI-80, the
performance is also similar in the indoor and outdoor cases.
Interestingly, in the case of WLD-EU-80, a variant that uses the
Euclidian distance, the performance decreases greatly in the
outdoor case. The same happened for GJD-BC, whose performance
decreased about 11 percentage points in the outdoors setting.
These results indicate that GJD-BC does not behave appropriately
in outdoor conditions.

Eye Detection Accuracy. Fig. 8 shows the method’s sensitivity
to eye detection accuracy in the indoor case, while Fig. 9 shows
the method’s sensitivity in the outdoor case.



Table 7
UCHThermalFace database. Partial occlusion. Outdoor session. Top-1 recognition rate. Rotation and speech test sets. (See main text for details.)

Methods Rotation Speech

mean (%)

Average

(%)

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

LBP-HI-80 81�150 73.58 73.58 75.47 52.83 90.57 100 79.25 52.83 81.13 92.45 67.92 76.33 81.13 78.73

GJD-BC 125�225 49.06 79.25 52.83 24.53 81.13 100 77.36 24.53 56.60 94.34 49.06 62.61 83.02 72.82

WLD-EU-80 81�150 52.83 71.70 71.70 39.62 81.13 100 81.13 47.17 64.15 81.13 50.94 67.41 71.70 69.56

WLD-HI-80 81�150 73.58 88.68 90.57 60.38 94.34 100 90.57 66.04 86.79 92.45 79.25 83.88 87.42 85.65

SIFT-L&R-M 125�225 84.91 98.11 86.79 77.36 100 100 98.11 69.81 94.34 98.11 88.68 90.57 94.34 92.46

SIFT-Lowe-M 125�225 81.13 98.11 92.45 77.36 98.11 100 100 75.47 94.34 100 84.91 91.08 97.48 94.28

SURF-M 125�225 79.25 98.11 92.45 73.58 92.45 100 92.45 54.72 94.34 94.34 73.58 85.93 97.48 91.71

Table 8
UCHThermalFace database. Different gallery sets: Indoor gallery set, Outdoor test sets. Top-1 recognition rate. Rotation and speech test sets. (See main text for details.)

Methods Rotation Speech

mean (%)

Average

(%)

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

LBP-HI-80 81�150 24.53 30.19 16.98 20.75 32.08 32.08 16.98 9.43 22.64 20.75 11.32 21.61 22.01 21.81

GJD-BC 125�225 30.19 39.62 24.53 18.87 35.85 54.72 30.19 7.55 28.30 33.96 16.98 29.16 42.77 35.97

WLD-EU-80 81�150 22.64 28.30 16.98 9.43 15.09 20.75 11.32 13.21 16.98 16.98 11.32 16.64 22.01 19.33

WLD-HI-80 81�150 28.30 35.85 28.30 13.21 33.96 33.96 18.87 11.32 26.42 35.85 18.87 25.9 32.08 28.99

SIFT-L&R-M 125�225 9.43 7.55 15.09 9.43 16.98 13.21 9.43 5.66 7.55 11.32 5.66 10.12 11.32 10.72

SIFT-Lowe-M 125�225 13.21 13.21 9.43 0.00 15.09 16.98 11.32 1.89 5.66 11.32 3.77 9.26 14.47 11.87

SURF-M 125�225 24.53 30.19 22.64 11.32 24.53 35.85 13.21 7.55 22.64 26.42 5.66 20.41 22.01 21.21

Table 9
UCHThermalFace database. Different gallery sets: Outdoor gallery set, Indoor test sets. Top-1 recognition rate. Rotation and speech test sets. (See main text for details.)

Methods Rotation Speech mean (%) Average (%)

R1 (%) R2 (%) R3 (%) R4 (%) R5 (%) R6 (%) R7 (%) R8 (%) R9 (%) R10 (%) R11 (%) Mean (%)

LBP-HI-80 81�150 13.21 15.09 3.77 11.32 24.53 24.53 13.21 7.55 24.53 24.53 15.09 16.12 20.13 18.13

GJD-BC 125�225 22.64 28.30 13.21 5.66 22.64 35.85 24.53 5.66 24.53 33.96 22.64 21.78 35.85 28.82

WLD-EU-80 81�150 15.09 20.75 13.21 15.09 30.19 24.53 20.75 11.32 22.64 22.64 15.09 19.21 25.79 22.50

WLD-HI-80 81�150 15.09 16.98 11.32 9.43 18.87 18.87 20.75 15.09 16.98 22.64 18.87 16.81 20.13 18.47

SIFT-L&R-M 125�225 18.87 20.75 18.87 7.55 11.32 20.75 9.43 5.66 9.43 16.98 9.43 13.55 16.04 14.80

SIFT-Lowe-M 125�225 9.43 7.55 11.32 3.77 9.43 15.09 11.32 7.55 13.21 9.43 7.55 9.61 16.35 12.98

SURF-M 125�225 7.55 18.87 7.55 3.77 13.21 24.53 15.09 3.77 15.09 24.53 11.32 13.21 27.04 20.13

Table 10
UCHThermalFace database. Gallery/test expressions sets: E1–E3, V1–V3. Average

top-1 recognition rate of 6 experiments, in which 1 set is chosen as gallery and

1 as test. (See main text for details.)

Methods Average (%)

LBP-HI-80 94.9

GJD-BC 94.4

WLD-EU-80 93.9

WLD-HI-80 94.1

SIFT-L&R-M 98.9

SIFT-Lowe-M 99.6

SURF-M 87.2
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It can be observed that the highest top-1 recognition rate is
obtained by SIFT-Lowe-M, and that this method is very robust to
variations in the eye position, both in the indoor and outdoor
case. Top-1 recognition rates vary between 97.6% and 96.8% when
10% noise is added in the eye position in the indoor experiments,
and between 96.3% and 96.6% under the same level of noise in the
outdoor experiments. The SIFT-L&R-M and SURF-M methods
show a similar behavior. The main reason for this high robustness
is the way in which the SIFT/SURF matching paradigm works. (see
explanation in previous paragraphs and examples in Fig. 7).

In the indoor experiments, the performance of LBP-HI-80,
WLD-X-80, and GJD-BC methods decrease uniformly with the
level of noise in the eyes’ position. When 10% noise is added in the
eye position, the top-1 recognition rate decreases by �12% in all
cases. LBP-HI-80 and GJD-BC have the same behavior in the
outdoor experiments (maximal decrease of �12% top-1 recogni-
tion rate). However, outdoor conditions affect the WLD-X-80
variants a little more, when 10% noise is added in the eyes
position the top-1 recognition rate decreases by �15%. Never-
theless, in most cases LBP-HI-80 and WLD-HI-80 obtain the third
best performance after the SIFT-X-X methods.

In addition, in Figs. 8 and 9 it can be observed that in some few
cases the performance of the methods increased slightly with the
noise. These small variations have no statistical significance and
they are produced by the statistical nature of the methods, which
includes the computation of histograms in the case of LBP-X-X
and WLD-X-X variants, and the use of hypothesis rejection stages
in the case SIFT-X-X variants, and by the fact that a small
variation in the eyes position information can eventually improve
the face alignment.

Partial Face Occlusions. Table 6 shows the method’s sensi-
tivity to partial occlusions of the face area for the indoor case,
while Table 7 shows the method’s sensitivity for the outdoor case.

In the indoor and outdoor case we observe that the best
performance is achieved by SIFT-X-X variants, and the second
best performance by WLD-X-80. In both cases, the top-1 recogni-
tion rate decreases by about 2–5% with occlusions of 10% of
the face area, which is considered very good behavior. SURF-M,



Fig. 7. Examples of correct matches of some database subjects. In all cases the right image corresponds to the gallery image (R6), and the left image to the test image.

(a) Speech Set S1. Outdoor session. (b). Rotation set R11. 10% noise in eye position. Indoor session (c). Rotation set R9. Occlusion. Outdoor session. (d) Rotation set R5. 10%

noise in eye position. Outdoor session. (e) Speech set S3. Indoor session. (f) Rotation set R7. Occlusion. Indoor session. (g) Speech set S3. 10% noise in eye position. Outdoor

session. (h) Speech set S1. 10% noise in eye position. Indoor session.

Fig. 8. UCHThermalFace database. 0%, 2.5%, 5%, and 10% noise in eye position. Indoor session. Average top-1 recognition rate. Rotation and speech test sets. (See main text

for details.)
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LBP-HI-80, and GJD-BC show lower performance, and they are
more affected by occlusions (the top-1 recognition rate decreases
by 6–11%).

Indoor versus Outdoor Galleries. In Table 8 face recognition
experiments that use an indoor gallery set together with outdoor
test sets are reported. Conversely, in Table 9 experiments that use
an outdoor gallery set together with indoor test sets are reported.
It can be clearly observed that in these cases all methods under
comparison decrease their performance dramatically compared
with previous experiments. In all cases the top-1 recognition rate
is very low. Interestingly, the best performance is achieved by
GJD-BC. Another interesting observation is that SURF-M outper-
forms SIFT-X-X variants, showing a higher robustness to indoor–
outdoor variations.

Facial Expressions. In Table 10 face recognition experiments
that use the Expressions sets are reported. The table shows the
average top-1 recognition rate of 6 experiments. In each experi-
ment one set is chosen as gallery and one as test. The sets are
E1–E3 and V1–V3. It can be observed that best results are
obtained by SIFT-X-X variants, with a very high top-1 recognition
rate (�99.6%). Second best results are obtained by LBP-X-X, GJD-
BC, and WLD-X-X, and third best results by SURF-M. These results
are consistent with the ones obtained with the Speech dataset
(see Table 4), except for the case of SURF-M. The reason seems to
be a decrease of the performance of the SURF-M’s matching
process produced by large variations in the face expressions.

Variable Distance. In Table 11 face recognition experiments
that correspond to the following subject–camera distances 1.2,
1.69, 2.4, 3.39, and 4.8 m are shown. In these experiments the
image resolution decreases with the distance in a factor of

ffiffiffi

2
p

. For
instance, in the case of GJD-BC, where the distance is 1.69 m, the
corresponding resolution is 88�159 pixels. From Table 11 it can
be observed that all methods, except SURF-M, are robust to
variations in the subject–camera distance. Most robust methods
are SIFT-X-X and LBP-X-X. It seems that SURF-M has a minimum
resolution for working appropriately.



Fig. 9. UCHThermalFace database. 0%, 2.5%, 5%, and 10% noise in eye position. Outdoor session. Average top-1 recognition rate. Rotation and speech test sets. (See main

text for details).

Table 11

UCHThermalFace database. Gallery set: R6. Test set: S1. Top-1 recognition rate. The image resolution decreases with the distance in a factor of
ffiffiffi

2
p

. (See main text for

details.)

Methods 1.2 m 1.69 m 2.4 m 3.39 m 4.8 m

Mean (%) Mean (%) Mean (%) Mean (%) Mean (%)

LBP-HI-80. Initial resolution 81�150 92.5 94.3 94.3 92.5 92.5

GJD-BC. Initial resolution 125�225 100 100 100 94.3 88.7

WLD-EU-80. Initial resolution 81�150 96.2 98.1 92.5 86.8 66.0

WLD-HI-80. Initial resolution 81�150 96.2 96.2 94.3 94.3 67.9

SIFT-L&R-M. Initial resolution 125�225 100 98.1 98.1 96.2 86.8

SIFT-Lowe-M. Initial resolution 125�225 100 98.1 100 100 92.5

SURF-M. Initial resolution 125�225 100 92.5 79.2 41.50 7.5

Fig. 10. This figure shows the rotation angle (yaw) versus recognition rate. The horizontal rotation angles (yaw) correspond to the position R4, R5, R6, R7, and R8 of Fig. 2.

(a) Indoor; (b) Outdoor.

G. Hermosilla et al. / Pattern Recognition 45 (2012) 2445–24592456
Fig. 10(a) and (b) show the yaw angle (�301, �151, 01, 151, 301)
versus the recognition rate obtained for each selected methodology
and for faces with a pitch rotation of 01 (a 01 yaw rotation
corresponds to a frontal face). Angles (�301, �151, 01, 151, 301)
correspond to the rotation sets R4–R8. These results summarize part
of the results presented in Tables 4 and 5. Here it can be observed
that for all methodologies the performance decreases as the yaw
rotation increases. For low rotations (7151), in the indoor case
(Fig. 10(a)) the performance of all methods is very similar, with SIFT
variants performing best, while in the outdoor case GJD-BC and
WLD-EU-80 clearly show a lower performance than other methods,
methods which all have a similar recognition rate. For large
rotations (7301), in the indoor case, only SIFT-Lowe has good
performance, while in the outdoor case, both SIFT variants,
SIFT-Lowe and SIFT-L&R, have a performance of approximately an
80% recognition rate. All other methods show worst performance for
large rotations, with WLD-HI-80 working slightly better than other
methods, both in the indoor and outdoor settings.



Table 12
Processing time. Time measures are in milliseconds. The experiments are those we

carried out on a computer running Windows 7 Ultimate with an Intel Core 2 duo

CPU T5870 @2.00 GHz GHz (4 GB RAM) processor. FET/MT: Feature Extraction/

Matching Time [ms]. PT: Processing Time [ms]. DB sizes (gallery) of 1, 10, 100, and

1000 faces are included.

Method FET
[ms]

MT
[ms]

PT (FETþMT) [ms]

1 10 100 1000

LBP-X-80 81�150 2.6 o1 3.6 3.6 12.9 122.3

WLD-EU-80 81�150 3.9 o1 4.9 5.9 23.9 202.9

WLD-HI-80 81�150 3.9 o1 4.9 6.9 26.9 229.9

WLD-XS-80 81�150 3.9 o1 4.9 4.9 16.9 130.9

GJD-BC 125�225 95.94 o1 96.9 96.9 127.9 532.9

SIFT-L&R-M 125�225 189.01 2.2537 191.26 211.55 414.38 2442.7

SIFT-Lowe-M

125�225

290.22 8.4386 298.66 374.61 1134.1 8728.8

SURF-M 125�225 36.00 o1 37.0 46.0 136.0 1036.0
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5.4. Computational performance

The speed of the recognition process is an important constrain
in many face recognition applications (e.g. Human–Robot-Inter-
action or identity identification using large face databases). For
this reason, in this section we present a comparative analysis of
the selected methods in terms of processing time. In order to
achieve this, we have evaluated the time required for feature
extraction (FET—Feature Extraction Time), the time required for
matching two feature vectors (MT—Matching Time), and the total
processing time (PT—Processing time) required to recognize a
face depending on the size of the database. Note that in the case
of GJD, the total processing time is not linear but n log n on the
size of the database. This is because of the way in which the Borda
Count classifier works (After our experience the log n factor is
relevant for large gallery databases, for example more than 1000
images). All other methods are linear on the size of the gallery.
Note also that in this analysis we are only considering the time
required during operation, and not the time required to create the
database.

The experiments were carried out on a computer running
Windows 7 Ultimate (64-bits) with an Intel Core 2 duo CPU
T5870@2.00 GHz GHz (4GB RAM) processor. For all methods, with
the exception of SIFT-Lowe and SURF, we used our own C/Cþþ
implementations compiled as 32-bit applications. For SIFT-Lowe
we used the original MATLAB implementation3, run using
MATLAB 7.10.0 (R2010a). According to our experience, a C/Cþþ
implementation of SIFT-Lowe would have a similar processing
time to SIFT-L&R. For the evaluation of SURF we used the Open-
SURF4 C implementation.

Table 12 shows the computed processing times of all methods
under comparison in terms of feature extraction, and matching
and processing times. In terms of feature extraction, LBP-X-80 is
the fastest method, followed closely by WLD-X-80. The third
fastest method is SURF-M. The fourth fastest method, GJD-BC, has
a feature extraction two times shorter than SIFT-L&R-M, three
times shorter than SIFT-Lowe-M, and more than one order of
magnitude slower than LBP-HI-80 and WLD-X-80.

In terms of Matching Time MT (time for pairs of images), the
fastest methods are WLD-X-80, GJD-BC, LBP-X-80, and SURF-M,
all of them with MT lower than 1 ms. SIFT-Lowe-M is the slowest
method, with a matching time more than 8 times slower
than WLD-X-80, GJD-BC, and LBP-X-80, and 4 times slower than
SIFT-L&R-M. When we consider the total processing time of the
methods (PT), the method with the shortest processing time is
LBP-X-80, independently of the size of the database. The second
fastest methods are the WLD-X-80 variants. For large databases of
large sizes (1000 images in gallery), WLD-EU-80 and WLD-HI-80
are almost two times slower than LBP-X-80. The slowest method
is SIFT, with the SIFT-L&R variant being from 1.5 to 4 times faster
than the SIFT-Lowe-M variant, depending on the size of the
database. For small databases, SIFT-Lowe-M, the slowest method,
is two orders of magnitude slower that LBP-X-80, while for large
databases SIFT-Lowe-M becomes 70 times slower that LBP-X-80.
GJP-BC is 2 to 10 times faster than SIFT variants depending on the
size of the database, and 4 to 20 times slower than LBP-X-80.
SURF-M is faster than SIFT-X variants for all database sizes. In
summary, there is a clear distinction on the speed of the methods,
with LBP and WLD being the fastest methods, GJD-BC standing in
an intermediate position, and SIFT variants being the slowest
methods.
3 Available at /http://www.cs.ubc.ca/� lowe/keypoints/S
4 Available at /http://www.chrisevansdev.com/computer-vision-opensurf.

htmlS
6. Discussion and conclusions

In this article, a comparative study of thermal-based
face-recognition methods in unconstrained environments was pre-
sented. The analyzed methods were selected by considering their
suitability for the defined requirements —real-time operation, just
one image per person, fully online (no training), and robust behavior
in unconstrained environments—and their performance in former
studies. The comparative study was carried out using two databases:
Equinox and UCHThermalFace. The well-known Equinox database
was used as a baseline for comparison, and experiments were
carried out and compared with results presented in previous work
on images obtained under controlled conditions. The UCHThermal-
Face database includes aspects such as yaw and pitch rotations,
environment condition variations (indoor/outdoor) and facial
expressions. In addition, bad alignment of the images and occlusions
were simulated. The methods under comparison are LBP histograms,
Gabor Jet descriptors, SIFT descriptors, and WLD histograms. Com-
ments on the main results of this study, and some conclusions
drawn from this work, follow.

Comments on the Size of the Face Region. Unlike the results of
[36] for visible images, here the dependence of the methods on
the size of the images is not large, and for the best working
methods, like SIFT and WLD, the effect is rather low. This seems to
be due to the mostly uniform background observed for thermal
images, which in addition allows the methods to use more
information about the contour of the face.

Comments on Alignment, Occlusions, and Expressions. From our
experiments we conclude that to a large degree only some of the
analyzed methods are robust to inaccurate alignment, face occlu-
sions, and variations in expressions. Accepting that these factors
affect the face recognition process, their influence in the method’s
performance is much lower than outdoor conditions or pose
variations.

Comments on the Indoor/Outdoor Conditions. Most of the meth-
ods behave very well in natural, indoor conditions, as well as in
outdoor conditions, with the one exception of GJD-BC, whose
performance decreases considerably under outdoor conditions.
This aspect should be further analyzed with additional experi-
ments. In experiments where the test images are acquired in an
outdoor setup and the gallery images are acquired in an indoor
setup, or vice versa, the performance of all methods is very low.
The reason seems to be the very different range of pixel values of
thermal images acquired in indoor setups compared to images
acquired in outdoor settings. The saturation observed in images
acquired under outdoor conditions, because of the heat of the
environment, may be the main reason for this. This eventually

http://www.cs.ubc.ca/&sim;lowe/keypoints/
http://www.cs.ubc.ca/&sim;lowe/keypoints/
http://www.chrisevansdev.com/computer-vision-opensurf.html
http://www.chrisevansdev.com/computer-vision-opensurf.html
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could be improved by a better calibration of the camera, or using
normalization algorithms, as in the case of images of the visible
spectrum [35]. This aspect needs to be further analyzed.

Conclusions about the Performance of Methods. The question of
which method is the best is a very difficult one. However, we
could say that WLD-based methods are an excellent choice if real-
time operation is needed as well as good recognition rates. WLD is
the second fastest method, and it has better performance than
LBP, which is the fastest method. If the processing time is not an
important consideration, it is clear that SIFT variants would be the
method to use, given their robustness to alignment errors, to
rotations and to facial expressions. In particular, SIFT-L&R seems
to be a good choice for middle and large size databases, given that
it has a shorter processing than SIFT-Lowe and reasonably good
performance in these cases.

Demonstrating the fact that a SIFT-variant is a method of
choice in some setups is one of the main results of this work, as
SIFT-based methods are not widely used as yet for face recogni-
tion in visible images.

Future Work. We believe that there is still room for improve-
ment in many aspects of recognition of faces in unconstrained
environments. The main open questions in the case of thermal
images are: (i) how to achieve invariance to environment condi-
tions such as temperature and saturation of the images because of
the heating of the camera produced by long periods of operation
or environmental conditions (e.g. outdoor operation under direct
sun exposure), (ii) how to combine the use of different methods in
order to achieve, at the same time, high recognition rates and
processing speed, (iii) what is the influence of face resolution in
the recognition process, (iv) what can be learned through a
deeper analysis of the facial expression effect in the recognition
of faces, and (v) how to develop fast methods that are robust to
rotations. In addition, we will extend our comparative study by
incorporating methods that use vein information in the recogni-
tion process (e.g. [19]), apply new texture classification methods
(e.g. [23,24]) in face recognition using visible and thermal images,
as well as explore the use of information fusion approaches in
multimodal recognition (e.g. [18]).
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