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Robot Detection System
in the Soccer Domain

BY J. RUIZ-DEL-SOLAR, R. VERSCHAE,
M. ARENAS, AND P. LONCOMILLA

T
he automatic detection and identification of robots,
as well as the recognition of their behavioral pat-
terns, is of increasing importance in multirobot sce-
narios. Multirobot systems are becoming relevant
as a result of the increasing number of industrial,

service, and exploration robots in current use. Thus, collabora-
tive robot behaviors will be of high importance in scientific
and industrial application areas such as ground, space, and
underwater exploration; entertainment; surveillance; human
assistance; manipulation and assembly of objects in industrial
environments; and autonomous rescue operations. In addition,
individual robots (robots not belonging to a given team) will
need to interact and, in some cases, collaborate with other
robots while performing different tasks in a common environ-
ment, more and more frequently.

Depending on the specific situation, robots will develop
different kinds of relationships as humans do. In many cases,
robots will cooperate, but in other cases, they will just observe
each other, ignore each other, or even compete with each
other. We can illustrate these ideas through the following
futuristic scenario: a shopping center where several kinds of
service robots interact with humans. In such a scenario, robots
assume different specific tasks such as cleaning the floor, restocking
shelves and arranging items, purchasing items, assisting humans,
and even selling items. Cooperation and interaction to some
degree will be required even when these different robots have not
met before or in the case they do not share a common protocol of
data communication. There is a complex variety of interactions
that will arise among these different robots as well as between
them and humans.

One of the basic skills that robots will require in scenarios
such as the one described earlier is robust visual interaction

with the environment, which includes the detection and iden-
tification of other robots and their behaviors. Conversely,
surveillance and/or augmented reality systems operating in the
same scenarios will require detecting and identifying robots, as
well as their behaviors.

Given the above, it is highly relevant to develop automatic,
fast, and accurate methods for the detection and identification
of robots, as well as the determination of their behaviors.
However, the development of such methods is a complex task
because of the changing conditions of real-world scenarios
(e.g., variable illumination and/or cluttered backgrounds), as
well as the varying appearance of the robots that depends on
their relative position in relation to the camera, which is espe-
cially important in the case of humanoids and other legged
robots. An additional challenge to be taken into account is the
current limited processing power of most service robots,
which imposes some restrictions on the methodologies that
can be used to solve these problems.

In the last decade, the use of cascades of boosted statistical
classifiers [1]–[4] has arisen as a very interesting methodology
for the fast and accurate detection of human faces, human
beings, cars, etc. This methodology has recently been extended
to the resolution of multiclass problems [5], [6], which permits
the simultaneous detection of objects belonging to different
classes [5]–[7], and the detection of objects under different views
[8]. It seems a very promising idea to extend the use of thisDigital Object Identifier 10.1109/MRA.2010.938840
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methodology to the multiview and multiclass detection of
robots. In addition to obtaining fast and accurate robot detec-
tors, the use of this methodology allows the development
of multiclass detection systems for the simultaneous detec-
tion of robots and humans, as well as other objects of inter-
est. In previous work, we have used multiple cascades of
boosted statistical classifiers, running in parallel, for the
detection of robots under different views (one cascade for
each object view) [9]. In this work, we extend this idea pre-
senting, for the first time, the multiview and multiclass
detection of robots using trees of cascades of boosted statis-
tical classifiers. In the framework, a single classification tree
allows the detection of robots under different views and/or
the simultaneous detection of robots belonging to different
classes (robot identification).

The determination of robot behaviors can also be addressed
using similar methodologies to the ones already developed for
the analysis of human behaviors. As a first step in this direction,
we are interested in the determination of the gaze direction in
humanoid and legged robots. One of the main reasons for this
approach is the fact that gaze-direction determination is a
powerful anticipatory perceptual mechanism for determining
the next action of other individuals. For instance, in robot soc-
cer, similarly as in the case of human soccer, good players
should have the ability to anticipate the actions of opponents,
and sometimes of teammates, by just observing the other play-
ers’ attitude and pose. Gaze direction determination is one
possible mechanism to accomplish this, which can be illus-
trated using the following two situations: 1) an attacker player
can determine if an opponent is observing it or not, and then
plan its next actions to avoid the opponent’s approaches or
obstruct its trajectory, and 2) a player can know where the ball
is by looking in the same direction where an opponent is look-
ing (assuming the opponent knows the ball’s location).

The determination of gaze direction in robots is a difficult
task because it requires the accurate determination of the
robot’s head pose. We have developed a gaze-direction deter-
mination system that is based on the use of a set of prototype
head images acquired under different view angles, which
define a three-dimensional (3-D) model of the head, and a
matching procedure between these prototypes and the image
under analysis, which allows selecting the most similar proto-
type and an affine transformation that relates the prototype
with a given image’s area. This transformation permits deter-
mining the robot’s head position and orientation in the image
domain. Afterwards, the direction of gaze is determined by a
composed coordinate transformation that considers the 3-D
pose of the observing camera and the relative pose of the
observed robot’s head. This relative pose is computed using
the parameters of the affine transformation, the view angles of
the most similar prototype, and the intrinsic parameters of the
observing camera. The matching methodology, implemented
by using an improved version of Lowe’s scale invariant feature
transform (SIFT)-recognition paradigm [10], is the key ele-
ment in the gaze-direction determination system. To the best
of our knowledge, no other groups have proposed alternative
methods to solve this important problem.

The robot detection system and the gaze-direction deter-
mination system are designed to work together. After the
robots are detected, the gaze-direction determination system
determines the robot’s head pose and its gaze direction (see
Figure 1). Additionally, because of its wider applicability, the
robot detection system can be used independently of the gaze-
direction determination system. In this article, we describe
both systems and present real applications of the robot detec-
tion system in the robot soccer domain.

Fast and Accurate Multiclass Robot
Detection Using Boosted Classifiers
Following the so-called sliding-window approach, the pro-
posed multiclass robot detection system performs an exhaus-
tive search over different positions and scales by analyzing and
classifying patches of the image (see block diagram in Figure 2).
The system works as follows: To detect robots at different scales,
the input image is iteratively downsized, obtaining a pyramid
of images representing the input image at different resolutions
(multiresolution analysis module). In the window extraction
module, windows of a fixed size (e.g., 24 3 24 pixels) are
extracted from each scaled version of the input image. The
window’s size defines the smallest size of robots that can be
detected. Then, each window is analyzed by a boosted classi-
fier (H (x)) that predicts if it corresponds to a robot window
or to a nonrobot window. After all considered windows
have been processed and classified, in the overlapping detec-
tion processing module, the size and position of the final
detections are determined. In the detection system, the key
element to obtain fast and accurate detections is the classifica-
tion module. We will present the classification approach
being used, and some important issues related to the training
of the classifiers.

Boosted Cascade Two-Class Classification
Cascade classification started with the seminal work of Viola
and Jones [1]. Under this paradigm, fast classifiers/detectors
that able to achieve high-detection rates are obtained by taking
advantage of the natural asymmetry of the two-classification
problem: in the images under analysis most windows (image
patches) to be analyzed correspond to nonobject windows
(background). Thus, to achieve an efficient classification/detec-
tion, less time should be spent on nonobject windows than on
object windows. Hence, fast classification is achieved by using
classifiers that make the decision about whether the windows
correspond to the object or not, by performing a sequence of
questions (verification stages) of increasing computational com-
plexity, i.e., the first questions require less processing time than
the later ones. In this way, windows that can easily be classified
as nonobject are discarded at the first stages (first questions),
while objectlike windows are analyzed by several stages. Hence,
the average processing time of a window is almost completely
defined by the processing time of the nonobject windows.
Within the cascade structure, the window’s classification is car-
ried out using boosted classifiers.

Boosted classification is based on the idea of training the
same classifier several times, each time on a different training
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set or on a different distribution of the training set. Each of the
obtained classifiers (called weak classifiers) is then used to
obtain the final classifier (called robust classifier). Real Ada-
boost [11], which has been widely used in different kinds of
classification problems because of its simplicity, high perform-
ance, and high training speed, is one of the most popular
boosting algorithms. Adaboost builds an additive model of the
form H (x) ¼

PT
t¼1 ĥt(x), by iteratively incorporating weak

classifiers ĥt(x) to the sum, to minimize an upper bound of the
training error. In a boosted cascade classifier, the additive
model allows controlling the computational complexity of
each stage by selecting the number of terms (T ) and the com-
plexity of the weak classifiers. In [1], a particular feature
ft(x) 2 F is associated with each weak classifier: ĥt(x) ¼ ht(ft(x)),
with ht(x) 2 H .

Popular sets of features F include Haar-like wavelets [1]
that can be evaluated very efficiently using the so-called inte-
gral image (see Figure 3), and modified local binary patterns
[3] that encode local gradient information efficiently. In Figure
3(a), integral image representation: ii(x, y) represents the sum

of all pixels’ intensities up to the top-left of the image. In
Figure 3(b), region A of an image can be calculated in constant
time using four values (L4þ L1� (L2þ L3)), thanks to the inte-
gral image representation. In (c), family of features used by Viola
and Jones [1] is shown. In Figure 3(d) and (e), examples of how
these features can be used to detect robots. The features and
their associated weak classifiers are automatically selected during
training. Examples of other features include Edgelets [8], granu-
lar features [5], and object-part correlation [7]. It is important to
note that all these features work in grayscale images allowing
the detection of the objects under variable illumination condi-
tions. Regarding the weak classifiers, ht , families of functions H
that have been used include decision stumps (with binary [1]
and real outputs [7]), domain partitioning classifiers [2], [8], [3],
and classification and regression tree (CART) classifiers [4].

A key element for obtaining high-performance cascade
classifiers is the use of appropriate training procedures. In terms
of the selection of training examples, the common procedure
for selecting the negative examples is to apply the so-called
bootstrap procedure [12]. This procedure consists of retraining

(a) (b)

(c)

(d)

(e)

Figure 1. Example of the gaze-direction determination in a humanoid robot. (a) Detected robot. (b) Local interest points and
descriptors. (c) Correspondences between the segmented robot’s descriptors and the head prototypes. (d) Segmented robot and the
most similar prototype. (e) The 3-D pose of the robot’s head relative to the observer (in red) and the line of gaze (in blue).
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a classifier by enlarging the set of negative examples with new
patterns that are being misclassified. This procedure is applied
several times to obtain a good representation of (the boundary
of) the negative class. In [3], intra- and interlayer bootstrap
procedures were used in the training of nested cascades,
improving the final classification results. Another important
issue to be resolved during training is the definition of the
structure and complexity of classifiers. In [3], a procedure that
allows the automatic selection of the number of weak classi-
fiers at each layer of the cascade using a criterion that seeks to
obtain an optimal cascade classifier in terms of processing time,
false-positive rate (FPR), and true-positive rate is presented.

Using the described techniques, we have been able to
build, in addition to face, eyes and car detectors [3], [6], single-
view robot detectors [9]. The use of several of these detectors
in parallel allows obtaining multiview and multiclass detec-
tions at the expense of increasing the detection time.

Boosted Cascade Multiclass Classification
The concept of nested boosted cascade classifiers is extended to
the multiclass case by including concepts such as vector-boosted
classifiers, feature sharing, coupled classifiers, and coarse-to-fine
(CTF) classification. All these concepts are integrated in the
development of two multiclass classifiers: multiclass boosted cas-
cade classifiers, and trees of multiclass boosted cascade classifiers
[trees of cascades classifiers (TCAS)] [6].

Following [5], the multiclass classifier used at each layer
of the nested cascade has a vector form ~Hk(x) ¼ ~Hk�1(x)þPTk

t¼1
~ht, k(ft, k(x)), where, in the simplest case, each component

can represent a class or an object’s view. The training of each
layer is performed using the algorithm introduced in [5]. The
basic idea behind this algorithm is to assign to each training
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Figure 3. Example of the use of rectangular (Haar-like)
features.
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Figure 2. Block diagram of the robot detection system.
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example xi an objective region in a vector space. The objective
region is defined as the intersection of subspaces (e.g., a set of
half spaces), with each subspace defined by some parameters
(e.g., a vector~a) and with a set of regions defined by a set R of
parameters. In this setting, a sample, x, belonging to class Y ,
and represented by a parameter set, R, is classified correctly if
and only if 8~a 2 R, ~a

��~H (x)
� �

� 0. For simplicity, we take M ,
the dimension of the vectors~a, as the number of object classes
we want to detect. Therefore, ~H (x) : RP �! RM , with P the
number of pixels of an image window. To determine if class Y
is to be assigned to an input x, it is necessary to test whether
~a
��~H (x)

� �
is positive for all vectors~a 2 R, i.e., for all vectors

associated to class Y . Note that, to speed up the classification
process and to simplify the learning process, all components
share feature evaluations. This is a key point to gain on
processing time, and as shown in [7] and [13], the sharing of
features and weak classifier parameters allows reducing consid-
erably the processing time when using a multiclass classifier. In
terms of multiclass weak classifiers, the components of~ht(ft(x)),
i.e., the scalar classifiers, can be chosen to be dependent or
independent of each other (see [13] for a definition of inde-
pendent, joint, and coupled classifiers).

Another important element is to perform a CTF search in
the object target space. To achieve this, the output of layer k in
a CTF multiclass cascade is defined as ~Hk(x) ¼ (~Hk�1(x)þPTk

t¼1
~ht, k(ft, k(x)))� ~Ak�1(x), with ~H0(x) ¼~0, ~A0(x) ¼~1, and

� the point-wise product between two vectors.~AkðxÞ is defined
componentwise by: A0(x, m) ¼ u(H (x, m))

Qk�1
i¼0 Ai(x, m), with

u() the unit step. The use of ~Ak(x) can be interpreted as verifying
the condition of the input belonging to a particular class at
each layer of the cascade, in a per class manner, only for the
subset of hypotheses that was already positively verified at the
previous layers. One important thing is that, in ~Hk(x), only

nonzero components of ~Ak(x) need to be evaluated at layer k.
These nonzero components represent a subset of classes with
positive output at the current layer (and potentially a positive
output in the cascade). In this way, as a sample moves through
the cascade, the output goes from a coarse output in the object
space, to a finer one, which complements the CTF search on
the nonobject space given by the cascade structure.

The concept of multiclass cascade classifiers is extended by
defining a nested TCAS classifier, which allows obtaining
computationally efficient classifiers, as well as the capability of
classifying very different objects using a single classifier [6]. A
TCAS classifier corresponds to a directed tree, with each node
having a variable number of siblings. A node, N , has nN sib-
lings, Nsf gs¼1,..., nN

, and consists of a multiclass classifier ~HN

(in our case a multiclass CTF-nested cascade) and a mask
~AN 2 f0, 1gM . Each node has a nested structure, i.e., its out-
put depends on the output of its ancestors and is defined as:
~H (x) ¼ ~HpN (x)� ~AN (x)þ ~HN (x), with ~HpN (x) the output of
the ancestor of N (if the ancestor is the root of the tree, then
~HpN (x) ¼~0). It is important to note that only nonzero compo-
nents of ~AN need to be evaluated in ~HN , i.e., the CTF evalua-
tion in the object target space is also used here, which allows
maintaining an efficient evaluation. ~AN indicates which com-
ponents/classes of the classifier are considered at the current
node. Thanks to this, all nodes of the tree have an output with
the same number of components, but, at each node, only a
subset of the components is active (see an example in Figure
4). In the example, the tree consists of five nodes. Each node
has a CTF multiclass cascade with a variable number of layers
(from three to six in this example). During the evaluation of
the tree, for a particular window being classified, dashed circles
indicate layers not being evaluated and dashed lines indicate
inactive components. However, in regard to this, one
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Figure 4. Example of a multiclass TCAS for a three-class detection problem. The nested structure of the classifier is not
represented in this figure .
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important restriction is made: ~AN ¼
PnN

s¼1 As, which means
that the (binary) mask for any two siblings of node N , Ni, and
Nj, with i 6¼ j, holds that ~Ai � ~Aj ¼~0. This restriction allows
simplifying the evaluation of the tree by allowing an efficient
recursive implementation. It also simplifies the training process
(see [6]), because two nodes that are in different branches of
the tree do not depend on each other. Given that the output
of all nodes have the same dimension and thanks to the struc-
ture of the tree, the output of a TCAS can be defined as the
sum of the output of all its leafs N(i), ..., N(nleafs): ~HT (x) ¼Pnleafs

j¼1
~H(j)(x) [6]. We have successfully used TCAS classifiers in

the multiview detection of human faces [6], in which we have
determined that the processing time of the classification
increases logarithmically with the number of classes (views), in

comparison with the linear increase in the case of using multiple
parallel cascades.

Robot Classification Results
The proposed classifiers are evaluated in two different prob-
lems, multiview and multiclass robot detection. In the multi-
view detection problem, SONY artificial Intelligence robot
(AIBO) ERS7 robots are detected under three different views,
by defining the following classes: frontal, lateral, and back.
The multiclass detection problem includes the multiview
detection of AIBO robots plus the single-view detection of
Hajime HR18 humanoid robots (see robot pictures in Figures
5 and 6). Altogether, four classes are defined (three associated
with AIBO robots and one with Hajime robots). To solve these
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Figure 5. (a) and (b) Examples of detection of lateral and back AIBO. (c) ROC curves of multiview (frontal, lateral, and back) AIBO
detection, (d) and (e) Examples of detection of humanoid robots. (f) ROC curves of humanoid (Hajime) detection.
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problems, we have built four single-class cascade detectors for
each of the four classes (humanoids, frontal AIBO, lateral AIBO,
and back AIBO), a three-class TCAS classifier that is used to
detect the AIBOs under the three views, and a four-class TCAS
classifier that solves the defined multiclass robot detection prob-
lem. The classifiers are evaluated using the UchileAiboDB [9],
which consists of 724 images of 208 3 160 pixels containing
1,017 AIBO robots under the three defined views, and using
the UchileHumanoidDB [9], which consists of 244 images of
640 3 480 pixels containing 493 Hajime humanoid robots.

Figure 5(a) and (b) presents detection results obtained using
the three-class TCAS classifier in the multiview AIBO detec-
tion problem. Receiver operating characteristic (ROC) curves
(detection rates versus number of false detections) for the three-
class TCAS classifier and the parallel cascades used to detect frontal
AIBO, lateral AIBO, and back AIBO are presented in Figure 5(c).
Table 1 presents the corresponding processing times. As can be
observed in Figure 5(c), the use of parallel cascades has lower
performance compared with the use of a three-class TCAS classi-
fier, but the difference is small, with the three-class TCAS classifier
having up to 1% higher detection rates for any given number of
false negatives. More importantly, as shown in Table 1, the TCAS
classifier is 1.6 times faster than using the three single-class cascades
in parallel. In [6], we obtained similar results in a multiview face
detection problem, in which the TCAS was evaluated using up
to 20 different views (faces rotated under different roll angles).

Figure 5(d) and (e) shows detection results obtained using the
four-class TCAS classifier in the detection of Hajime humanoids.
Figure 5(f) presents ROC curves when the four-class TCAS
classifier and a single-class cascade classifier are just used for the
detection of Hajime robots. The corresponding processing times
are presented in Table 2. In addition, in Table 2, the processing
time of the four-class TCAS classifier used to detect all four
classes, and the use of four single-class cascade classifiers, are
presented. In Figure 5(f) it can be observed that the four-class
TCAS classifier used to detect Hajime humanoids has a clearly
better performance than the use of a cascade trained to detect just
that particular class, with a gain of up to 17% points for 0 false
positives. In addition, Table 2 shows that the processing speed of
both classifiers is very similar, with the TCAS classifier being
slightly slower when compared with a single-class cascade. More
importantly, when the four-class TCAS classifier is used to detect
humanoids, frontal AIBOs, lateral AIBOs, and back AIBOs, its
processing speed is two times faster than the one employed by
four single-class cascades performing the same tasks.

These results show that the accuracy of the TCAS classifier
is comparable or better than that of parallel cascade classifiers;
for any given number of false positives, the detection rate of
the TCAS classifier is larger. In addition, using the TCAS classi-
fier is much faster than the use of cascades in parallel. We have
observed this same behavior, and with more classes, in other
detection problems [6].

Gaze-Direction Determination
Using Visual Matching
The line of gaze of an observed robot is computed using the
pose of the observing camera in global coordinates, and the

relative pose, with respect to the observer, of the observed
robot’s head and its camera. In the described system, we assume
the robot does not have the ability of moving its camera inde-
pendently of its head. Therefore, the relative pose of the camera

Table 1. Multiview detection problem.

Classifier Target Views
Processing
Time (s) Database

Three-class
TCAS

Frontal, lateral,
and back

0.079 UchileAiboDB

Three parallel
cascades

Frontal, lateral,
and back

0.126 UchileAiboDB

Processing times on the UchileAibo DB (208 3 160, 724 images).

(a)

(b)

(c)

Figure 6. Examples of the SIFT-based matching results for the
case of three different legged platforms: SONY AIBO ERS7,
Hajime HR18 humanoid, and ALDEBRAN NAO humanoid.
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is fixed to the head’s pose. A 3-D model of the robot’s head is
built using a set of prototype head images acquired under differ-
ent view angles (see example in Figure 7). The origin and length
of each arrow in Figure 7 indicate the position and scale of the
local interest point. The arrow’s orientation is given by the main
orientation of the associated SIFT descriptor, which encodes
information of the local gradients.

A match between local descriptors belonging to the robot’s
image and the set of prototypes is used to select the most simi-
lar one. This matching process also allows calculating the affine
transformation that relates the image’s area containing the
robot’s head with the most similar prototype [see example in
Figure 1(c) and (d)]. In Figure 1(a), the observed humanoid
robot is segmented from the original image using the nested
cascade detector. In (b), local interest points and descriptors are
calculated in the segmented robot. In (c), correspondences
(matches) between the descriptors belonging to the segmented
robot and the head prototypes are computed. In (d), the affine
transformation that relates the segmented robot and the most
similar prototype is computed. It allows detecting the robot’s
head. In (e), the 3-D pose of the robot’s head relative to the
observer (in red) and the line of gaze (in blue) are calculated.

Finally, the relative pose of the observed robot’s head is
obtained by using the affine transformation parameters, the
prototype view angles, and the intrinsic parameters of the
observing camera. Some examples of the SIFT-based matching

results (affine transformation) for the case of
three different legged platforms are shown in
Figure 6. The colored lines in this figure
indicate the final SIFT-matches used to com-
pute the affine transformation. The condition
for successful matching is that the head’s
image allows obtaining several repeatable
local descriptors.

Local descriptors computation and
matching is implemented using a SIFT-
based object recognition system, which has
been designed to achieve robust operation
in dynamic environments [14]. Naturally,

other approaches can be used to implement the 3-D head
model and to compute the affine transformation.

The implemented system works as follows: A reference system
fixed to the observed head, with its X-axis aligned with the
camera axis (in the observed head) and its origin in the observed
camera frame, is defined (see Figure 8). In this reference system,
the line of gaze intersects the floor at a position ð k 0 0 ÞT . In a
global reference system, this 3-D position has coordinates
ð x0 y0 z0 ÞT . Considering that a composed coordinate
transformation M (homogeneous matrix) relates both reference
systems, the gaze coordinates on the floor are obtained by solving:

ð x0 y0 z0 ÞT ¼ Mð k 0 0 ÞT ; z0 ¼ 0 ðat floorÞ; ð1Þ

where M is a composition of the following three homogeneous
transformations (M ¼ M1M2M3); M1 is a homogenous matrix
that defines the pose of the observing camera in global coordi-
nates; M2 is a homogenous matrix that defines the relative pose of
the observed camera with respect to the observing camera, with-
out considering rotations of the observed head; M3 is a homoge-
nous matrix that considers rotations of the observed head.

The global pose of the observing camera (M1) can be
known a priori, in case the camera is fixed, or it can be com-
puted by the observer itself (a robot or a surveillance system)
using encoders and other sensor data. M2 is computed by using
the intrinsic parameters of the observing camera and the coor-
dinates of the observed head in the image plane, which are
obtained after computing the affine transformation (see [14]
for details). Finally, M3 is obtained using the view angles of the
most similar prototype, which are fixed and known a priori.
Figure 8 illustrates these transformation matrices, in the case of
a NAO humanoid robot being observed by NAO robot.

The affine transformation is computed using the SIFT-based
L&R method [14]. This method uses sDoG þ Hessian interest
points (local maxima/minima in the scale-space image set) [10]
and SIFT descriptors of the gradient distribution in the region
around each interest point [10] for creating correspondences
between the images under analysis and the database images.
Then, affine transformations are detected using a Hough trans-
form over the similarity-transformation parameters’ space [10],
and the following verification stages are used to reject incorrect
transformations: a fast probabilistic hypothesis rejection test to
reject Hough cells with a low probability of containing a correct
transformation [15], a linear correlation verification stage to

Figure 7. Humanoid robot-head prototypes and their local
interest points.

Table 2. Multiclass detection problem.

Classifier Target Classes
Processing
Time (s) Database

Four-class TCAS Humanoids 0.464 UchileHumanoidDB
One-class cascade Humanoids 0.411 UchileHumanoidDB
Four-class TCAS AIBOs (3 views) and

humanoids
0.870 UchileHumanoidDB

Four Parallel cascades AIBOs (3 views) and
humanoids

1.767 UchileHumanoidDB

Processing times on the UchileHumanoid DB (640 3 480, 244 images).
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reject transformations that can be numerically unstable [14], a
geometrical distortion verification stage to reject transforma-
tions that involve strong distortions [14], a pixel correlation
verification stage to reject transformations that map wrong
image areas [14], and the random sample consensus (RANSAC)
algorithm [16] and a semilocal constraints test [17] to refine the
final affine transformation. In [14], it is shown that the use of
these verification stages allows largely reducing the number of
false positive detections (from approximately 80% to 3% in a
database of 100 real-world images), while slightly increasing the
detection rate and the processing speed.

The gaze-direction determination system has been vali-
dated using SONY AIBO ERS7 and Hajime HR18 robots
(see Figure 6). In both cases, prototype images in which only
the yaw angle is determined were considered (see Figure 7). In
the experiments, the observed robot stands in a RoboCup soc-
cer field of 600 3 400 cm, and the gaze point at the floor is
estimated and measured. A variable number of experiments is
carried out (8/28 in the ERS7/HR18 case). In each case, the
observed robot is looking at different positions on the field. A
mean error of 14.7/34.1 cm between the predicted and real
gaze point at the field with a standard deviation of 9.4/24.2 cm
was obtained for the ERS7/HR18 robots. From the observer
robot viewpoint, the angular error between predicted and real
gaze points has a mean of 31.7/13.6� with a standard deviation of
9.6/14.5�. These results are very good because, from the observer
point of view, they allow largely reducing the estimation of the
field region on which an observed robot is putting its attention.

The estimation errors are due to the use of prototype
images with variations only on the yaw axis, and a nonaccurate
estimation of the pose of the observing camera. (In legged
robots the encoder and accelerometer data is noisy.)

Applications in Robotic Soccer
The robot detection system has been applied in robotic soccer set-
ups. It has been used in soccer players for the detection of other
robots while playing and in a robot referee as part of the object
recognition tool that allows detection and tracking of robot players.

Robot Detection in Legged Soccer Robot Players
One of the main challenges of using the nested cascade detec-
tors in legged soccer robots is to achieve fast operation while
using low-end computer platforms. For instance, AIBO ERS7
robots are powered with a 64-b RISC Processor (MIPS
R7000) running at 576 MHz and 64 MB RAM, which
imposes several restrictions on the vision algorithms than can
be used with these platforms.

However, taking into account that the frame rate depends on
the scaling factor used to obtain the scaled version of the images
to be analyzed by the multiresolution analysis module of the
detector (see Figure 2) and the number of scales and frames
skipped by the detection system, fast processing can still be
achieved if these factors are properly managed. Additionally, to
keep the whole system reactive and running in real-time (i.e., the
walking machine needs to operate in real time), the computer
process running the robot’s detectors needs to run with a lower
priority than the processes that require real-time operation [18].

We have tested the described detector of frontal AIBO
ERS7 robots running in the same robots, while playing soccer
using our robot control library (Uchile1 control library [19]).
Robot detection at a frame rate of approximately three frames
per second was obtained under the following conditions: scaling
factor of 1.2; images of 208 3 160 pixels; and first, second, and
third scales skipped. Under the same conditions, the detector
runs at approximately 60 frames per second in a standard desktop
computer. Detecting robots every three frames is enough for
using another player’s position in the decision-making process.

In these experiments, the measured detection rate was approxi-
mately 90% with an FPR of approximately 16% when detecting
AIBO robots under different views. However, during the evalua-
tion of the detectors, we noticed that many false positives appeared
on the top part of the image, where robots are less likely to be
since they are always on the ground. Thus, the robot detection
results can be improved by using context information; the robot
running the detectors can use the information of its camera pose
to filter out false detections. The filtering of false detections using
the horizon line was incorporated in our robot detection system
[18], and the number of false detections was reduced by a factor of
2, while keeping the detection rate at approximately 90%.

A Robot Referee for Robot Soccer
A robot referee that uses nested cascade detectors to track play-
ers during a soccer game has been developed [20]. This applica-
tion is a new extension of the concept of robot soccer, and it
would be useful to test the application of our robot detection
framework further, in different situations. The refereeing task is
very similar to the playing task but differs in the fact that a
referee has to interpret every situation correctly; a single wrong
interpretation can have a large effect in the game result. The
main duty of a robot referee should be the analysis of the game,
and real-time refereeing decision making (referee decisions

M1

M2

M3

Figure 8. Illustration of the homogeneous transformation
matrices, in the case of an NAO humanoid robot being
observed by another NAO robot. These matrices allow
projecting points from the observed robot-reference system
into the projected robot-reference system that does not
include head rotations (M3), then into the observer reference
system (M2), and finally into the global reference system (M1).
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cannot be delayed). A robot referee should be able to follow the
game, i.e., to be near the most important game actions, as human
referees are. In addition, it should be able to communicate its
decisions to the robot players, as well as humans (e.g., assistant ref-
erees and spectators). The robot referee should primarily use its
own visual sensors to analyze the game. In large fields or in games
where the ball moves very fast or travels long distances, the robot
referee could use external cameras, in addition to assistant refer-
ees. Thus, a robot referee should incorporate three main func-
tionalities: video-based game analysis, self-positioning and
motion control, and adequate interfaces to communicate
decisions. Interestingly, the video-based game analysis subsys-
tem where the robot detection functionality is placed, in addition
to being used for refereeing decision making, can be used to
obtain game statistics, as well as for video annotation and index-
ing, which could later be used to retrieve an automated summary
or a semantic description of the game. In addition, the robot
referee could be used as the commentator of robot soccer games.
The developed robot referee is designed to be used in the Robo-
Cup humanoid [21] and standard platform leagues (SPLs) [22].

The Bender service robot has been used as a robot referee (see
Figure 9). While refereeing, the robot moves along one side of
the field, uses its own cameras for analyzing the game, and com-
municates its decisions to the human spectators using speech, and
to the robot players using wireless communication (see the detailed
setup in [20]). The referee uses a video-based game analysis tool-
box that is able to analyze the game actions at 20 frames/s, while
running in a standard Tablet PC (1.2 GHz Intel Core 2 Duo with
2 GB DDR II 667 MHz, running Windows XP Tablet PC
edition). To achieve this speed, objects are detected every five
to ten frames and tracked in the remaining frames (mean shift
tracking algorithm [23] using a feature model updated by a Kal-
man Filter, as in [24]). Thus, when a new robot appears in the
image, or when tracking is lost, the robot is detected by the
nested cascade detector, and then passed to the tracking module.

The system has been validated using Hajime HR18 human-
oids playing soccer according to the rules of the RoboCup
Humanoid league [22]. Quantitative results were obtained from
a series of video sequences taken in our laboratory, with our
Hajime HR18 humanoids playing soccer. In these experiments,

robots were analyzed using windows of 24 3 24 pixels (multi-
scale analysis), and a single, non-multiview robot detector,
which was trained using approximately 17,000 video frames
(training and validation sets, with positive and negative exam-
ples). In the test experiments, 5,293 frames containing 3,405
robots were analyzed. The robots were detected in 98.7% of
the cases, and the total number of false detections was 334.

In a former work, we used the described SIFT-matching
methodology for the detection of robots [25]. However, the
system was not robust enough to operate reliably when the
robot’s size in the input images was small.

Conclusion
The visual detection and identification of robots will become
more and more important as individual robots will need to
interact and in some cases collaborate with other robots while
performing different tasks in a common environment. The effi-
cient detection and identification of other robots is a very
important issue as most mobile robots have low-processing
capabilities and need to manage several different processes in real
time (e.g., walking machine). In collaborative scenarios, robots
will have to determine behaviors of other robots, in addition to
their location. One of the important clues to predicting the
future behavior of a robot is to know its line of gaze. In addi-
tion, surveillance and/or augmented reality systems operating in
scenarios with the presence of robots will also require detecting
and identifying them, as well as their behaviors.

The presented multiclass and multiview robot detection
systems based on the TCAS classifier are both efficient and
accurate and extend the well-known work of Viola and Jones
on cascade detectors to the multiclass and multiview case. The
proposed TCAS classifier could be used to detect other objects
in addition to robots, such as human beings, human faces, cars,
and signs. Thus, the same TCAS classifier could be used in dif-
ferent contexts, as an efficient way to gather information about
the environment that could be useful clues in decision making.
We have shown the successful application of TCAS classifiers
in robotic soccer applications.

The proposed gaze-direction determination system has been
validated using different robotic platforms. The system is generic
and can be used for any kind of robots. The only requirement is
to have reference images of the observed robot’s head. How-
ever, the system is currently not robust enough to work in real-
world settings when low-resolution cameras are used. The
robot matching fails when the scale of the robots in the images
is small, and with robots with bright and smooth bodies (e.g.,
AIBO robots) that produce few interest points in the images. As
a future work, we want to tackle these problems.

References
[1] P. Viola and M. Jones, “Robust real-time face detection,” Int. J Comput.

Vision, vol. 57, no. 2, pp. 137–154, 2004.
[2] B. Wu, H. AI, C. Huang, and S. Lao, “Fast rotation invariant multiview

face detection based on real adaboost,” in Proc. 6th Int. Conf. Face and
Gesture Recognition, pp. 79–84, 2004.

[3] R. Verschae, J. Ruiz-del-Solar, and M. Correa, “A unified learning frame-
work for object detection and classification using nested cascades of boosted
classifiers,” Mach. Vision Applicat., vol. 19, no. 2, pp. 85–103, 2008.

(a) (b)

Figure 9. The robot referee (Bender) in a typical game situation.

IEEE Robotics & Automation Magazine52 DECEMBER 2010



[4] S. C Brubaker, J. Wu, J. Sun, M. D Mullin, and J. M. Rehg, “On the
design of cascades of boosted ensembles for face detection,” Int. J. Comput.
Vision, vol. 7, no. 1–3, pp. 65–86, 2008.

[5] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rotation invariant
multiview face detection,” IEEE Trans. on Pattern Anal. Mach. Intell.,
vol. 29, no. 4, pp. 671–686, 2007.

[6] R. Verschae, “Object detection using nested cascades of boosted classifiers:
a learning framework and its extension to the multi-class case,” Ph.D.
degree, Dept. Elect. Eng., Universidad de Chile, 2010.

[7] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features
for multiclass and multiview object detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 5, pp. 854–869, 2007.

[8] B. Wu and R. Nevatia, “Cluster boosted tree classifier for multiview,
multi-pose object detection,” in Proc. 11th IEEE Int. Conf. Comput. Vision,
IEEE Computer Society, 2007.

[9] M. Arenas, J. Ruiz-del-Solar, and R. Verschae, “Detection of aibo and human-
oid robots using cascades of boosted classifiers,” in Proc. RoboCup 2007 (Lecture
Notes in Computer Science 5001), Berlin, Springer-Verlag, pp. 449–456, 2007.

[10] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[11] R. Schapire and Y. Singer, “Improved boosting using confidence-rated
predictions,” Mach. Learn., vol. 37, no. 3, pp. 297–336, 1999.

[12] K.-K Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 1, pp. 39–51, 1998.

[13] R. Verschae and J. Ruiz-del-Solar, “Multiclass adaboost and coupled
classifiers for object detection,” in Proc. CIARP 2008 (Lecture Notes in
Computer Science 5197), Berlin, Springer-Verlag, 2008, pp. 560–567.

[14] J. Ruiz-del-Solar and P. Loncomilla, “Robot head pose detection and
gaze direction determination using local invariant features,” Adv. Robot.,
vol. 23, no. 3, pp. 305–328, Feb. 2009.

[15] P. Loncomilla and J. Ruiz-del-Solar, “A fast probabilistic model for
hypothesis rejection in SIFT-based object recognition,” Progress in Pattern
Recognition, Image Analysis and Applications, (Lecture Notes in Computer
Science 4225). Berlin, Heidelberg: Springer-Verlag, 2006, pp. 696–705.

[16] M. A. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, pp. 381–395, June 1981.

[17] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 5, pp. 530–534, 1997.

[18] M. Arenas, “Detection and tracking of legged robots using computa-
tional analysis of images,” M.S. thesis, Dept. Elect. Eng., Universidad de
Chile, 2009 (in Spanish).

[19] J. Ruiz-del-Solar, P. Guerrero, R. Palma-Amestoy, R. Marchant, and
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