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Abstract
Gaze direction determination can be a powerful anticipatory perceptual mechanism for determining the next
action of other individuals, humans or robots. It can allow cooperation, synchronization or competition be-
tween robots. This is of particular importance in the case of anthropomorphic robots, which in addition of
having a human-like body, should behave as humans and have similar attention mechanisms for tracking
and gazing other individuals and objects. We address this problem by proposing a gaze direction determina-
tion system for robots. This system is based primarily on a robot head pose detection system that consists
of two processing stages: computation of scale-invariant local descriptors of the scene and matching of
these descriptors against descriptors of robot head prototypes already stored in a database. These proto-
types correspond to images of robot heads taken under different view angles. After the robot head pose is
detected, the robot gaze direction is determined by a composed coordinate transformation that considers
the three-dimensional pose of the observing robot’s camera, the detected robot head pose with respect to
the observing camera, and the head model of the observed robot. Results of the successful application of
the proposed system in real robots are presented.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2009
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1. Introduction

Multi-robot systems are becoming relevant as a result of the increasing number of
industrial, service and exploration robots. Thus, cooperative robotics is an impor-
tant problem in many scientific and industrial application areas such as collaborative
manipulation, ground, space and underwater exploration, entertainment, surveil-
lance, and autonomous rescue operations. However, cooperation between teams of
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robots is not the only way of robot interaction. It will be more and more frequent
that several robots, solving different tasks in a common environment, will need to
interact and to communicate with each other. Depending on the specific situation,
robots will develop different kinds of relationships just as humans do. In many
cases robots will cooperate, but in other cases they will just observe each other,
ignore each other or even compete. We can think, for example, of the following
futuristic scenario. Several service robots meet each other in a supermarket. Some
robots, will be cleaning the floor, other robots will be ordering objects and items,
a third group will be buying, and a fourth group will be answering questions and
helping humans. We can image the complex variety of interactions, that can exist
among robots as well as between robots and humans.

In such complex scenarios, interaction based only on data communication will
not be sufficient. Other interaction modalities, particularly visual communication,
will be highly relevant. Consequently, gaze direction determination, i.e., the deter-
mination of the place where the other is looking at, can be a powerful anticipatory
perceptual mechanism for determining the next action of other individuals. It can al-
low cooperation, synchronization or competition between robots. We postulate that
as in the case of the human–human interactions, gaze direction determination can be
relevant in many robot–robot interaction situations. In addition, anthropomorphic
robots are expected to have human-like behaviors to be accepted as friendly and
comfortable by humans. Looking at the object/human that is capturing the attention
is a very important human-like behavior that must be present in anthropomorphic
robots. For instance, many researchers have mentioned the importance that when
interacting with humans, the robot tracks or gazes the face of the speaker [1–4].
Thus, independently of the multiple sensors that these robots could use, they will
be designed to behave like humans, and they will incorporate foveation and gaze
mechanisms.

As an example, we will analyze the robot soccer scenario (our system was orig-
inally proposed for the robot soccer context [5]), where sophisticated robot players
should incorporate complex human abilities. Among many other capabilities, good
soccer players should have the ability of anticipating the actions of opponents, and
sometimes of teammates, by just observing the other players attitude and pose. As
in other similar situations, the most employed human mechanism for solving this
task is gaze direction determination. For instance, by using this mechanism an at-
tacker player can determine if an opponent is observing them and then plan their
next actions for avoiding the opponent approaching them or obstructing their tra-
jectory. In another typical situation, a soccer player can know where the ball is by
looking at the same position where an opponent is looking at (in case the opponent
knows the ball position). In a third situation, a soccer player can send the ball, i.e.,
perform a pass, to a position where a teammate is looking at. Furthermore, when
kicking the ball, first-class soccer players can mislead opponents by looking at a
different place than the place where they are sending the ball. Related to the de-
scribed situations, it can be affirmed that gaze direction determination of opponents
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and teammates is a very important ability of human soccer players that robot players
should incorporate.

To the best of our knowledge, robot gaze direction determination is still an
underdeveloped ability. We address this problem by proposing a gaze direction
determination system for robots. This system is based primarily on a robot head
pose detection system that consists of two processing stages: computation of scale-
invariant local descriptors of the observed scene and matching of these descriptors
against descriptors of robot head prototypes already stored in a model database. The
prototypes correspond to images of robot heads taken under different view angles.
After the robot head pose is detected, the robot gaze direction is determined by
a composed coordinate transformation that considers the three-dimensional (3-D)
pose of the observing robot’s camera, the detected robot head pose with respect to
the observing camera and the head model of the observed robot. This assumes that
the robot camera (eye) is fixed to the robot head, as usually happens. If the camera is
not fixed, then camera reference images need also to be computed. Local descrip-
tors computation and matching is implemented using the scale-invariant feature
transform (SIFT)-based Loncomilla and Ruiz-del-Solar (L&R) object recognition
system, which has been designed to achieve robust operation in dynamic environ-
ments [6, 7].

The proposed robot head pose detection system is generic and can be employed
for any kind of robot. The only requirement is to have reference images of the ob-
served robot head. The robot gaze direction determination system is also generic.
However, the determination of the 3-D pose of the observing robot camera de-
pends on the robot geometry. Our system was designed originally to be used in the
RoboCup Standard Platform (SP) league; therefore, observed and observing robots
are Sony AIBO ERS7 robots.

This article is organized as follows. In Section 2, some work related to the topics
of gaze direction determination and object recognition using local invariant fea-
tures is presented. The L&R object recognition system is presented in Section 3.
In Section 4, the proposed robot head pose detection system and gaze direction
determination system are described. Results of the successful application of both
systems in real robot scenes are presented in Section 5. Finally, some conclusions
and projections of this work are given in Section 6.

2. Related Work

Human gaze direction (i.e., line of gaze) determination has been the subject of a
large number of studies (e.g., Refs [8–12]), with applications in different fields such
as medical research for oculography determination, car drivers, behavior charac-
terization, and human–robot and human–computer interaction, including computer
interfaces for handicapped people. There are two components of the human visual
line of sight that need to be known to solve this problem: the pose of the human
head and the orientation of the eyes within their sockets. There is a large variabil-
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ity of the methods and models that have been proposed for solving this problem.
However, to the best of our knowledge there are no studies on determining the gaze
direction in robots. Already developed methodologies employed for human gaze
direction determination are not applicable for robots. They are based on anthropo-
metric models of the human head and eyes (see, e.g., Ref. [12]), or they employ
face or iris detection algorithms, or even special lighting (infrared lights). There-
fore, new methodologies need to be developed for the robot case. Some alternatives
could be the construction of explicit 3-D robot head models, the development of
specific robot face detection algorithms or the use of local invariant features for
performing the detection of the robot heads. In this last case the idea is to have
different views of a robot head (references images), and to perform a matching be-
tween features computed in the input image and features computed in the different
reference images for detecting the robot head pose. Taking into account the impres-
sive development of object recognition algorithms based on local invariant features
in recent years [13–17], and the fact that, for a given robot model, head and face
variability is much smaller than in humans, we believe that matching against refer-
ence images using local features is, at present, the best methodology for solving the
robot head pose detection and robot gaze direction determination problems.

Object recognition based on local invariant features works under the following
principle: (i) invariant local interest points or keypoints are extracted independently
from both a test image and a reference image (model), and characterized using in-
variant descriptors, and (ii) the invariant descriptors (features) are matched against
each other. The most employed local interest point detectors are the single-scale
Harris detector [18] and the multi-scale Lowe’s sDoG+Hessian detector [14]. The
best performing interest point detectors are the Harris-Affine and the Hessian-
Affine [19], but they are too slow for real-time applications. On the other hand,
the most popular and best performing descriptor [20] is the SIFT [14].

To select the local detector and invariant descriptor to be used in a given ap-
plication one should take into account the algorithm’s accuracy, robustness and
processing speed. Lowe’s system [14, 21] using the SDoG+Hessian detector, SIFT
descriptors and a probabilistic hypothesis rejection stage is a popular choice, given
its recognition capabilities and near real-time operation. However, the main draw-
back of Lowe’s system is the large number of false-positive detections when the
objects to be detected are not present in the image. This is a serious problem when
using it in real-world applications where video sequences are analyzed, e.g., robot
self-localization [22].

One of the main weaknesses of Lowe’s algorithm is the use of just a simple prob-
abilistic hypothesis rejection stage, which cannot successfully reduce the number
of false positives. Loncomilla and Ruiz-del-Solar have proposed a system (L&R)
that largely reduces the number of false positives by using several hypothesis re-
jection stages [5–7]. This includes a fast probabilistic hypothesis rejection stage,
a linear correlation verification stage, a geometrical distortion verification stage,
a pixel correlation verification stage, and the use of the RANSAC algorithm and
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Table 1.
Comparative evaluation of the different algorithms (see main text for description)

Algorithm TPR FPR FPR/FPR baseline
(%) (%) (%)

Baseline 64.0 81.9 100.0
LinearCorr 66.0 61.8 75.5
GeoDistortion 73.0 26.2 32.0
PixelCorr 66.0 5.6 6.9
FastProb 66.0 4.1 5.0
RANSAC 65.0 3.2 3.8

TPR: true-positive rate; FPR: false-positive rate.

a semi-local constraints test. In Ref. [6], we compared Lowe’s and L&R systems
using 100 reference–test pairs of real-world highly-textured images with variations
in position, view angle, image covering, partial occlusions, and in-plane and out-of
the-plane rotations. In these experiments, the 100 test images are matched against
each of the 100 reference images, although only 100 correct matches are possible.
The results show that in this dataset, the L&R system reduces the false-positive rate
from around 80 to around 3%, while increasing slightly the detection rate and the
processing speed, when compared with Lowe’s system (see more detailed results in
Table 1). For this reason we choose to use this system in this work.

3. L&R Object Recognition System

This system considers four main stages: (i) generation of local interest points,
(ii) computation of the SIFT descriptors, (iii) SIFT matching using nearest descrip-
tors, and (iv) transformation computation and hypothesis rejection tests. The first
three stages are the standard ones proposed by Lowe [14], while the fourth stage is
employed for reducing the number of false matches, giving robustness to the whole
system. This last stage is implemented by the following procedure:

(1) Similarity transformation determination. Similarity transformations are deter-
mined using the Hough transform (see description in Ref. [21]). Bins sizes are
30◦ for the orientation axis, a factor of 2 for the scale axis, and 0.25 times the
width and height of the projected training image for each position axis. After
the Hough transform is computed, a set of bins, each one corresponding to a
similarity transformation, is determined. Then:
(a) Invalid bins (those that have less than four votes) are eliminated.

(b) Q is defined as the set of all valid candidate bins, i.e., the ones not elimi-
nated in (1a).

(c) R is defined as the set of all accepted bins. This set is initialized as a void
set.
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(2) Transformation verification. For each bin B in Q the following tests are applied
(the procedure is optimized for obtaining high processing speed by applying
first tests consuming less time):
(a) Bins filtering. If the bin B has a direct neighbor in the Hough space with

more votes, then delete bin B from Q and go to (2).

(b) Linear correlation test. Calculate rREF and rTEST, which are the linear cor-
relation coefficients of the interest points corresponding to the matches
in B , that belong to the reference and test image, respectively. If the ab-
solute value of any of these two coefficients is high, it means that the
corresponding points lie, or nearly lie, in a straight line and that the affine
transform to be obtained can be numerically unstable. If this condition is
fulfilled delete bin B from Q and go to (2). This test is described in the
Appendix.

(c) Fast probability computation. Calculate the probability associated to bin B .
If this probability is lower than a threshold PTH1, delete bin B from Q and
go to (2). The main advantage of this test is that it can be computed before
calculating the affine transformation, which speeds up the whole procedure.
This test is described in the Appendix.

(d) Affine transformation determination. Calculate an initial affine transforma-
tion TB using the matches in B .

(e) Geometrical distortion test. Compute the affine distortion degree of TB

using a geometrical distortion verification test (see Appendix). A certain
affine transformation should not deform very much an object when map-
ping it. Therefore, if TB has a strong affine distortion, delete bin B from Q

and go to (2).

(f) Top-down matching. Matches from all the bins in Q that are compatible
with the affine transformation TB computed in (2d) are summarized and
added to bin B . Duplication of matches inside B is avoided.

(g) Lowe’s probability computation. Compute Lowe’s probability PLOWE of
bin B (see description in Ref. [21]). If PLOWE is lower than a threshold
PTH2, delete bin B from Q and go to (2).

(h) RANSAC test. To find a more precise transformation apply RANSAC
inside bin B . In case of RANSAC success, a new transformation TB is
calculated and B is labeled as a RANSAC-approved bin.

(i) Bin acceptance. Accept the candidates B and TB , i.e., delete B from Q and
include it in R (the TB transformation is accepted).

(3) Transformation fusion. For all pairs (Bi,Bj ) in R, check if they may be fused
into a new bin Bk . If the bins may be fused and one of them is RANSAC-
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approved, do not fuse them and delete the other in order to preserve accuracy.
If the two bins are RANSAC-approved, delete the least probable (using PLOWE
value). Repeat this until all possible pairs (including the new created bins) have
been checked. The fusion procedure is described in the Appendix.

(4) Semi-local constraints test. For any bin B in R, apply the semi-local constraints
procedure to all matches in B . The matches from B that are incompatible with
the constraints are deleted. If some matches are deleted from B,TB is recalcu-
lated. This procedure is described in Ref. [23].

(5) Pixel-correlation test. For any bin B in R, calculate the pixel correlation rpixel
using TB . Pixel correlation is a measure of how similar the image regions being
mapped by TB are. If rpixel is below a given threshold tcorr, delete B from R.
This test is described in the Appendix.

(6) Priority assignation. Assign a priority to all bins (transformations) in R. The
initial priority value of a given bin will correspond to its associated PLOWE
probability value. In case that the bin is a RANSAC-approved one, the priority
is increased by one. Thus, RANSAC-approved bins have a larger priority than
non-RANSAC-approved ones.

To quantify the contribution of the different steps of the proposed verification
procedure, we use the same testing procedure and 100 pairs of real-world images
described in Ref. [6]. The different algorithm flavors to be compared are:

• Baseline. Lowe’s algorithm with the steps 1, (2a), (2d), (2f), (2g) and (2i) from
the transformation computation and hypothesis rejection tests stage.

• LinearCorr. Baseline algorithm plus step (2b).

• GeoDistortion. Baseline algorithm plus steps (2b) and (2e).

• PixelCorr. Baseline algorithm plus steps (2b), (2e) and (5).

• FastProb. Baseline algorithm plus steps (2b), (2c), (2e) and (5).

• Ransac. Baseline algorithm plus steps (2b), (2c), (2e), (2h), (5) and (6).

As can be observed in Table 1, the proposed verification tests are able to reduce
largely the number of false positives. The combined use of different test allows
obtaining different improvements in the true-positive rate and the false-positive rate.

4. Head Pose Detection and Gaze Direction Determination

4.1. Head Pose Detection Using Local Invariant Features

Basically, the robot head pose is determined by matching the input image descrip-
tors with descriptors corresponding to robot head prototype images already stored
in a database. The employed prototypes correspond to different views of a robot
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Figure 1. AIBO ERS7 robot head prototypes with their SIFTs. Pictures taken every 22.5◦ (yaw angle).

head. The system was originally developed in the context of the RoboCup soccer
SP league. In this specific case we are interested in detecting the robot head pose
of AIBO ERS7 robots, but also in recognizing the robot identity (robot number).
For this reason prototypes for each of the four robot players are stored in a model
database. In Fig. 1, the 16 prototype heads corresponding to one of the robots (num-
ber 1) are displayed. The pictures were taken every 22.5◦ (yaw angle).

As already explained in Section 3, the matching process with the database refer-
ence images is composed by several stages. After applying these stages, if a robot
head was found, just one affine transformation remains — the one with the highest
associated probability. The robot head pose is determined using this transformation
together with the identity of the matched reference image, which has an associ-
ated view angle. The robot identity is determined by the identity of the matched
reference image. This process is shown in Fig. 2.

4.2. Gaze Direction Determination

The line of gaze of the observed robot, in global coordinates, can be computed us-
ing the following information: (i) pose of the observing robot’s camera in global
coordinates, (ii) prototype view angle, and (iii) distance and rotation angles of the
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Figure 2. The robot head pose is determined using the obtained transformation together with the
identity of the matched reference image. In this case the identity of the observed robot is ‘1’.

observed robot. The observing robot camera pose can either be known a priori, in
the case that the camera is fixed in global coordinates, or estimated by the observ-
ing robot itself using self-localization and joints information. The prototype view
angles are fixed and known a priori; they are defined when the model database is
built. The distance and rotation angles of the observed robot head can be deter-
mined using information of the head detection process and a priori knowledge of
the observing camera characteristics (resolution and angle of view).

To perform the computations we define the following reference systems: the
global reference system (RF0) {î0 ĵ0 k̂0}, a reference system fixed to the observing
robot’s camera (RF1) {î1 ĵ1 k̂1}, a reference system fixed at the observed robot’s
head, which does not consider prototype rotations (RF2) {î2 ĵ2 k̂2}, and a refer-
ence system fixed at the observed robot’s head, which considers prototype rotations
(RF3) {î3 ĵ3 k̂3}. For the transformations between the different reference systems
we will use standard homogeneous 3-D matrices: rotation matrices Rz(θz),Rx(θx)

and Ry(θy), and a translation matrix Txyz(xt , yt , zt ).
The composed transformation from RF3 to RF0 is given by:

M∗ = M10M21M32, (1)

with Mab composed of 3-D matrices between reference systems a and b, given by
(see angles and distance definitions in Table 2 and Fig. 3):

M10 = Txyz(Cx,Cy,Cz)Rz(α)Ry(β)Rx(γ )

M21 = Txyz(Px,Py,Pz)Rz(μ)Ry(ν)Rx(−φ) (2)

M32 = Rz(ε + π)Ry(δ)Rx(θ).

In RF3, two points will define the line of gaze: the camera’s position of the
observed robot (at the origin of RF3) and the intersection of the gaze straight line
with the floor at a position (λ 0 0)T. This position can be translated to global
coordinates using M∗. The intersection with the floor will correspond, in global
coordinates (RF0), to:

z0(λ) = 0. (3)
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Table 2.
Angles and distances definitions

Definition Source

α yaw (or pan) rotation angle of observing robot’s camera,
in RF0

prior knowledge or self-localization

β pitch (or tilt) rotation angle of observing robot’s camera,
in RF0

prior knowledge or self-localization

γ roll rotation angle of observing robot’s camera, in RF0 prior knowledge or self-localization
C 3-D position of the observing robot’s camera, in RF0 prior knowledge or self-localization
δ prototype-head pitch (tilt) angle of the reference image prior knowledge (prototype angle)
ε prototype-head yaw (pan) angle of the reference image prior knowledge (prototype angle)
θ prototype-head roll angle of the reference image prior knowledge (prototype angle)
ρ prototype-head distance of the reference image prior knowledge (prototype

distance)
μ yaw (pan) angle of the observed head, in RF1 robot-head pose determination

system and camera geometry
ν pitch (tilt) angle of the observed head, in RF1 robot-head pose determination

system and camera geometry
φ in plane rotation (roll) of the observed head, in RF1 robot head pose determination

system
P 3-D position of the observed robot head, in RF1 robot head pose determination

system and camera geometry

(a) (b)

(c)

Figure 3. Angles and distances from Table 2, measured (a) when acquiring a prototype image, and
(b) and (c) when analyzing a test image.

Then, λ as well as x0(λ) and y0(λ), the gaze coordinates at the floor, are cal-
culated using (1)–(3). There remains the computation of the parameters of the
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observed robot’s head pose (μ,ν,φ and P). A robot head is characterized by an
affine transformation that maps the prototype image onto a certain portion of the
image under analysis. First, φ is computed as the mean of the SIFT angles differ-
ences in all the keypoints matches used to compute the affine transformation. Then,
the real distance between the observing camera and the observed robot’s head is
calculated as follows. The prototype head’s image has four vertices A, B, C and D.
The affine transformation maps this image onto a parallelogram with vertices A′,
B′, C′ and D′. As the visual area decreases in a quadratic way with the distance, if
the camera has no distortion, the Px coordinate of the observed robot’s head can be
calculated as:

Px = ρ

√
prototype image area

mapped area
= ρ

√
d(AB) × d(BC)

det(
−−−→
A′B ′ −−−→

B ′C′)
, (4)

where ρ is the distance between the camera and the prototype head image at the
acquisition time.

Finally, assuming the use of an ideal camera, the remaining robot’s head pose
components can be obtained as:

μ = arctan

(
2 tan

(
Wu

2

)
Mu/2 − u

Mu

)
(5)

ν = − arctan

(
2 tan

(
Wv

2

)
Mv/2 − v

Mv

)
Py = Px tan(μ), Pz = Px tan(ν),

where Wu and Wv are the horizontal and vertical field of view of the camera,
Mu and Mv are the horizontal and vertical resolution of the camera, and (u, v)

is the head image’s center coordinates in the image under analysis.
From all considered 3-D homogeneous matrices, M10 is the only one that de-

pends on the geometry of the observing robot. This matrix is computed for the case
of the AIBO ERS7 robot in Ref. [5].

5. Experimental Methodology and Results

5.1. Robot Head Detection Experiments

The robot head detection system was implemented in the AIBO ERS7. This robot
has a 64-bit RISC processor (MIPS R7000) from 576 MHz, 64 MB RAM and a
color camera of 208 × 160 pixels that delivers 30 f.p.s. The parameters of this
camera are: horizontal field of view 56.9◦, vertical field of view 45.2◦, focal ratio
F/2.8 and focal length 3.27 mm. The sub-sampled scale space is built from the
original AIBO images. Under these conditions the determination of key points and
SIFT descriptors takes about 300 ms, depending on the number of objects under
observation. The matching voting and transformation calculation takes about 10 ms
for each analyzed prototype head.
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Table 3.
Robot head detection of an AIBO ERS7 robot

Full detections (head + identifier number) 68%
Partial detections (only the identifier number) 12%
Full + partial detections 80%
Number of false detections in 39 images 6

(a) (b)

Figure 4. Two examples of humanoid head detection in a video sequence: (a) frame 36 and (b)
frame 49. Each frame shows the reference image (left) — test image (right) pair.

Robot head detection experiments using real-world images were performed (see
Table 3). In all of these experiments the 16 prototypes of robot player 1 were em-
ployed (see Fig. 1). These prototypes (around 100 × 100 pixels) are stored in the
AIBO flash memory as BMP files. A database composed of 39 test images taken in
a SP-league soccer field was built. In these images robot ‘1’ appears 25 times and
the other robots appear 9 times. A detection is assumed correct when almost all the
matches involved in the transformation are correct (incorrect detections rarely have
any correct matches). If we consider full detections, in which both the robot head
pose as well as the robot identity is detected, a detection rate of 68% is obtained.
When we considered partial detections, i.e., only the robot identity is determined,
a detection rate of 12% is obtained. The combined detection rate is 80%. At the
same time, the number of false positives is very low (just six in 39 images). These
figures are very good, because when processing video sequences, opponent and
teammate robots are seen in several consecutive frames. Therefore, a detection rate
of 80% in single images should be high enough for detecting the robot head in few
frames.

To validate our system, we also carried out head detection experiments using
our humanoid Hajime HR18 robot (see Fig. 4) and a video sequence containing
221 frame images, in which the robot was always seen. Our Hajime robot is pow-
ered with a Fujitsu Siemens n560 Pocket PC running Windows Mobile as the main
processor and a Philips ToUCam III SPC900NC camera, mounted in the robot head
(see description in Ref. [24]). The camera has 640 × 480 pixels, horizontal field of
view 45◦, vertical field of view 37◦, focal ratio F/2.8 and focal distance 4.5 mm.
In the experiments we used an external camera connected to a computer (notebook
core-duo 1.66 GHz), where the detection system was running. The results are sum-
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Table 4.
Detection of a humanoid Hajime HR18 robot, 221 frames (results were obtained with the system
running in a notebook core-duo 1.66 GHz, 1 GB RAM, running Windows XP)

Flavor Detection Number of false Processing speed
rate (%) positives (f.p.s.)

Original image size: 320 × 240 80.1 14 4.4
Sub-sampled image: 240 × 170 75.1 7 4.7
Sub-sampled image: 160 × 120 64.3 3 11.5

marized in Table 4. As it can be observed, the obtained detection rates are similar
to those obtained with the AIBO ERS robots.

These preliminary experiments show the high potential of the proposed method-
ology as a way of achieving player recognition and gaze estimation. The SIFT
descriptors are not based on color information; therefore they are complementary
to existing vision systems employed in the RoboCup leagues. A mixed SIFT and
color-based vision system could be employed in the SP league in the near future. A
fast color-based vision system could be used for the general analysis of the images
and for determining regions of interest where observed robots can be located. These
regions of interest can be further processed by the SIFT-based vision system. This
multi-method strategy could be also used in other contexts. Other possibilities for
achieving a reduction in the processing time are the application of the head detector
in non-consecutive frames (e.g., every 3 frames) and the use of local features that
can be evaluated in less time (e.g., SURF features [17]).

One of the most interesting features of the proposed methodology is its robust-
ness against environmental aspects such as occlusions, variable illumination and
cluttered backgrounds. This is a main advantage over existing appearance-based
object recognition approaches (e.g., eigenspace-based), whose performance usually
depends on the mentioned aspects. For instance, in Ref. [25] it was demonstrated
that in the task of recognizing faces in environments with occlusions, variable il-
lumination and cluttered backgrounds, much higher recognition rates are obtained
when using the proposed methodology than when applying an eigenspace-based
method.

As mentioned above, the proposed robot head pose detection system is general
purpose and, therefore, can be used for detecting the pose of other robot models.
Figure 5 shows the body pose detection of two simple robots.

5.2. Gaze Direction Determination Experiments With AIBO ERS7 Robots

Exemplary experiments of the determination of the gaze direction were carried out
using AIBO ERS7 robots. In these experiments both the observing and the observed
robots are ERS7 robots. The experimental setup is shown in Fig. 6. In all cases pro-
totype images in which only the yaw angle is exactly determined were employed
(similar images to the ones shown in Fig. 1). Pitch and roll angle are about 0◦. The
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(a) (b)

Figure 5. Robot pose detection examples. (a) RoboCup middle-size robot. (b) Four-legged Walker
robot.

Figure 6. Typical setup for the gaze direction determination experiments. The observing robot (num-
ber 3) is placed at the right side, while the observed robot (number 4) is placed at the left side. The
observed robot is looking at the small white square on the field.

observing camera position in the global reference system is (0,0,10) (in centime-
ters), i.e., the observing robot’s front feet are at the origin of the coordinate system.
The obtained results are shown in Table 5. The Euclidian distance re between the
real and estimated gaze coordinates on the floor is used as a measure of the system’s
error.
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Table 5.
Gaze direction determination experiments (all (x, y, z) coordinates are measured in the global refer-
ence system (RF0); the observing camera is placed at (0,0,10) and looking at the x-axis)

Experi-
ment

3-D position of the observed camera Gaze point at the floor Error
re
(cm)Real Estimated Real Estimated

x y z x̂ ŷ ẑ x y x̂ ŷ

(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

1 60 4 9 61.0 4.1 10.0 58 −4 57.4 0.4 4.4
2 15 −39 9 21.0 −32.4 14.0 20.5 −30 16.1 −8.4 22.0
3 24 22 10 22.5 23.5 13.3 58 −4 29.8 13.3 33.1
4 48 −19 10 42.5 −17.0 3.0 47 7.5 39.2 −13.0 21.9
5 36 −16 9 35.6 −15.1 8.8 37 −4 31.4 −3.9 5.6
6 39 6.5 10 38.6 7.5 27.3 48 2 46.6 −10.3 12.4
7 25 28 10 26.7 28.7 14.4 23 37 15.3 34.1 8.2
8 58 3 10 56.8 4.7 15.2 49 −6.5 39.4 −3.1 10.2
Mean error: 14.7
Standard deviation: 9.4

In the performed experiments the mean error is 14.7 cm and the standard devia-
tion 9.04. We believe that these results are quite good, considering that the primary
application of this gaze direction determination system is the RoboCup SP league,
where the field dimension is 600×400 cm and where estimation errors of 30–40 cm
are still acceptable. Thus, using the proposed system a robot soccer player can de-
termine, with sufficient accuracy, the place at which opponents are looking at and,
for example, know the position of the ball (in the case that the opponent is looking
at the ball, which is very frequent). Errors in accuracy are produced mainly due
to: (i) the limited accuracy of the accelerometer sensor of the AIBO ERS7 robot
(βR), (ii) the error in the pitch angle of the reference prototypes (δ), which was not
exactly measured in the experiments, (iii) the employed model of the AIBO ERS7
head, which does not consider the round form of the nose, (v) the use of a limited
number of prototype viewpoints, and (v) the employed method for computing the
distance, which is based on the area size. However, we believe that these results
show the high potential of the described approach. Knowing the place where an-
other robot is looking at, with a limited error, is already significant and much better
than not having this information at all.

5.3. Gaze Direction Determination Experiments With Humanoid Robots

To obtain a better characterization of the gaze direction determination system, ad-
ditional experiments were carried using a humanoid Hajime HR18 robot. To isolate
errors produced by the determination of the observing camera pose, the observ-
ing camera was placed out of the robot, at a fixed height zCam (see Table 6). The
observed HR18 robot was placed at different relative positions with respect to the
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Figure 7. Diagram of the setup for the experiment, showing the positions marked on the floor. Posi-
tion 16 is at the origin of the coordinates system. Positions 0–15 are places in a circle of radius 86.
Positions 17, 18 and 19 have coordinates (−43,0), (41,0) and (−100,0), respectively. All distances
are measured in centimeters.

observing camera. The observing camera was always facing the HR18 robot. Fig-
ure 7 shows a total of 19 points, which were marked on the floor for the purpose
of placing the observing camera, the observed robot and the gaze point. The use
of these 19 points simplifies the measurement of the ground-truth positions and
improves the accuracy.

In the prototype image acquisition process, the observing camera is placed in
position 17 and the observed robot is placed in position 16. The 16 prototypes cor-
respond to the images captured by the observing camera, while the robot observes
positions 0–15. In the testing stage, the camera is placed in position 19 or 16, while
the observed robot is placed in different positions, looking in each case at a given
position contained in the circle (e.g., observed robot place in position 9 looking at
position 14). Altogether, 28 experiments were carried out (see Table 6). Figure 8
displays the real and estimated gaze positions for each experiment. In these ex-
periments the mean Euclidian distance (re) between the real gaze point and the
estimated gaze point is 34.1 cm, while the mean angular error (α) from the robot
viewpoint (i.e., the angle defined by the real gaze point, the robot and the estimated
gaze point) is just 13.7◦. This last result tells us that the proposed system produces
a very good estimation of the gaze direction. Errors in accuracy are produced by the
same factors mentioned in Section 5.2, except for the case of the accelerometers,
which in this case are not used for determining the pose of the observing camera.
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Figure 8. Real and estimated gaze position in the humanoid test. Real gaze positions are on positions
0–15 of the setup circle. The position of the observing camera is not displayed for visual clarity.

6. Conclusions

Gaze direction determination can be a powerful anticipatory perceptual mechanism
for determining the next action of other individuals. It can allow cooperation, syn-
chronization or competition between robots. In this context, we proposed a gaze
direction determination system for robots. The system is based primarily on a robot
head pose detection system that uses local invariant features. After the robot head
pose is detected, the robot gaze direction is determined by a composed coordinate
transformation that considers the 3-D pose of the observing robot’s camera, the de-
tected robot head pose affine transformation with respect to the observing camera
and the head model of the observed robot. For implementing the robot head pose
detection system we used the L&R object recognition system, which has shown
robust detection results in dynamic environments.

The robot head detection system was implemented in AIBO ERS7 robots and
successful detection results were obtained. A limited processing speed of about
3 f.p.s. was obtained in these robots (576 MHz CPU). This processing speed can be
improved by using faster processors, applying the head detector in non-consecutive
frames, using local features that can be evaluated in less time or by processing not
the whole images, but some regions of interest. The head detection experiments
were validated using a HR18 humanoid robot.

Gaze direction determination experiments were also presented. In these exper-
iments, estimations of the gaze coordinates on the floor with a limited accuracy
of about 14.7 cm were obtained for the case of AIBO ERS7 robots and 34.1 cm
for the case of HR18 humanoid robots. In this last case, the angular error of the
gaze direction estimation was just 13.7◦. The main sources of error are the limited
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number of prototype viewpoints and the method for computing the distance. In ad-
dition, the limited accuracy of the accelerometers can increase errors when they are
used for determining the pose of the observing camera. However, we believe that
these experiments show the great potential of this approach for the implementation
of richer interaction modalities between robots. Knowing the place where another
robot is looking at with a limited error is already significant, because it enables an-
thropomorphic robots to identify common centers of attention in space, which can
be useful for collaborative/competitive tasks. Although the proposed robot head
pose detection and gaze direction determination systems can be improved in terms
of detection rate, gaze direction determination accuracy and processing speed, we
believe that this is a first step in the direction of building more powerful robot–robot
interfaces, which will be increasingly required in multi-robot systems.
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Appendix

Linear Correlation Test

An affine transformation can be calculated from a set of matches between interest
points (xi, yi) in the reference image and interest points (ui, vi) in the test image.
This affine transformation can be represented in the following two ways:(

u

v

)
=

(
m11 m12
m21 m22

)(
x

y

)
+

(
tX
tY

)
⇒

(
u

v

)

=
(

x y 1 0 0 0
0 0 0 x y 1

)
(m11 m12 tX m21 m22 tY )T .
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From the last expression and using least squares, the parameters of the transfor-
mation can be calculated from matches between points (xi, yi) and (ui, vi) as:⎛
⎜⎜⎜⎜⎜⎝

m11
m12
tX
m21
m22
tY

⎞
⎟⎟⎟⎟⎟⎠ = (XTX)−1XT

⎛
⎜⎜⎜⎝

u1
v1
u2
v2
· · ·

⎞
⎟⎟⎟⎠ ; X =

⎛
⎜⎜⎜⎝

x1 y1 1 0 0 0
0 0 0 x1 y1 0
x2 y2 1 0 0 0
0 0 0 x2 y2 1
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎠ .

The parameters are calculable only if the 6 × 6 XTX matrix is invertible and this
is possible only if X has rank 6. However, if the points in the reference image lie
on a straight line, yk = a · xk + b holds, and the first and second columns, in X,
as well as the fourth and fifth columns, become linearly dependent, and X gets
at most rank 4. Then, if the points in the reference image lie on a straight line,
the parameters of a transformation from the reference to the test image cannot be
successfully calculated. In the symmetric case, if the points in the test image lie
on a straight line, a transformation from the test to the reference image cannot
be calculated. Then, to get a numerically stable and invertible transformation, the
points in the reference and the test image cannot lie, or approximately lie, on a
straight line, i.e., the correlation coefficients of the points in both images must be
low.

Fast Probability Computation

The probability that a bin B represents a true mapping mB can be calculated without
knowing the associated affine transformation. We compute this probability to all
bins, with four or more votes, as [6]:

P(mB |#B � 4) = P(mB)

P (mB) + ∑N
α=4

(
N
α

)
pα

B(1 − pB)N−α
,

with #B the number of votes in the bin B , N = 16 × n the total number of
random votes generated by the n matches that exists in all the bin-space, and
pB = p(z)p(k)p(i, j |k, z).

If it is assumed that the density of interest points along the sub-sampled scale
space is constant, p(z) is given by p(z) = 3/5(1/4)|z| [6]. p(i, j |k, z) is estimated
as the ratio between the space covered by the matches compatibles with the bin
(i, j, k, z) and the space covered by all the possible matches that can be gener-
ated between the pair of images. An expression for this probability is calculated in
Ref. [6]. Finally, p(k) is calculated as w/360◦, where w is the angular width of the
bin.

Geometrical Distortion Test

A correct affine transformation should not deform an object very much when map-
ping it. Therefore, if the transformation produces a large geometrical distortion, it
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Figure A1. Affine mapping of a square into a parallelogram.

should be rejected. Given that we have just a hypothesis of the object pose, it is not
easy to determine the object distortion. However, we do have the mapping function,
i.e., the transformation. Therefore, we can verify if the mapping function produces
distortion or not using a known, regular and simple object, such as a square. The
transformation of a square should produce a rotated parallelogram. If the trans-
formation does not produce a large distortion, the conditions that the transformed
object should fulfill are (see notation in Fig. A1):

max

{
d(AB)/d(A′B ′)
d(BC)/d(B ′C′)

,
d(BC)/d(B ′C′)
d(AB)/d(A′B ′)

}
< thprop;

α = sin−1
∣∣∣∣ det(

−−−→
A′B ′ −−−→

B ′C′)
d(A′B ′) × d(B ′C′)

∣∣∣∣ > thα,

−−−→
A′B ′ is a vector from A′ to B′ and det (

−−−→
A′B ′ −−−→

B ′C′ ) computes the parallelogram
area.

Transformation Fusion

It can happen that more than one correct transformation corresponding to the same
object is obtained after the matching of a reference–test pair of images. There are
many reasons for that, e.g., small changes in the object view with respect to the
prototypes views, transformations obtained when matching parts of the object as
well as the whole object, etc. When these multiple, overlapping transformations are
detected, they should be merged. Therefore, a procedure for verifying the similarity
of a pair of transformations is required. We use a similar idea to that employed for
computing the geometrical distortion test. That is, we map a certain square using
the both affine transformation whose similarity is been verified. If the obtained
parallelograms have a certain overlap ‘over’, then the transformations are similar
and they can be fused:

over = 1 − dist(A′
1A

′
2) + dist(B ′

1B
′
2) + dist(C′

1C
′
2) + dist(D′

1D
′
2)

perimeter(A′
1B

′
1C

′
1D

′
1) + perimeter(A′

2B
′
2C

′
2D

′
2)

> thover,

with {A′
1,B

′
1,C

′
1,D

′
1} and {A′

2,B
′
2,C

′
2,D

′
2} the vertices defining each parallelo-

gram.
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In addition, it should be also verified if the difference between the rotations pro-
duced for each transform is not very large. Therefore, we ask also that:

|rot1 − rot2| < thdiff_rot,

with rot1 and rot2 the rotations produced by each transformation, which are com-
puted as the mean value of the differences between the orientation of each matched
SIFTs keypoint in the prototype and test image.

Pixel Correlation Test

Pixel or graphical correlation is a measure of how similar the regions being mapped
by the affine transformation are. Transformations producing low graphical correla-
tion between the object prototype image and the candidate object sub-image should
be discarded. The graphical correlation is given by:

rg =
∑U

u=0
∑V

v=0(I (u, v) − I )(I ′(xTR(u, v), yTR(u, v)) − I ′)√∑U
u=0

∑V
v=0(I (u, v) − I )2

∑U
u=0

∑V
v=0(I

′(xTR(u, v), yTR(u, v)) − I ′)2
,

where (x = xTR(u, v), y = yTR(u, v)) defines the transformation, and I (u, v) and
I ′(x, y) correspond to the prototype image and the candidate object sub-image,
respectively.
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