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The visual detection of robots is a difficult but relevant problem in several robotic applications. In the 
present article, a framework for the robust and fast visual detection of legged-robots is proposed. This 
framework uses cascades of nested classifiers, the Adaboost boosting algorithm, and domain-
partitioning based weak classifiers. Using the proposed framework, frontal, profile and back detectors 
for AIBO robots (model ERS7), as well as detectors for humanoid robots, are built. The detection rate 
of the obtained systems is quite high: 90% with an average of 0.1 false positives per image, when the 
final detections are filtered out using context information (horizon line). In addition, a robot referee 
that uses these detectors to track players during a soccer game is described. Experiment results showed 
that the referee achieves very high robot detection rates (98.7% DR with ~1 false detection every 16 
images), and fast processing speed. 

 
 
1. Introduction 
 
Legged robots, and in particular humanoid and four-legged robots (e.g. SONY AIBO 
robots), are increasingly being used as toys, domestic-work robots, and as experimental 
platforms to study autonomy and distributed decision-making in teams of mobile robots 
(e.g. robot soccer). One of the main challenges in legged-robot vision is the development 
of robust and high-performing vision systems that can operate in dynamic environments 
(e.g. variable illumination with specular and other reflections as well as shadows, 
cluttered backgrounds, partial occlusions, and variability in the objects pose), in real-
time, and using limited processing power.  Limited processing power is an important 
constraint of processing boards used in standard legged robots (humanoid robots, AIBO 
robots, etc.). Algorithmic complexity is therefore constrained; there is a trade-off 
between performance and processing time.   

One of the basic skills that legged robots should be equipped with   is   visual 
interaction with the environment, including the detection of moving objects such as 
humans, pets and other robots, which in general terms means deformable objects that can 
be seen at different distances and viewpoints. For instance, in robot soccer scenarios, the 
detection of teammates and opponent robots is a key skill needed for good playing. 
However, the detection of deformable objects, in particular of legged robots, is a difficult 
task because of the limited processing power, the changing environmental conditions and 
the changing appearance of the robots, which depends on their relative pose. For 
instance, most of the systems developed in the robot soccer community are not robust 
enough in the detection of other players, because they are based on pure color analysis, 
which is highly dependent on the existing illumination. 

In this context, we propose a framework for the robust and fast visual detection of 
legged-robots which uses nested cascades of classifiers,1 the Adaboost boosting 



algorithm,2 and domain-partitioning based classifiers,2 and is based on a face detection 
framework.3 Frontal, profile and back detectors for AIBO robots (model ERS7), as well 
as a humanoid robot detector, are built using the proposed framework. The main 
strengths of the developed robot detection systems are: the ability to work at multiple 
scales, the capability of detecting robots at low-resolutions (starting from 24x24 pixels), 
being illumination invariant to a larger degree (they work in grey scale images and no 
preprocessing is needed for photometric normalization), and being real-time. 

In addition, we have developed a robot referee that uses these detectors to track 
players during a soccer game. This application is a new extension of the concept of robot 
soccer, and it is useful for the further testing of the application of our robot detection 
framework in different situations. The robot referee is specially intended to be used in 
the RoboCup SPL 2-legged league,4 and in the RoboCup humanoid league.5 

This paper corresponds to an extended version of 6,7, in which the robot detection 
framework and the referee were proposed. This extended version includes a more 
complete explanation of the proposed framework and the training procedure, a better 
characterization of the final detectors, the use of context information to reduce false 
detections, and a comparison with alternative detection methods. The paper is organized 
as follows. In section 2 state of the art methodologies for robot detection are analyzed. 
The proposed robot detection framework is presented in section 3. In section 4, the 
building and validation of detectors of legged robots, to be used in robot soccer 
applications, are described. The application of the developed detectors in the robot 
referee is described in section 5. Finally, some conclusions and projections of this work 
are given in section 6. 
 
 
2. Related Work 
 
One of the main challenges in legged-robot vision is the development of robust and high-
performing vision systems that can operate in dynamic environments, in real-time, and 
using limited processing power. In many cases, the requirement of having an 
anthropomorphic body imposes constraints on the sensors that can be used.  

In robot soccer most approaches for detecting robots are based on pure color 
segmentation and on the detection of contrast changes using scan lines (see for example 
8,9). These simple approaches are not robust enough; they are highly dependent on the 
illumination and background. In 10 a detection system for AIBO robots based on the use 
of local image descriptors and SIFT features is proposed, but its main limitations are its 
low processing speed and its reduced performance when highlights are present in the 
image, which are common in AIBO robots. In 11 , a PCA-SIFT approach is proposed for 
the detection of deformable robots. The method uses PCA-reduced SIFT descriptors and 
a voting schema to cluster the descriptors. However, obtained results are just moderate 
(~77% detection rate with 25% false positive rates for the AIBO case). In 12 a tracking 
system using 3D shape and color object modeling is used to track a robot with a 



catadioptric sensor (omni-directional camera). These sensors are usually used for 
localization and path planning, thanks to their wide field of vision. However, 
anthropomorphic body requirements do not allow using this kind of sensors in current 
humanoid soccer applications (e.g., RoboCup SPL4 and humanoid leagues5).  

Robot detection using statistical classifiers is an interesting methodology that has 
not been sufficiently explored. One of the drawbacks of detection systems based on 
statistical classifiers is that they are not real-time. The systems based on cascades of 
boosted classifiers, however, are an exception; they are very fast and accurate at the 
same time. The Viola & Jones classifier13 uses a cascade of filters for fast classification. 
Each filter is trained using Adaboost, and the integral image is used for   fast 
computation of simple, rectangular features (a kind of Haar wavelets). This kind of 
classifiers allows obtaining fast processing speed and high detection rates. In 14 a 
combination between color segmentation and zonal grayscale detection with a very 
restricted number of rectangular features (no cascade classifier) is used to detect AIBO 
robots, obtaining promising results (the system performance was evaluated in a 3 GHz 
Pentium 4 processor, not in the robots). In 15 a detection system based on Adaboost and 
rectangular classifiers for a Human-Robot interaction application is proposed. This 
application shows acceptable detection rates (robot correctly detected 79% of the time 
during an evaluation video sequence), but it works only with Black ERS-7 AIBO robots, 
and can only detect one robot at a time. 

The detection framework proposed here is based on the use of nested cascades of 
boosted classifiers, which have shown better results than standard cascades in detection 
problems.1,3 Nested cascades reuse the confidence output of a given layer in the next 
layer of the cascade, which allows obtaining more compact (faster) cascades and more 
accurate classifications. In addition, the proposed framework uses domain-partitioning 
weak classifiers,2 which, compared to the standard classifiers used in the Viola & Jones 
work,13 achieve an improvement in the representation power of the weak classifiers, and 
reduce the processing and training time. 

The use of automated referees and commentators in robot soccer is rather new. In 
the RoboCup 2006 World Competition the ideas of using automated referees 16 and robot 
commentators 17,18 for the AIBO robot soccer games were simultaneously proposed. The 
refereeing tool proposed in 16 is able to comment on and to referee a game, and is further 
extended in 7 for the case of humanoid robots.  
 
 
3. Robot Detection Framework 
 
In this section we describe the multiscale robot detection framework (see block diagram 
in figure 1). First, to detect the robots at different scales, a multiresolution analysis of the 
images is performed by downscaling the input image by a fixed scaling factor --e.g. 1.2-- 
(Multiresolution Analysis module). This scaling is performed until images of about 
24x24 pixels are obtained. Afterwards, windows of 24x24 pixels are extracted in the 



Window Extraction module for each of the scaled versions of the input image. The 
extracted windows could then be pre-processed to obtain invariance against changing 
illumination, but thanks to the used features we do not perform any kind of 
preprocessing. 

Afterwards, the windows are analyzed by the nested cascade classifier (Cascade 
Classification Module). Finally, in the Overlapping Detection Processing module, the 
windows classified as positive (they contain a robot) are fused (normally a robot will be 
detected at different scales and positions) to obtain the size and position of the final 
detections. This fusion procedure is described in.19 

Using the described framework it is also possible to detect the robots’ main 
orientation. To achieve this, detectors tuned to different robot orientations/views (e.g. 
frontal, profile and back) should be trained and applied in parallel. Then, in the Pose 
Classification module, the final robot’s main orientation is given by the detector having 
the largest confidence value.  
 
 

 
Fig. 1. Block diagram of the robot detection framework. 

 
 
3.1 Learning using nested cascades of classifiers 
 
The key concepts used in the considered framework are nested cascades, boosting, and 
domain partitioning classifiers. Cascade classifiers consist of several layers (stages) of 
classifiers of increasing complexity to obtain fast processing speed together with high 
accuracy. Nested cascades allow high classification accuracy and higher processing 
speed by reusing in each layer the confidence given by its predecessor. Adaboost 2 (a 



Boosting algorithm) is employed to find highly accurate hypotheses (classification rules) 
by combining several weak hypotheses (classifiers). We use domain partitioning weak 
hypotheses 2, each one having a moderate accuracy, and giving self-rated confidence 
values that estimate the reliability of each prediction. 

As already mentioned, a nested cascade of boosted classifiers is composed by 
several integrated (nested) layers, each one containing a boosted classifier. The whole 
cascade works as a single classifier that integrates the classifiers of every layer. Weak 
classifiers are linearly combined, obtaining a strong classifier. A nested cascade, 
composed of M layers, is defined as the union of M boosted classifiers  each one 
defined by: 

 (1) 

with ,  the  weak classifiers,  the number of weak classifiers in layer k, 
and bk a threshold (bias) value that defines the operation point of the strong classifier. 
The class assigned to the output corresponds to the sign of H(x). The output of  is a 
real value that corresponds to the confidence of the classifier and its computation makes 
use of the already evaluated confidence value of the previous layer of the cascade (see 
figure 2). 
 

 
Fig. 2. Nested Cascade of Boosted Classifiers. 

 
 
3.2 Design of the strong and weak classifiers 
 
The weak classifiers are applied over features computed in every pattern to be processed. 
A single feature is associated to each weak classifier. Domain-partitioning weak 
hypotheses make their predictions based on a partitioning of the domain X into disjoint 



blocks X1,…,Xn, which cover all X, and for which h(x)=h(x’) for all x, x’  Xj. Thus, the 
weak classifiers prediction depends only on which block Xj a given sample instance falls 
into. In our case the weak classifiers are applied over features, therefore each feature 
domain F is partitioned into disjoint blocks F1,…,Fn, and a weak classifier h will have an 
output for each partition block of its associated feature f: 

 (2) 

For each classifier, the value associated to each partition block (cj), i.e. its output, is 
calculated so that it minimizes a bound of the training error and at the same time a loss 
function on the margin 2. This value depends on the number of times that the 
corresponding feature, computed on the training samples (xi), fall into this partition 
block (histograms), and on the class of these samples (yi) and their weight D(i). To 
minimize the training error and the loss function, cj is set to: 

 (3) 

where  is a regularization parameter. The outputs, cj, from each of the weak classifiers, 
obtained during training, are stored in a LUT to speed up its evaluation. The real 
Adaboost learning algorithm is employed to select the features and training the weak 
classifiers .  

The main idea of cascade classifiers is to process most non-object windows as fast 
as possible, and to process carefully the object windows and the object-like windows. 
We manage this by setting the maximum allowed False Positive Rate - FPR (fprMax) 
and the minimum allowed True Positive Rate - TPR (tprMin) per layer, while the 
minimum number of features is selected such that fprMax and tprMin are achieved. For 
details on the cascade’s training algorithm see 3. 
 
 
3.3. Selection of the training examples 
 
Every window of any size in any image that does not contain an object (e.g. an AIBO 
robot) is a valid non-object training example. Obviously, to include all possible non-
object patterns in the training database is not an alternative. To define such a boundary, 
non-object patterns that look similar to the object should be selected. This is commonly 
solved using the bootstrap procedure,20 which corresponds to iteratively train the 
classifier, each time increasing the negative training set by adding examples of the 
negative class that were incorrectly classified. When training a cascade classifier the 
bootstrap can be applied in two different situations: before starting the training of a new 
layer and for re-training a layer that was just trained. According to our experience, it is 
important to use bootstrap in both situations. The external bootstrap is applied just one 
time for each layer, before starting its training, while the internal bootstrap can be 
applied several times during the training of the layer. The bootstrap procedure in both 



cases is the same with only one difference, before starting an external bootstrap all 
negative samples collected for the training of the previous layer are discarded (see 3 for 
details).  
 
 
4. Building and Validation of Detectors of Legged Robots 
 
4.1. Training of the AIBO and humanoid robot detectors 
 
In this section we describe the training of the AIBO and humanoid robot detectors. In the 
case of the AIBO robots, we built detectors for 3 different main orientations (Frontal, 
Profile and Back), which are required for the correct detection of these robots. In the 
case of the humanoid robots, a single detector was built, designed to work with different 
robot orientations. 

 During the training of the cascades two sets are used: training and validation. We 
will explain how the training dataset is obtained; the procedure to generate the validation 
dataset is analogous. To obtain the training set used at each layer of the cascade 
classifier, two types of databases are needed. One them consists of cropped windows of 
positive examples (e.g., frontal AIBOs). The second one consists of images not 
containing the object to be detected, and it is used during the bootstrap procedure to 
obtain the negative examples (see section 3).  

The training dataset is used to train the weak classifiers using Adaboost, and the 
validation database is used to decide when to stop the training of a layer, and to select 
the bias values of the layer (see section 3). To obtain positive examples (cropped 
windows) the following procedure was employed. First, a rectangle bounding the robot 
was annotated. Then, a square centered on this rectangle, and of size equal to the largest 
size of the rectangle was obtained. Finally this square was cropped and downscaled to a 
24x24 pixel size. In the case of the humanoid robots, two windows were cropped from 
each robot used during training, one corresponding to the upper half of the robot (torso 
and head), and the other to the lower part (mostly legs). This allowed us to obtain a 
larger number of training examples with high variability. This was also made to allow 
the detection of either the upper or the lower part of the robot independently (using only 
one detector). The reason is that during a game a robot will see many times only a part of 
the other robots in the field, and this information should be sufficient for a successful 
detection.  

In the case of the databases used to train the AIBO detectors, the positive examples 
were obtained from videos captured using the AIBOs’ cameras and using external 
cameras under real-world playing conditions (variable illumination, occlusions, etc.). 
The sources used to build the humanoids training and validation sets were videos 
obtained using the same camera employed in our humanoid robots (Philips ToUCam III 
- SPC900NC), and videos from other humanoids robots obtained from the RoboCup 
Humanoid league website.5 The number of images used in each database is shown in 



Table 1. Figure 3 shows some positive examples used to train the Frontal and Profile 
AIBO detectors. 

 
 

Table 1. Summary of the databases used for training. NPE: Number 
of Positive Examples. NNI: Number of Negative Images. 

Class NPE 
(training) 

NPE 
(validation) 

NNI 
(training) 

NNI 
(validation) 

Frontal AIBOs 3,115 3,115 5,946 2,550 
Left AIBOs 4,263 3,624 5,946 2,550 
Back AIBOs 1,528 1,528 5,958 2,562 
Humanoids 3,506 3,500 5,958 2,562 

 
 

          
(a) (b) 

Fig. 3. Examples (24x24 pixels) used for training: (a) Frontal AIBOs, and (b) Profile AIBOs. 
The training procedure is an iterative process. Basically, it consists on iteratively 

adding layers to the cascade, where each layer is also built iteratively by adding weak 
classifiers. The parameters of this procedure control the trade-off between the detection 
rate, the false positive rate and the processing time (see 3 for details):  
• Maximum FPR per layer (fprMax),  
• Minimum TPR per layer (tprMin),  
• Number of bootstrap steps,  
• Number of bootstrap examples,  
• Initial number of negative examples, and  
• Sampling factor: Percentage of features considered for the training of the cascade.  

 
For each classifier the whole training process is repeated from 5 to 10 times. Each 

time, the classifier’s performance and accuracy is evaluated using the validation set, and 
parameters are adjusted to generate a better detector. The used sampling factor stayed 
between 30% and 40%, affecting principally the speed of the training. The number of 
bootstrap steps was kept between 3 and 6, but for most of the final detectors, 4 steps 
were used. Each step of the procedure clears the weak classifiers of the stage being 
trained, and adds the number of bootstrapped examples (between 300 and 600) to the 
initial number of negative examples (between 2,000 and 3,000) for the re-training. This 
helps building a stronger cascade, in particular in its early stages. The fprMax per layer 
was kept between 20% and 50%, and best results were obtained with about 30%. The 
tprMin per layer was tuned between 99.50% and 99.99%, with the best result obtained 
with 99.90%. The final cascades have between 10 and 12 layers. For all cascades, the 
first stage has 9 weak classifiers (fast evaluation), while the last one has up to 50 weak 
classifiers (high complexity and high classification ability). 
 



 
4.2. Evaluation of the detectors 
 
The detection results are presented in terms of Detection Rate (DR) versus Number of 
False Positives (FP) in the form of ROC curves (Receiver Operation Characteristic 
curves) and tables, while the robot’s orientation estimation results are presented using a 
confusion matrix. The analysis of the processing speed of the system is also presented. 
 
 
4.2.1. Evaluation databases 
 
To evaluate the proposed system, two databases were constructed: one for the AIBO 
robots (AIBODetUChileEval) and one for the Humanoid robots (HDetUChileEval). 
These databases are made available in 21 for future comparisons. No image of the 
training or validation sets is part of these databases. The AIBODetUChileEval database 
contains AIBOs in three orientations (frontal, profile, back), while the HDetUChileEval 
database consists of images containing humanoid robots, which are different robot 
models than the ones used to train the system. These images are from real-world soccer 
scenarios, and they include many changes in illumination, contrast, and background. 
Table 2 contains details on the number of AIBO/humanoid robots in each of these 
datasets. 
 

Table 2. Summary of the database used for evaluation of the AIBO detection system and the Humanoid 
detection system. NI: Number of Images. NR: Number of robots. IS: Image size. 

AIBOs Humanoids  
Database 

 
NI NR (frontal) NR (profile) NR (back) NR 

 
IS 

AIBODetUChileEval 724 344 489 180 - 208x160 
HDetUChileEval 244 - - - 493 640x480 

 
 

4.2.2. Detection results 
 
The performance of the proposed robot detection system was evaluated in the 
AIBODetUChileEval and the HDetUChileEval databases. These results are presented in 
terms of the DR versus FP (Figure 4a and Table 3), and percentage of correct robot’s 
orientation classification (Table 4).  

In the AIBOs database, the first test consisted in evaluating each detector 
independently on the specific class it was trained to detect (e.g. Frontal detector 
detecting Frontal AIBOs). In this evaluation, AIBOs appearing under views different to 
the ones being detected were ignored, i.e. they were neither counted as false positives 
nor as correct detections. As it can be observed in the ROC curves of figure 4a, the best 
performing AIBO detector is the Profile detector, followed by the Back detector, and 
then by the Frontal detector. For a DR of ~90%, the Profile detector has 70 FP in 724 
images, while the Back and Frontal detectors have 166 and 254 FP, respectively (see 



table 3). The profile detector achieves a DR of 94.7% with 98 FP in 724 images, which 
can be considered reasonably good for real soccer applications.  

The second test consisted in evaluating the performance of a particular detector 
when detecting all robot’s orientations, including the ones they were not trained to 
detect. In this case the detectors were able to detect AIBOs in all orientations, showing a 
reasonably good detection rate; e.g. the Frontal detector obtained a 90 % DR of AIBOs 
under all orientations with 392 FP. This means that even without training a detector for 
all orientations, the characteristics of the rectangular features still find a high 
resemblance between them, mainly due to the contrasts present in Aibo robots.  

 The third test (Multiple detectors in all AIBOs) consisted in running all AIBOs 
detectors (Frontal, Profile and Back) in parallel. Given that in some cases the three 
detectors detected the same AIBOs, the final detections were obtained by selecting all 
non-overlapping detections, and merging overlapping detections by choosing the one 
with the highest confidence. It is important to notice that in this case the number of false 
positives slightly increased, e.g. a DR of 94.8% was obtained with 392 FP in 724 
images. In other words, it is possible to arbitrate among the output of the detectors 
without increasing considerably the number of FP, although this alternative is about 3 
times slower than using the individual detectors.  

The purpose of the last AIBO test was to classify the robot´s orientation using the 
detectors. For this, the Frontal detector was used as a generic detector (using the same 
parameters that obtained a 90% DR with 392 FP), followed by a verification of the 
detections using the specific Frontal, Profile, and Back detectors. Afterwards, the 
orientation was estimated by taking the output of the specific detector that gave the 
largest confidence value. Out of the 1,013 AIBOs, 657 were classified, i.e. the 
orientation was estimated. Out of them, the orientation was correctly estimated in 519 
cases (79% correct classification rate). Table 4 shows the confusion matrix of the robot’s 
orientation estimation for these AIBOs. The Frontal and Profile classifiers show the best 
results, classifying correctly ~90% and ~80% of the Frontal and Profile AIBOs, 
respectively.  

Finally, performance of the humanoid detector was also tested (Figure 4a and Table 
3). A 92.2% detection rate was obtained with 123 false positive in a total of 244 images. 
This is quite high considering that the system was trained using examples corresponding 
to different humanoid robot models than the ones used in the evaluation. The humanoids 
have a clear contrast shape that is easier to identify (almost like a black rectangle), 
although it also makes them easy to be miss classified with other elements in the image. 
This means that the boundary between Humanoid and non-Humanoid is very thin, and 
the detector has to be finely tuned so that it does not have too many false positives, while 
still having a good detection rate.  

 



 
(a) 

 

 
(b) 

Fig. 4. (a) ROC curves of the detectors in the AIBODetUChileEval and HDetUChileEval databases. (b) Same 
as (a) but using the visual horizon information to filter false detections. See main text for details.  
 
 



Table 3. Selected operation points – DR (Detection Rate) versus FP (Number of False Positives) of the evaluated 
AIBO and humanoid robot detectors. FFP = Filtered False Positives.  

Detector / 
Target DR FP FFP DR FP FFP DR FP FFP DR FP FFP DR FP FFP 

Frontal / 
Frontal 
AIBOs 

    89.4 254 99  84.4 57 29     74.5 18 12 

Profile / 
Profile 
AIBOs 

 94.7 98 77  90.4 70 58     81.3 42 36    

Back / 
Back AIBOs     89.9 166 55  85.6 76 22  79.8 27 9    

Frontal / 
All AIBOs     90.0 392 195     82.9 183 99  73.4 95 41 

Multiple / 
All AIBOs  94.8 392 190  88.6 204 104  84.3 114 62  80.1 52 34    

Humanoids  93.6 151 59  92.2 123 54        75.9 3 0 

 
 
 

 
Table 4. Confusion Matrix of the AIBO´s orientation estimation using the robot detection 
system. 
True Class / Predicted Class Frontal AIBOs Profile AIBOs Back AIBOs 
Frontal AIBOs 91.63 % 11.64 % 33.87 % 
Profile AIBOs 3.72 % 81.45 % 15.32 % 
Back AIBOs 4.65 % 6.92 % 50.81 % 

 
 

4.2.3 Detection results using context information 
 
During the evaluation of the detectors we noticed that many false positives appeared on 
the top part of the image, where robots are less likely to be since they are always on the 
ground. Thus, the robot detection results can be improved if context information is used. 
The robot running the detectors can use the information of their camera pose to filter out 
false detections. First, the robot compute the horizon line (also called visual horizon) 
using the camera pose, defined as the intersection between a projection plane P, 
perpendicular to the optical axis and centered in the focal point, and a horizontal plane 
H, parallel to the ground, and at the same height that the camera. Second, detection 
windows whose center is located above the visual horizon of the image are filtered out, 
because any object appearing in the image above the horizon line means it is located 
above the ground. 

The filtering of false detection using the horizon line was incorporated in our robot 
detection systems. The results were quite satisfactory since we obtained a significant 



reduction of false positives without influencing the detection rate (see table 3, figures 4b 
and 5). In the AIBOs case, for a DR of ~90%, the FP are reduced from 70 to 58 in the 
case of the Profile detector, from 166 to 55 in the case of the Back detector, and from 
254 to 99 in the case of the Frontal detector. Thus, around 50% of the false detections 
are eliminated thanks to the use of the context filter. In the humanoids case more than 
50% of the false detections are eliminated by using the context filter. For instance, for a 
DR of 92.2%, the FP are reduced from 123 to 54. 

In figure 5 the ROC curves of all detectors are shown and compared with and 
without using the context filter. In all cases not a single good detection was filtered out; 
for any FP value the DR is higher in the case of using filtering. This shows that the 
context information is extremely useful, and that it should always be taken into account 
when available. Figure 6 and 7 shows some examples of positive and false detections. 
False detections are filtered using the horizon line (in green). 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



 
(e) 

 
(f) 

Fig. 5. ROC curves on the AIBODetUChileEval and HDetUChileEval databases with and without using the 
visual horizon information to filter false detections. (a) Multi-view detector on all views, (b) Frontal detector 
on all views, (c) Frontal detector on frontal view, (d) Back detector on back view, (e) Profile detector on 
Profile view,  (f) Humanoid detector. See main text for details. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Detection results obtained with the frontal AIBO detector on images of the AIBODetUChileEval 
database. Filtered/non-filtered detections are marked as solid-line/dashed-line boxes. 
 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Detection results of the Humanoid detector on the HDetUChileEval database. Filtered/non-filtered 
detections are marked as solid-line/dashed-line boxes. 
 
4.2.4 Effect of Training Procedures in the Detectors 
 
To show explicitly some of the advantages of the proposed training procedures, we 
carried out an experiment in which only parameters of the bootstrap procedure were 
modified. In this experiment, the use of external bootstrap versus the use of internal and 
external bootstrap at the same time, is analyzed. In both cases, we train the different 
layers of the cascade using the same final number of training examples (3,600). In the 
first case, only external bootstrap, the 3,600 examples are all collected during external 
bootstrap. In the second case, internal and external bootstrap, 2,400 examples are 
collected during the external bootstrap, and then, 1,200 examples are collected in three 
iterations of internal bootstrap, 400 in each iteration. The experiment was implemented 
for the training of a Frontal detector of AIBO ERS7 robots. The obtained detectors were 
tested using the AIBODetUChileEval database. Using the same detection parameters in 
both cases, the obtained operating points are 89.80% detection rate with 453 false 
positives when only external bootstrap is used, and 89.40% detection rate with 254 false 
positives when internal bootstrap is added. This corresponds to almost reducing the 
number of false positives to a half for a given detection rate. This result clearly shows 
the benefit of using internal bootstrap. 
 



4.2.5 Processing time 
 
The processing time of the robot detectors is analyzed in three different platforms, and 
considers the use of different number of scales in the detectors (they are multi-scale). 
These platforms are: the internal processor of the AIBO ERS7 robots, a standard 
notebook computer, and a standard desktop PC. ERS7 robots have a 64bit RISC 
Processor (MIPS R7000) running at 576 MHz, 64MB RAM, and a color-camera of 
208x160 pixels that delivers 30fps. The main characteristics of the notebook and desktop 
PC are, respectively, 1.73 GHz Intel Core Duo with 1GB of RAM, and 2.66 GHz Intel 
Core i7 desktop with 4GB of RAM, both running Windows XP. The frame rate depends 
mainly on the scaling factor used to obtain the scaled version of the images (1.5 or 1.2), 
and the number of scales skipped by the detection system. 

Table 5 shows the average frame rate (in frames per second) delivered by the 
Frontal AIBO detector. In all cases the full soccer control library of the robots is running 
(Uchile1 control library 22). The detector works fine with a scaling factor of 1.15 or 1.2, 
and skipping 1 or 2 of the first scales, which allows obtaining 2.2 fps in the AIBO’s 
processor. This allows using the detector in our four-legged team, considering that it is 
not necessary to detect the robots in each frame, but every 3-7 for frames (every 90-210 
milliseconds). In a desktop computer we can attain rates of more than 30 frames per 
second under the same conditions. This is important for our referee application, which 
will be described in the next section 
 

Table 5. Frame rate (in frame per seconds) of the frontal AIBO detector. 

Configuration Frame Rate (fps) 
 in an AIBO processor 

Frame Rate (fps) 
in  a Laptop PC 

Frame Rate (fps) 
in a Desktop PC 

scaling 1.15 - no scale skipped 0.7 3.4 7.9 
scaling 1.15 - skip 1st scale 1.1 6.7 14.9 
scaling 1.15 - skip 1st,2nd scale 1.3 9.1 21.0 
scaling 1.15 - skip 1st,2nd,3rd scale 1.9 11.1 30.1 
scaling 1.2  - no scale skipped 0.8 4.8 9.9 
scaling 1.2  - skip 1st scale 1.6 9.1 22.8 
scaling 1.2  - skip 1st,2nd scale 2.2 12.5 36.1 
scaling 1.2  - skip 1st,2nd,3rd scale 2.9 16.7 59.8 

 
 
4.3. Comparison with Alternative Detection Methods 
 
In a first experiment, the detection of AIBO ERS7 robots using local image detectors 
and SIFT descriptors, implemented using the detection system described in,10 is 
analyzed. In this work, the detection of AIBO robots was achieved using robot’s head 
reference images containing a player number (1 to 4), which was important in the 
matching process, as the numbers provided stable SIFT descriptors. In that scheme, a 
detection rate of ~80% was obtained.  

In order to compare this detection system with the one here proposed, we used the 
AIBODetUChileEval database. In the experiments three full-body images, Frontal, 



Profile and Back robot examples, were selected as reference images. The obtained 
results are very poor, with a detection rate of ~5%, for each of the three prototype 
images. The main reasons for this lower performance are due to (i) the small number of 
descriptors appearing on the robot’s image areas, as the robot body is composed by 
regular white and red regions without any texture, (ii) the small size of the area covered 
by the robots in the test images, and (iii) the high symmetry of the robot’s body, which 
disturbs the matching process. Figure 8 shows two examples of incorrect matches 
between pair’s of reference-test images. 
 

  
(a) (b) 

Figure 8. Examples of wrong detections using the SIFT matching methodology. (a) Part of the prototype’s 
descriptors are matched against the background, (b) Some robot’s parts are incorrectly matched. 

 
In a second experiment, the here proposed system is compared against an OpenCV 24 

implementation of a cascade detector (OpenCV’s HaarTraining). This cascade detector 
implements,24 which is an extension of Viola&Jones detector.13  The main differences 
between the here proposed detector and the OpenCV one are due to the use of different 
(i) weak classifiers (domain partitioning weak classifiers vs. decision stumps), (ii) 
boosting algorithm (real Adaboost vs. GentleBoost24), (iii) features (standard vs. 
extended rectangular features), (iv) cascade’s types (nested vs. standard), and (v) training 
procedures (use or not use of internal bootstrap procedures). 

As the main idea is to compare both detection system under the same conditions, the 
same datasets, and parameters (whenever possible) for the training and evaluation of the 
OpenCV based detector, are used. Figure 9 shows the detection results of frontal AIBO 
robots (AIBODetUChileEval dataset), in terms of ROC curves. As is can be observed, 
the unfiltered and filtered detectors have a much better performance than the OpenCV 
detector (the OpenCV was run without horizon filtering). The amount of false positives 
returned by the here proposed detectors is always much smaller than the one obtained by 
the OpenCV implementation, no matter how high the detection rate is.  

 
 
 
 
 
 
 
 
 



 
 

 
 
 

 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

Figure 9. ROC curves of the proposed and OpenCV detectors in the AIBODetUChileEval database. 
 
 
5. Proposed robot referee 
 
A robot referee that uses the proposed robot detector to track players during a soccer 
game was developed. This application is a new extension to the concept of robot soccer, 
and it is useful to further test the applicability of our robot detection framework. The 
tasks required for refereeing are complex and require a very high degree of reliability (a 
goal not being counted is unacceptable), and they have to be solved in real-time.  
 
 
5.1. Robot hardware 
 
As robot referee we use a service robot (Bender 25), whose main hardware components 
are (see a detailed description in 26): 

- A chest that incorporates a tablet PC as the main processing platform. The screen 
of the tablet PC allows: (i) the visualization of relevant information for the user, and (ii) 
entering data thanks to the touch-screen capability. 

- The robot’s head incorporates two CCD cameras and pan-tilt movement of the 
whole head. One of its most innovative features is the capability of expressing emotions.  

- The arms of the robot are designed for allowing the robot to manipulate objects. 
Each arm has 6 degrees of freedom, 2 in the shoulder, 2 in the elbow, 1 for the wrist and 
1 for the gripper.  



- A mobile platform, in which all described structures are mounted. The platform 
provides mobility (differential drive), and sensing skills (1 laser sensor, 16 infrared, 16 
ultrasound, and 16 bumpers).  One interesting feature is that the relative angle between 
the mobile platform and the robot body can be manually adjusted. For the task of 
refereeing, the angle is set to 90 degrees. This allows the robot to have a frontal view of 
the field while moving along one of the field sides, even though it has a differential drive 
configuration (see figure 10).  

 
Fig. 10. Robot referee positioning. 

 
 
5.2. Robot controller 
 
The block diagram of the proposed robot referee controller is shown in figure 11. The 
system is composed by seven main modules Object Perception, Visual Tracking, Self-
localization, Refereeing, Motion Control, Speech Synthesis, and Wireless 
Communications, and makes use of two databases: Rules (input) and Game Statistics 
(output).  

Fig. 11. Block diagram of the robot referee controller. 



 
The Object Perception module has two main functions: object detection and object 

identification. First, all the objects of interest for the soccer game (field carpet, field and 
goal lines, goals, beacons, robot players, ball) are detected using color segmentation and 
some simple rules, similar to the ones employed by any RoboCup soccer robot controller 
(e.g., 8,9,22). No external objects, as for example, spectators or legs of assistant referees or 
team members are detected (in some leagues assistant referees and team members can 
manipulate the robots during a game). The identification (identity determination) of 
goals, beacons and the ball is straightforward, because each of them has a defined form 
and color composition. The identification of field and goal lines is carried using the 
relative distance from the detected lines to the robot referee, and to the already identified 
beacons and goals. The detection of the robot players is performed using the multiscale 
robot detectors described in the previous sections. The information of the detected robots 
is passed to the Visual Tracking module to further process the information and to keep 
track of the robots during the game.  

The Visual Tracking module is in charge of tracking the moving objects. The 
implemented tracking system is built using the mean shift algorithm,27 applied over the 
original color image. The seeds of the tracking process are the detected ball and robot 
players. As in,28 a Kalman Filter is employed for maintaining an actualized feature 
model for mean shift. In addition, a fast and robust line’s tracking system was 
implemented (see description in 16). Using this system, it is not necessary to detect the 
lines in each frame. Using the described perception and tracking processes, the system is 
able to track in real time (30 fps) all game moving objects and the lines. 

The Self-localization module is in charge of localizing the robot referee. As in the 
case of the robot players, this functionality is achieved using the pose of the landmarks 
(goals and beacons) and the lines, and odometric information. The only difference being 
that in the case of the robot referee, the movements are not executed inside the field, but 
outside, along one of the field sides (see figure 10). 

The Refereeing module is in charge of analyzing the game dynamics and the actions 
performed by the players (e.g. kicking or passing), and detecting game relevant events 
(goal, ball out of the field, illegal defender, etc.). This analysis is carried out using 
information about static and moving detected objects, and the game rules, which are 
retrieved from the Rules database (see description in 7). In addition, this module is in 
charge of the referee positioning. The module should keep the referee outside of the 
field, but at a constant distance of the field side (the referee should move along one of 
the field sides), it should control de robot’s head and body movement for allowing the 
robot to correctly follow the game, by avoiding obstacles and without leaving the field 
area (in case that the ball or a player leave the field.). It is important that the referee 
always perceives and follows the main elements of game-play. This is done by following 
the ball, and estimating the position of the players in the field. In future implementations 
we plan to use several cameras to have more information of the activities in the field. 
The outputs of this module are refereeing decisions (e.g. goal was scored by team A) that 



are sent to the Speech Synthesis and Wireless Communication modules, motion orders 
that are sent to the Motion Control module, and game statistics (e.g. player 2 from team 
A score a goal) that are stored in the corresponding database. 

The Motion Control module is in charge of translating motion orders into 
commands for the robot motors. These commands allow the control of the robot pose, 
the robot head pose, the robot facial expressions, and the robot arms. 

Finally, the Speech Synthesis and Wireless Communication modules communicate 
the referee decisions to the robot players (using the Game Controller tool4), human 
assistant referees and spectators. Wireless communication is straightforward, while 
speech synthesis is achieved using the CSLU toolkit.29 
 
 
5.3. Robot detection in a refereeing task 
 
In this section robot detection results are reported. The detectors were tested using video 
sequences (with different configurations) taken in our laboratory. In total 5,293 frames 
were taken for a preliminary analysis of our system. These videos correspond to short 
play sequences; some examples can be seen in figures 12 and 13.  

The robot detection module was programmed to detect robots every 5 to 10 frames. 
The robots are tracked in the remaining frames. With this detection/tracking combination 
we can estimate the robots’ positions in every frame, and process more frames per 
second since the tracking of robots is very fast. If a new robot appears on the image, or if 
a robot is lost by the tracking module, it is quickly detected by the detection module and 
then passed to the tracking system. To measure the performance of the algorithm we 
counted all the robots that the detection and tracking system correctly found versus the 
number of robots that appear in all the frames, and the number of false detections. Table 
6 shows the obtained results. These results show that the robots were correctly detected 
or tracked in almost all frames, having approximately one false detection every 16 
frames. Usually, false detections appeared in consecutive frames, mainly because once a 
false detection is made, it is then tracked with the mean shift algorithm until the next 
detection frame comes. These results are quite good and show that the detector is 
working as intended. Once a robot is correctly detected the tracking system works 
remarkably well (the mean shift system has no problem tracking objects in these 
environments). 

 
 

Table 6. Summary of the results for the robot detection and tracking. NF: Number 
of frames. NR: Number of robots. DR: Detection Rate of detected and tracked 
robots. FP: Number of false positives. 

NF NR DR FP 
5,293 3,405 98.7% 334 

 



 
6. Conclusions 
 
In this article a framework for the robust detection of mobile robots using nested 
cascades of boosted classifiers was proposed. This framework was used to build 
detectors for humanoid and AIBO robots. The main module of the system corresponds to 
a nested cascade of boosted classifiers, which is designed to perform fast detections with 
high detection rates, and a very low number of false positives. Using this cascade 
classifier, an exhaustive multi-scale search is performed, and robots appearing at 
different scales and positions are detected. The nested cascade classifiers are trained 
using real Adaboost. Each (strong) classifier is built using domain-partitioning weak 
classifiers, implemented using LUTs. This allows obtaining compact cascades, with high 
processing speed, and low error rates.  

The detection rate of the obtained systems is quite high, when the final detections 
are filtered out using context information (horizon line). For instance, the DR of Profile 
AIBOs is ~90%, with 58 false detection in 724 images (1 false detection every 12.5 
frames). Similar results are obtained for the AIBO´s Frontal and Back detectors, as well 
as for the humanoids detector. It is important to note that the humanoid detector was 
evaluated in images containing humanoid’s models different to the ones used to train it, 
showing a high generalization capability of the system, and allowing the use of the 
detector as a generic humanoid detector. Even thought the detection system was not 
designed to estimate the main orientation of the AIBO robots, it was possible to estimate 
it with a good accuracy. The system correctly estimated the robot’s orientation in 79% 
percent of the detected and verified AIBOs. 

The performance of the AIBO frontal detector was compared with two competitive 
detectors, one implemented using local features and SIFT’ matching and one cascade 
detector built using the OpenCV library. The here proposed detector showed a much 
higher performance than the other two. 

The applicability of the robot detectors is tested in a robot referee application in 
which the implemented humanoid detector is used. This refereeing system is able to 
detect and identify all humanoid-league defined field objects, and performs the detection 
and tracking of the moving objects in real-time. Experimental results shown that the 
referee achieves very high robot detection rates (98.7% DR with ~1 false detection every 
16 images). As future work, we plan to characterize the performance of the complete 
refereeing system, to use external cameras to cover the whole soccer field, and to be able 
to correctly analyze complex game situations.  
 



  
 

 

  

 

Fig. 12. Selected frames from a robot scoring sequence. Robot/ball tracking window in solid-/dashed-line.  
 
 

  
 

 

   
Fig. 13. Selected frames from ball tracking and robot detection. Robot/ball tracking window in solid-/dashed-

line. 
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