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Abstract. Different eigenspace-based approaches have been proposed for the 
recognition of faces. They differ mostly in the kind of projection method been used, in 
the projection algorithm been employed, in the use of simple or differential images 
before/after projection, and in the similarity matching criterion or classification 
method employed. Statistical, neural, fuzzy and evolutionary algorithms are used in 
the implementation of those systems. The aim of this paper is to present an 
independent, comparative study between some of these hybrid eigenspace-based 
approaches. This study considers theoretical aspects as well as simulations performed 
using a small face database (Yale Face Database) and a large face database (FERET). 

 
 
1. Introduction 
 

Face Recognition is a high dimensional pattern recognition problem. Even low-
resolution face images generate huge dimensional feature spaces (20,000 dimensions in the 
case of a 100x200 pixels face image). In addition to the problems of large computational 
complexity and memory storage, this high dimensionality makes very difficult to obtain 
statistical models of the input space using well-defined parametric models. Moreover, this 
last aspect is further stressed given the fact that only few samples for each class (1-4) are 
normally available for training the system. Hybrid eigenspace-based approaches have been 
used in the literature to overcome the mentioned problems. Given that similar troubles are 
normally found in many biometric applications, we believe that some of the hybrid 
eigenspace-based methods to be outlined and compared in this work can be applied in the 
implementation of other biometric systems (signature, fingerprint, iris, etc.). 

Among the most successful approaches used in face recognition we can mention 
eigenspace-based methods, which are mostly derived from the Eigenface-algorithm [14]. 
These methods project input faces onto a dimensional reduced space where the recognition 
is carried out, performing a holistic analysis of the faces. Different eigenspace-based 
methods have been proposed. They differ mostly in the kind of projection/decomposition 
approach been used (standard-, differential- or kernel-eigenspace), in the projection 
algorithm been employed, in the use of simple or differential images before/after 
projection, and in the similarity matching criterion or classification method employed. The 
aim of this paper is to present an independent, comparative study among some of these 
different approaches. We believe that to carry out an independent study is important, 
because comparisons are normally performed using the own implementations of the 
research groups that have proposed each method (e.g. in FERET contests), which does not 
consider completely equal working conditions (e.g. exactly the same pre-processing steps). 



Very often, more than a comparison between the capabilities of the methods, a contest 
between the abilities of the research groups is performed. Additionally, not all the possible 
implementations are considered (e.g. p projection methods with q similarity criteria), but 
only the ones that some groups have decided to use.  

This study considers standard, differential and kernel eigenspace methods. In the case 
of the standard ones, three different projection algorithms (Principal Component Analysis - 
PCA, Fisher Linear Discriminant - FLD and Evolutionary Pursuit - EP) and five different 
similarity matching criteria (Euclidean-, Cosines- and Mahalanobis-distance, SOM-
Clustering and Fuzzy Feature Contrast - FFC) were considered. In the case of differential 
eigenspace methods, two approaches were used, the pre-differential [4] and the post-
differential one [9]. In both cases two classification methods, Bayesian and Support Vector 
Machine – SVM classification, were employed. Finally, regarding kernel eigenspace 
methods [6], Kernel PCA - KPCA and Kernel Fisher Discriminant - KFD were used. 

It is important to point out that in the mentioned approaches a hybrid utilization of 
statistical, neural, fuzzy and evolutionary algorithms is used. Thus PCA, FLD, KPCA, 
KFD and the Bayesian classifier correspond to statistical algorithms. SOM and SVM are 
two well-known neural models. And finally, FFC and EP correspond to fuzzy and 
evolutionary algorithms, respectively. In this context these algorithms are used in a 
complementary more than in a competitive way. Requirements as robustness, higher 
recognition rates, tolerance for imprecision and uncertainty, flexibility, user-friendship and 
low-cost can be fulfilled by the join use of them. 

This comparative study considers theoretical aspects as well as simulations performed 
using the Yale Face Database, a database with few classes and several images per class, 
and FERET, a database with many classes and few images per class. It is important to use 
both kind of databases, because, as it will be shown in this work, some properties of the 
methods, as for example their generalization ability, changes depending on the number of 
classes taken under consideration.  

The pre-processing aspects of all the approaches (face alignment, illumination 
invariance, geometrical invariance, etc.) are kept unchanged among their different 
implementations. 

This paper is structured as follows. In section 2 several hybrid approaches for the 
eigenspace-based recognition of faces are described. In section 3 a comparative study 
among these hybrid approaches is presented. Finally, some conclusions of this work are 
given in section 4. 
 
 
2. Hybrid Approaches for the eigenspace-based Recognition of Faces 
 

Standard eigenspace-based approaches project input faces onto a dimensional reduced 
space where the recognition is carried out. In 1987 Sirovich and Kirby used PCA in order 
to obtain a reduced representation of face images [13]. Then, in 1991 Turk and Pentland 
used the PCA projections as the feature vectors to solve the problem of face recognition, 
using the Euclidean distance as the similarity function [14]. This system was the first 
eigenspace-based face recognition approach and, from then on, many eigenspace-based 
systems have been proposed using different projection methods and similarity functions. A 
differential eigenspace-based approach that allows the application of statistical analysis in 
the recognition process, was proposed in 1997 by Pentland and Moghaddam [4]. The main 
idea is to work with differences between face images, rather than with face images. In this 
way the recognition problem becomes a two-class problem, because the so-called 
“differential image” contains information of whether the two subtracted images are of the 
same class or different classes. In this case the number of training images per class 



increases so that statistical information becomes available. The system proposed in [4] used 
Dual-PCA projections and a Bayesian classifier. Following the same approach, a system 
using Single-PCA projections and a SVM classifier was proposed in [9]. 

In the differential case all the face images need to be stored in the database, which slow 
down the recognition process. This is a serious drawback in practical implementations. To 
overcome that drawback a so-called post-differential approach was proposed in [9]. Under 
this approach, differences between reduced face vectors are used instead of differences 
between face images. This allows decreasing the number of computations and the required 
storage capacity (only reduced face vectors are stored in the database), without losing the 
recognition performance of the differential approaches. Both, Bayesian and SVM 
classifiers were used to implement this approach in [9]. 

In the Kernel-based approaches KPCA and KFD, non-linear extensions of PCA and 
FLD respectively, are used as projection algorithms. The main idea behind this approach is 
to use linear methods applied to high-dimensional mapped vectors instead of the original 
vectors, and at the same time to avoid the explicit mapping of these vectors by means of the 
so-called “kernel-trick”. The generalization of linear methods to non-linear ones using 
kernels, works as follows: if the algorithm to be generalized uses the training vectors only 
in the form of Euclidean dot-products, then it can be “kernelized”, and all the dot-products 
like xTy are replaced by a so-called kernel function K(x,y). If K(x,y) fulfills the Mercer’s 
condition, i.e. the operator K is semi-positive definite, then the kernel can be expanded into 
a series K(x, y) = i φ i(x)φ i(y)∑ . In this way the kernel represents the Euclidean dot-product 
on a different space, called feature space F, on which the original vectors are mapped using 
the eigenfunctions φ: ℜN→F. Depending on the kernel function been used, the feature 
space F can be even of infinite dimension, as the case of Radial Basis Function (RBF) 
kernel, but we are never working in such space. A unified framework for solving kernel 
methods was proposed in [10], including the solution of multiclass-KFD, previously 
unknown. A unified Kernel-based face recognition system was proposed in [6] [7]. 

Standard-, differential- and kernel-eigenspace approaches for the recognition of faces 
are described in the following subsections. 
 
2.1. Standard Eigenspace Face Recognition 
 

Fig. 1 shows the block diagram of a generic, standard eigenspace-based face 
recognition system. Standard eigenspace-based approaches approximate the face vectors 
(face images) by lower dimensional feature vectors. These approaches consider an off-line 
phase or training, where the projection matrix ( W ∈ RN ×m), the one that achieve the 
dimensional reduction, is obtained using all the database face images. In the off-line phase 
are also calculated the mean face ( x ) and the reduced representation of each database 
image ( pk ). These representations are the ones to be used in the recognition process. The 
projection methods employed in this work for the reduction of dimensionality are PCA 
[14], FLD [2] and EP [3]. The similarity matching criteria used for the recognition process 
are Euclidean-, Cosine- and Mahalanobis-distance, SOM-Clustering, and FFC similarity. 
All these methods have been analyzed in [8]. Under this standard eigenspace approach a 
Rejection System for unknown faces is implemented by placing a threshold over the 
similarity measure. 
 
2.2 Differential Eigenspace Face Recognition 
 

Fig. 2 shows the block diagram of a generic, pre-differential eigenspace-based face 
recognition system. In this approach the whole face images are stored in the database (NT 
images). Previously the database face images are centered and scaled so that they are 



aligned. An input face image is preprocessed and subtracted from each database image. The 
result of each subtraction is called “differential image” ∆  in RN  and it is the key for 
identification. That because it contains information of whether the two subtracted images 
are of the same class or different classes. In this way the original problem of NC classes 
becomes a two-class problem. The so-called differential images (NT) are projected into a 
reduced space using a given projection method. Thus, each image is transformed into a 
reduced differential vector δ in Rm . Thereafter the classification of the reduced differential 
vectors is performed. The result of each classification (S ) is negative if the subtracted 
images (each 

i

δ) are of different classes and positive in other case. In order to determine the 
class of the input face image, the reduced vector with maximum positive classification 
value is chosen, and the class of its initial database image is given as the result of 
identification. The rejection system acts just when the maximum classification value is 
negative, i.e. it corresponds to the subtraction of different classes. Dual-PCA and Single-
PCA projections have been used as projection methods. The Dual-PCA projections employ 
two projection matrices: W ∈ RI

N ×mI  for intra-classes Ω I (subtractions within equal classes), 
and WE ∈ RN ×m E  for extra-classes ΩE (subtractions between different classes). Dual-PCA 
projections are employed together with a Bayesian classifier in order to perform the 
classification of the differential images [4]. Single-PCA projection employs a single 
projection matrix W ∈ RN ×m  (standard PCA) that reduces the dimension of the differential 
face images, and it is used together with a SVM classifier in order to perform the 
classification [9]. 
 

 
 

Fig. 1. Block diagram of a generic, standard eigenspace-based face recognition system. 
 

 
 

Fig. 2. Block diagram of a generic, pre-differential eigenspace face recognition system. 
 

Fig. 3 shows the block diagram of a generic, post-differential eigenspace-based face 
recognition system. In this approach only the reduced face images are stored in the 
database (NT). An input face image is preprocessed and then projected into a reduced space 
using a given projection method. Thereafter, the new reduced face image is subtracted from 
each database reduced face image. The result of each subtraction is called “post-differential 
image” δ in Rm. This vector contains information of whether the two subtracted vectors are 
of the same class or different classes (intra-classes or extra-classes), and then it works in 
the same way as a “differential image” once projected on the reduced space. The 



classification module performs the classification of the post-differential vectors (NT). The 
class of the reduced database vector that has the maximum positive classification value 
gives the class of the initial input face image. If the projection module does not 
significantly change the topology of the differential-image space, then the pre-differential 
and post-differential approaches should have very similar recognition rates. The rejection 
system acts just when the maximum classification value is negative, i.e. it corresponds to 
the subtraction of different classes. In [9] two different systems that follow this approach 
were implemented. The first uses Single-PCA projections together with a Bayesian 
classifier, while the second employs Single-PCA projections together with a SVM 
classifier. 
 

 
 

Fig. 3. Block diagram of a generic, post-differential eigenspace face recognition system. 
 
2.3 Kernel Eigenspace Face Recognition 
 

Under this approach the projection of the input face images is carried out in two steps 
[6]. In the first step, each preprocessed input face image x ∈ ℜN (mapped onto the feature 
space φ(x) ∈ F ) is projected on the NT support images (mapped in the same feature 
space), using the kernel function K :ℜN × ℜN →ℜNT . For doing that in the face database the 
NT face images needs to be stored. This is due to the fact that kernel machines need all the 
image vectors in order to reproduce the eigenvectors in the feature space F [10]. In the 
second step, the parameters of the given kernel machine AT∈MNT×m (see details in [10]), 
are applied to the kernel projection vector k∈ℜNT, in order to obtain the feature vector 
q∈ℜm. Afterwards, the Similarity Matching module compares the similarity of the reduced 
representation of the query face vector q with the reduced vectors pk, pk∈ℜm, that 
correspond to reduced vectors of the faces in the database. Therefore in the database the 
reduced vectors needs also to be stored. By using a given criterion of similarity the 
Similarity Matching module determines the most similar vector pk in the database. The 
class of this vector is the result of the recognition process, i.e. the identity of the face. In 
addition, a Rejection System for unknown faces is used if the similarity matching measure 
is not good enough. The exact computation of K() and AT is described in [6][10]. 
 

 
 

Fig. 4. Block diagram of a generic, kernel-based face recognition system. 



 
3. Comparative Study 
 

The comparative study presented in this section considers theoretical aspects as well as 
simulations performed using the Yale Face Database, a database with few classes and 
several images per class, and FERET, a database with many classes and few images per 
class. It is important to use both kinds of databases, because some properties of the 
methods, as for example their generalization ability, change depending on the number of 
classes under consideration. The pre-processing aspects of all the approaches (face 
alignment, illumination invariance, geometrical invariance, etc.) are kept unchanged among 
their different implementations. 
 
3.1. Pre-processing 
 

The preprocessing includes: window resizing (scale the face image using fixed 
proportions, to obtain face images of 100×200), masking (to avoid border pixels not 
corresponding to the face in the image), illumination gradient compensation (subtract a 
best-fit brightness plane to compensate heavy shadows caused by extreme lighting angles), 
histogram equalization (to spread the energy of all intensity values on the image), and 
normalization (to make all input images of the same energy). All these operations are 
detailed described in [7]. 
 
3.2 Simulations using the Yale Face Image Database 
 

The first simulations were carried out using the Yale University - Face Image Database 
[15]. We employed 150 images of 15 different classes. First, we pre-processed the images 
manually by masking them in windows of 100x200 pixels and centering the eyes in the 
same relative places. In table 1 we show the results of several simulations for the standard 
eigenspace approaches. For each simulation we used a fixed number of training images, 
using the same type of images per class, according with the Yale database specification. In 
order to obtain representative results we take the average of 20 different sets of images for 
each fixed number of training images. All the images not used for training were used for 
testing. In tables 2 and 3 we show the results of several simulations using pre-differential 
and post-differential approaches. We used equal a priori probabilities for the Bayes-based 
methods, P(ΩI)= P(ΩE ), and a penalty for non-separable cases C = 0.01 in the SVM 
classification method (see details in [9]). In table 4 we show results using kernel methods. 
The kernel function was a RBF with σ=0.5. In KFD the regularization parameter was 
µ=0.05 (see details in [10]). In tables 1-4 the best results obtained in each experiment, for 
each approach (standard, pre- and post-differential and kernel), are indicated in bold. 
 
3.3 Simulations using FERET 
 

In order to test the described approach using a large database, we made simulations 
using the FERET database [12]. We use a target set with 762 images of 254 different 
classes (3 images per class), and a query set of 254 images (1 image per class). Eyes’ 
location is included in the FERET database for all the images being used. Then the pre-
processing considers centering and scaling images so that eyes’ position keeps in the same 
relative place. In table 5 we show the results of simulations for the standard approaches. In 
this table the SOM-based clustering was not included because in these tests the number of 
classes (254) is much larger than the number of images per class (3), and the training 
process is very difficult. In tables 6 and 7 we show the results of simulations using pre-



differential and post-differential approaches. For the Bayesian and SVM classifiers were 
used the same parameters as before (see 3.2). In table 8 we show results using kernel 
methods. The kernel function was a RBF with σ=0.5. In KFD the regularization parameter 
was µ=0.05 (see details in [10]). In tables 5-8 the best results obtained in each experiment, 
for each approach (standard, pre- and post-differential and kernel), are indicated in bold. 
 
Tables 1, 2, 3 and 4. Mean recognition rates using the Yale database and different numbers of training 
images per class, and taking the average of 20 different training sets. The small numbers are standard 
deviations. All results consider the top 1 match. Whitening is equivalent to use a Mahalanobis distance in a 
projection space [8]. 
 

Table 1. Standard Eigenspace. 
 

projection images whitening whitening whitening whitening

method per class Euclidean cos() SOM FFC

95,7 95,8 94,2 81,8 83,3 89,3 88,8 81,8
2,7 2,7 2,8 5,4 5,9 4,1 3,8 5,4

94,6 95,2 93,5 85,9 97,2 97,0 96,7 90,8
2,1 2,5 2,4 5,2 2,2 2,5 3,5 5,5

89,8 94,3 92,7 85,2 - - - -
4,1 4,0 4,2 3,8

94,0 94,1 92,5 76,8 82,2 87,7 87,3 76,8
2,5 2,5 3,1 10,4 7,2 5,6 5,8 10,4

94,0 94,3 92,8 87,3 95,0 94,2 93,7 87,7
3,2 2,6 2,8 5,8 3,9 4,7 4,5 6,1

93,7 93,9 92,1 88,2 - - - -
3,2 2,6 3,3 3,6

93,4 93,4 91,6 78,7 85,4 88,0 79,2 78,7
1,9 2,1 2,3 5,5 4,0 4,0 5,3 5,5

92,9 93,5 93,8 84,7 94,4 92,9 93,1 85,1
2,4 2,4 2,5 3,8 2,1 3,9 4,2 5,7

92,3 92,9 91,8 85,3 - - - -
2,6 2,5 2,6

91,9 92,4 88,5 78,6 84,2 86,0 84,0 78,6
2,5 2,2 2,7 6,8 4,0 4,5 5,6 6,8

89,8 90,9 85,7 81,6 93,0 92,0 92,1 83,9
4,5 4,4 4,6 5,5 2,2 2,8 2,8 5,0

84,2 91,2 88,5 82,1 - - - -
3,5 4,4 4,4 5,1

88,9 88,9 79,1 75,5 83,4 85,1 75,2 75,5
5,0 5,0 6,1 6,9 6,3 4,0 6,6 6,9

88,5 88,1 77,2 79,6 89,9 88,1 86,6 77,2
3,4 4,2 4,2 6,1 4,1 2,8 3,4 7,2

77,9 88,4 78,5 78,4 - - - -
4,8 5,1 3,9 5,3

cos() SOM FFC

PCA

6

49

FLD 14

EP 21

axes Euclidean

PCA

5

42

FLD 14

EP 16

PCA

4

35

FLD 14

EP 14

PCA

3

28

FLD 14

EP 14

PCA

2

21

FLD 14

EP 14
 

 

Table 2. Pre-differential Eigenspace.  
(i)/(e) indicates intra/extra-classes. 

Table 3. Post-differential Eigenspace. 

97,5 96,8
3,6 3,4

95,5 94,6
3,7 4,1

93,2 92,1
3,0 3,4

90,4 91,8
3,2 4,4

89,5 90,3
3,7 4,6

images per 
class

Axes
Dual-PCA SVM

SVMDual-PCA

6 168 (i) / 182 (e) 334

5 115 (i) / 126 (e) 153

4 85 (i) / 84 (e) 121

3 39 (i) / 41 (e) 74

2 12 (i) / 14 (e) 23
 

images

per class
95,6 97,4

4,3 3,6

92,1 93,8
5,3 4,5

92,3 92,6
4,2 3,0

87,9 91,5
3,7 3,8

86,7 88,9
4,8 5,1

Dual-PCAaxes SVM

6 342

5 151

4 115

3 81

2 22
 



Table 4. Kernel Methods. 
 

projection images whitening whitening whitening whitening
method per class Euclidean cos() SOM FFC

96,1 96,1 95,1 82,7 92,6 90,7 88,3 82,7
2,7 2,7 2,6 8,9 4,6 5,9 6,3 8,9

96,9 96,8 95,1 92,4 96,3 93,9 94,5 89,8
2,2 1,9 1,9 4,2 2,6 3,6 4,2 6,0

94,5 94,5 92,3 82,9 88,9 87,7 87,9 82,9
2,5 2,5 2,6 9,9 7,5 7,6 9,2 9,9

94,9 95,4 91,4 89,4 94,5 92,3 91,8 87,6
4,1 2,8 2,9 5,2 4,1 5,4 5,6 6,1

93,7 93,7 90,6 84,6 89,9 88,1 83,4 84,6
1,9 1,9 2,2 6,2 4,9 4,6 5,8 6,2

94,1 95,7 91,5 89,1 92,9 91,5 91,5 84,3
3,4 2,4 3,4 4,3 2,6 3,7 4,1 4,9

92,5 92,5 90,5 82,6 90,3 88,1 83,8 82,6
1,9 1,9 2,5 5,5 3,3 3,6 5,4 5,5

92,7 94,0 90,3 87,1 93,0 91,3 90,2 82,3
2,6 1,8 2,0 5,2 2,4 3,0 3,3 4,8

89,9 89,9 85,2 76,2 90,2 87,7 83,3 76,2
4,3 4,3 4,4 7,8 3,7 3,2 7,5 7,8

90,4 92,3 88,4 82,0 89,1 87,3 84,5 77,5
2,6 3,6 3,6 4,7 4,1 4,1 5,4 5,7

FFC

KPCA
6

89

KFD 14

axes Euclidean cos() SOM

KPCA
5

74

KFD 14

KPCA
4

59

KFD 14

KPCA
3

44

KFD 14

KPCA
2

29

KFD 14
 

 

Tables 5, 6, 7 and 8. Mean recognition rates for standard approaches using FERET. All results consider the 
top 1 match for recognition. Whitening is equivalent to use a Mahalanobis distance in a projection space [8]. 
6 
 

Table 5. Standard Eigenspace. 
 

projection images whitening whitening whitening

method per class Euclidean cos() FFC

94,1 94,1 87,4 77,6 92,5 87,4

92,5 92,1 91,7 79,9 92,9 90,9

92,3 91,8 91,5 - - -

86,4 86,8 81,5 73,2 85,6 81,5

85,2 85,0 82,9 73,4 79,9 83,1

85,7 86,3 83,7 - - -

cos() FFC

PCA

3

316

FLD 253

EP 218

axes Euclidean

PCA

2

252

FLD 253

EP 194
 

 

Table 6. Pre-differential Eigenspace.  
(i)/(e) indicates intra/extra-classes. 

Table 7. Post-differential Eigenspace. 

images per 
class

Axes

Dual-PCA
Dual-PCA SVM

SVM

3 148 (i) / 156 (e) 247 94,2 94,8

88,72 106 (i) / 128 (e) 192 89,0
 

images

per class
Dual-PCA

199 87,3 88,5

SVM

3 253 92,1 95,2

axes

2

 
 

Table 8. Kernel Methods. 
 

projection images whitening whitening whitening
method per class Euclidean cos() FFC

94,5 94,5 85,4 79,5 95,3 85,4

95,3 94,5 95,7 82,7 75,2 60,2

86,6 86,6 83,3 89,6 89,4 83,3

87,8 87,8 88,6 77,2 71,9 62,0

FFC

KPCA
3

761

KFD 253

axes Euclidean cos()

KPCA
2

507

KFD 253
 



3.4 Results Analysis 
 

By analyzing the Yale-database simulations (tables 1-4), the following can be 
concluded: 

- When using the standard approach, the best results are obtained with the FLD-
Withening-Euclidean combination. Using other FLD combinations very similar 
results are obtained (consider the standard deviation information). FLD uses also 
less projection axes than the other algorithms. 

- Considering the differential approaches, the results obtained using the pre-
differential approach are slightly better than the ones obtained with the post-
differential one. When the number of images per classes is low (2 or 3) the results 
for both approaches are very similar (consider the standard deviation information). 
Dual-PCA and SVM gives similar results in both cases. 

- KFD gives better results than KPCA using less projection axes. Very similar results 
are obtained using Euclidian or Cosines distances. 

- The Yale database contains few classes and several images per class (2-6), and in 
general the best results obtained with each approach are very similar. Differences 
are seen only when the number of images per classes is low (2 or 3). In this last 
case, the approaches with better generalization ability, that is the kernel ones, 
obtains better results. By looking at the standard deviation information it can also 
be noted that the kernel approaches have a smaller variability in their results. 
Regarding the number of projection axes employed, the standard approaches use 
less axes. 

By analyzing the FERET-database simulations (tables 5-8), the following can be 
concluded: 

- When using the standard approach, the best results are obtained with PCA. As 
similarity measure Euclidian or Cosines distances can be used. The number of 
projection axes used in each approach is of the same order. 

- Considering the differential approaches, the results obtained using the pre- and the 
post-differential approaches are almost identical. In both cases Dual-PCA and SVM 
gives similar results. 

- Results obtained with KFD and KPCA are very similar. However, KFD gives better 
results when the number of images per class is 3. On the other hand, when the 
number of images per class is 2, the best results are obtained with KPCA. KFD uses 
less projection axes than KPCA. 

- The FERET database contains many classes and few images per class (2-3), for this 
reason the best results are obtained when using the approaches with better 
generalization capabilities, i.e. the kernel ones. 

Other information that should also be considered: 
- Post-differential approaches are 2 to 5 times faster than the pre-differential ones. 

Taking in to account their similar recognition rates, post-differential approaches are 
the better differential alternative. 

- Kernel-projections are 2 to 3 times slower than linear projections due to the use of 
the support images (all the database images). Another drawback of these methods is 
that the kernel parameters adjustment is very difficult and data dependant.  

 
 
4. Conclusions 
 

The aim of this paper was to present an independent, comparative study among 
different eigenspace-based approaches. The study considered standard, differential and 



kernel eigenspace methods. In the case of the standard ones, three different projection 
algorithms (PCA, FLD and EP) and five different similarity matching criteria (Euclidean-, 
Cosines- and Mahalanobis-distance, SOM-Clustering and FFC-similarity) were considered. 
In the case of the differential methods, two approaches were used, the pre-differential and 
the post-differential. In both cases Bayesian and SVM classification were employed. 
Finally, regarding kernel methods, KPCA and KFD were used. 

Simulations were performed using the Yale Face Database, a database with few classes 
and several images per class, and FERET, a database with many classes and few images 
per class. By looking at the obtained results is can be concluded: 

- Considering recognition rates, generalization ability and processing time, the best 
results were obtained with the post-differential approach, using either Dual-PCA or 
SVM. 

- In the specific case of the Yale Face Database, where the requirements are not so 
high, using any of the approaches gives similar results. 

- The drawbacks of the kernel methods are their low processing speed and the 
difficulty to adjust the kernel parameters. The first drawback could be overcome by 
using a kind of support vectors in the KPCA and KFD algorithms. For sure this is a 
problem to be tackled by kernel-machine researchers in the next few years. 

As future work we will like to extend our study by considering other kernel approaches 
and algorithms, as for example Independent Component Analysis – ICA and Kernel-ICA. 
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