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Abstract In this paper a unified learning framework for
object detection and classification using nested cascades of
boosted classifiers is proposed. The most interesting aspect of
this framework is the integration of powerful learning capa-
bilities together with effective training procedures, which
allows building detection and classification systems with high
accuracy, robustness, processing speed, and training speed.
The proposed framework allows us to build state of the art
face detection, eyes detection, and gender classification sys-
tems. The performance of these systems is validated and
analyzed using standard face databases (BiolD, FERET and
CMU-MIT), and a new face database (UCHFACE).

Keywords Object detection - Boosting - Nested cascade
classifiers - Face detection - Eyes detection

1 Introduction

An important goal of machine vision is to develop systems
that can detect objects in cluttered backgrounds, with the
ability of generalization across intra-class variability. Among
many other detection problems, face detection has concentra-
ted alot of attention in the last years, mainly because itis akey
step in almost any computational task related with the analy-
sis of faces in digital images, and in many different situations
it is the only way to detect persons in a given scene. Face
detection is a very challenging task, which should be perfor-
med robustly and efficiently, regardless of variability in scale,
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location, orientation, pose, illumination and facial expres-
sions, and considering possible object occlusions. In many
applications the real-time requirement is added. Because of
these extreme requirements, many object detection metho-
dologies have been proposed in the context of face detection.
In addition, it should be noted that object detection is a par-
ticular kind of 2-class classification, in which there is a high
asymmetry in the probability of occurrence of the classes
(object vs. non-object), and therefore object detection metho-
dologies can be also used for solving classification problems
with more than two classes.

In this general context the aim of this work is to introduce
a unified learning framework for object detection and clas-
sification using nested cascades of boosted classifiers. The
most interesting aspect of this framework is the integration
of powerful learning capabilities together with effective trai-
ning procedures, which allows building detection and classi-
fication systems with high: (i) accuracy (high detection rates
with a few false positives), (ii) robustness (operation in dyna-
mical environments), (iii) processing speed (real-time), and
(iv) training speed (a few hours in a standard PC). We apply
the proposed framework to face detection, eyes detection and
face classification problems. This learning framework can be
used also for the construction of detection systems for speci-
fic objects’ view/poses (e.g., hands, heads, pedestrians) and
for building (few-classes) classification systems (e.g., race,
age).

For a complex learning machine, having powerful learning
capabilities without having adequate training procedures and
data is useless. Consequently, the training procedures are as
important as the learning algorithm. The proposed frame-
work integrates both aspects, and addresses also the compu-
tational complexity aspects of the training. Key concepts of
this framework are boosting, nested cascade classification,
and bootstrap training:
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— Boosting is employed for finding (i) highly accurate hypo-
theses (classification rules) by combining several weak
hypotheses (classifiers), and (ii) self-rated confidence
values that estimate the reliability of each prediction. In
particular, we use the so-called domain-partitioning weak
hypotheses learning paradigm [21].

— Cascade classifiers consist of several layers (stages) of
classifiers of increasing complexity for obtaining fast
processing speed [31] together with high accuracy. This
is possible because of two reasons: (1) there is an impor-
tant difference in the a priori probability of occurrence
of the classes, i.e., there are much more non-object than
object windows! in any given image, and (2) most of the
non-objects windows are quite different from the object
windows, therefore they can be easily discarded, i.e., clas-
sified as non-objects. Hence the average processing time
of a window is almost completely defined by the expected
processing time of non-object windows. Nested cascade
classification [35] allows obtaining higher classification
accuracy by reusing in each layer the confidence given
by its predecessor.

— Special attention should be given to the selection of the
training examples and to the training procedure. When
working with discriminative methods, it is important to
have training samples that correctly define the classifica-
tion boundary, in particular to use non-object patterns
that look similar to the objects. This selection can be
done using the bootstrap procedure [26], which basically
consists in to re-train iteratively a classifier, adding in
each iteration the incorrectly classified examples to the
training set. When training a cascade classifier an impor-
tant question that arises is which (kind of) non-object
examples should be used to train each stage of the cas-
cade. For this, we extend the procedure used by [31], and
we apply bootstrap not only before the training of each
layer, but also during the training of each layer.

Besides taking and putting together the best ideas from
state of the art works in cascade-based object detection, our
most important contributions are mainly focused on the suc-
cessful strategy for training cascades of boosted classifiers.
An important point to consider is the computational com-
plexity of the training process of the cascade. For example,
in a system like the one presented in [32], the training time
can take several months on a single Pentium 4 computer. One
of the major advantages of our system is its reduced training
time; it takes about 15 hin a standard PC, and it grows linearly
with the number of training examples and with the number
of features. This is possible thanks to: (1) the use of a nested
cascade, (2) the implementation of domain-partitioning weak

1 We call windows, the processing image regions analyzed by the classi-
fier. They have a fixed size, normally between 19 x 19 and 25 x 25 pixels.
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classifiers implemented using LUTs, (3) the use of internal
bootstraps, (4) the use of a bias value for forcing a low num-
ber of features in each stage, (5) the use of feature sampling,
and (6) the use of features that can be evaluated very fast.
Some of these aspects also allow obtaining high classifica-
tion speed.

This article is structured as follows. In Sect. 2 some rela-
ted works to the topics of boosting, cascade classification,
and face detection are outlined. In Sect. 3 the proposed lear-
ning framework is presented, with special emphasis in the
description of the training issues. In addition, face detection
and eyes detection systems, built using this framework are
described. In Sect. 4 is presented a comparative analysis of
the critical components of the proposed learning framework,
and a comparison of the trained face and eyes detection sys-
tems with state of the art systems using standard evaluation
databases. In addition, we show the performance of a gender
classification system built using the same framework. Finally,
some conclusions and projections of this work are given in
Sect. 5.

2 Related work

As mentioned, key concepts of the proposed framework are
boosting, nested cascade classification, and bootstrap trai-
ning. Many of these concepts have been developed within
the context of face detection. Therefore, related works, in
the face detection context, will be outlined in the following
paragraphs.

Several approaches have been proposed for the computa-
tional detection of faces in digital images. A very comprehen-
sive review can be found in [8] and [41]. Main approaches can
be classified as: (i) feature-based, which uses low-level ana-
lysis (e.g., color, edges, textures), feature analysis or active
shape models, and (ii) image-based, which employs linear
subspace methods, neural networks or statistical analysis.
Image-based approaches have shown a much better perfor-
mance than feature-based [8,11]. Starting with the seminal
works of Rowley et al. [19] and Sung and Poggio [26] suc-
cessful image-based approaches include the use of neural
networks [4], SNoW classifiers [40], Bayesian classifiers
[22,23,39], SVM [17], and boosted cascades [14,32,35].
This last approach is based on a learning paradigm intro-
duced in Viola and Jones [31], which consists of using a
cascade of boosted classifiers to obtain a very fast system
that is capable at the same time of achieving high detection
rates. They used Adaboost [21] as boosting algorithm, which
has been widely used in different kinds of classifications pro-
blems because of its simplicity, high performance, and fast
speed.

The boosted cascade paradigm has been widely studied
and extended in the last few years, being [6,13,14,22,35,36]
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some of the most important works in this area, with some of
them achieving the best reported results in face detection. The
key idea for achieving fast detections is that the complexity
of the classifiers (i.e., number of features in each classifier)
increases when advancing in the cascade. Windows (image
regions) that are easy to be classified as non-faces are discar-
ded in the first stages (short processing time), while windows
containing faces or face-like objects are analyzed by several
cascade stages.

The cascade system proposed in [32] uses simple, rectan-
gular features (a kind of Haar wavelets), a cascade of filters
that discard non-face windows, the integral image for fast
computation of these filters, and asymmetrical real Adaboost
as a boosting strategy for the training of the detectors. The
system developed by Wu et al. [35] uses domain-partitioning
weak classifiers (originally proposed in [21]), which, compa-
red to [32], achieves an important improvement in the repre-
sentation power of the weak classifiers; it keeps a simple
representation that at the same time increases the accuracy
of the classification, and reduces the processing and training
time (see details on Sect. 3.1). Another interesting idea pro-
posed in [35], and also in [38], is the use of nested cascades.
Nested cascades are cascades that use the confidence out-
put of a given layer in the next layer of the cascade. This
allows obtaining more compact (faster) cascades and more
accurate classifications. Froba and Ernst [6] introduce the
mLBP (modified Local Binary Patterns) features, which are
robust to extreme illumination conditions, and also the use
of what we call internal bootstrap, for the cascade’s training
(see Sect. 3 for details). They use a cascade consisting of four
layers, the first three layers correspond to boosted classifiers,
and the last one is a SNoW classifier [39], all of them based
on mLBP features.

An important drawback of the system proposed by [32] is
the long training time. It can be up to several months if it is
done in a single computer. Although computers are becoming
faster (Moore’s Law) the training time is still an important
issue. Few works [2,28,37] have tried to overcome this pro-
blem when training cascade classifiers. Wu et al. [37] propose
to replace the feature selection done by Adaboost by a For-
ward Feature Selection (FFS) procedure. The FFS can be
performed before running Adaboost or it can replace com-
pletely Adaboost. Brubaker et al. [2] compare FFS to other
three methods that select a subset of features prior to running
Adaboost. One of the methods (RND) performs a random
sampling of the features, the second method (RANK) ranks
the features by mutual information, and the third method
(CMI) ranks the features by conditional mutual information.
They show that RND outperforms RANK, and that FFS and
CMIM have similar performance, both outperforming RND.
Verschae and Ruiz-del-Solar [28] and Baluja et al. [1] pro-
pose to sample the feature set before each iteration of Ada-
boost. In this way the training time is reduced proportionally

to the percentage of features considered at each iteration, and
Adaboost has the chance to select the features from a large
set allowing a large diversity of the select features.

For obtaining an optimal cascade classifier in terms of
processing time, false positive rate (FPR) and true positive
rate (TPR), an important issue is how to handle the tradeoff
between the number of features, the FPR and the TPR of
the layer. In [25] a cost function to be minimized during
the training of each layer is defined. This cost function is a
sum of two terms; the first term corresponds to the cascade’s
TPR, which considers the desired target FPR of the complete
cascade. The second term considers the expected number
of features to be evaluated up to that layer multiplied by a
parameter used to adjust the trade off between the two terms.
The authors do not specify how to select this parameter. The
procedure also needs to set the target FPR of the cascade. In
[2], the selection of the number of features and the bias at each
layer is also performed by minimizing a cost function, that
takes into account the probabilities of achieving the desired
TPR and FPR for the cascade.

It is worth mentioning that cascade classifiers have been
also used in the detection of other kind of objects, like cars
[22], hands [11], pedestrians [33], and traffic signs [22].
Regarding multi-class classification, in [27] the design of
boosted classifiers for detecting different classes of objects
in cluttered scenes is addressed by finding common features
and weak classifiers that can be shared across the classes
and/or views. Although they do not use cascade classifiers,
we believe that the idea of sharing features could be incor-
porated in the here-proposed paradigm.

Most of the described concepts related with the design,
construction and training of boosted cascades were conside-
red in our unified learning framework. The proposed learning
framework corresponds to a nested cascade of boosted clas-
sifiers, and it is based on the seminal ideas proposed in [32],
with the later improvements introduced in [6] and [35]. Our
most important contributions over previous work are mainly
focused on the adequate training of the nested cascade of
boosted classifiers, which also allows to considerably redu-
cing the training time. These contributions include the use of
internal and external bootstrap for training the layers of the
cascade, the use of feature sampling before each iteration of
Adaboost, and a procedure for handling the tradeoff between
the TPR, the FPR and the number of features in each layer.

3 A learning framework based on nested cascades
of boosted classifiers

In this section the proposed learning framework (Sect. 3.1),
with an especial emphasis in the description of the training
procedures (Sect. 3.2), is presented. In addition, a description
of a face detection system (Sect. 3.3) and an eyes detection
system (Sect. 3.4) built using this framework is given.
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3.1 Nested cascade classifier architecture

A nested cascade of boosted classifiers is composed by seve-
ral integrated (nested) layers, each one containing a boosted
classifier. The whole cascade works as a single classifier that
integrates the classifiers of every layer. Figure 1 shows the
structure of a nested classifier. In the following paragraphs
our realization of this concept will be explained.

A nested cascade C, composed of M layers, is defined
as the union of M boosted (strong) classifiers Hg. It should
be noted that a given classifier corresponds to the nesting
(combination) of the previous classifiers. The computation
of Hé makes use of the already evaluated classifiers:

M
¢ =JHe). ()
k=1
Each Hg is defined by:
Ty
HE(x) = HE @) + D hi(x) — by )
t=1
with
H2(x) =0 3)

hf (x) the so-called weak classifiers, T} the number of weak
classifiers in layer k, and by a threshold value.

Due to the nested configuration of C, its output is given
by:

Oc(x)
sign(HZ (x))
=] HLx)=0k=1,....g—IAHI(x) <0V g=M)

sign(HA(x)) Hl(x) <0
“)

with a confidence value of a positive detection given by:

confe(x) = HE(x)>HE(x) >0, k=1,....M 5)
3.1.1 Weak classifiers design

The weak classifiers are applied over features computed in
every pattern to be processed. Each weak classifier has asso-
ciated a single feature. The weak classifiers are designed after
the domain-partitioning weak hypotheses paradigm [21].
Under this paradigm the weak classifiers make their pre-
dictions based on a partitioning of the domain X (decision
stumps are the simplest example of domain-partitioning clas-
sifiers). Each classifier has a value associated with a parti-
tion of this domain. The domain is partitioned into disjoint
blocks X1, ..., X,, which cover all of X, and for which
h(x) = h(x/) for all x, x e X ;. Thus, the weak classifiers
prediction depends only on which block X ; the given sample
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(instance) falls into. In our case the weak classifiers are
applied over features, therefore each feature domain F is
partitioned into disjoint blocks F1, ..., Fy, and a weak clas-
sifier 4 will have an output for each partition block of its
associated feature f: h(f(x)) =c;3 f(x) € Fj.

For each classifier, the value associated to each partition
block (cj), i.e., its output, is calculated for minimizing a
loss function of the margin [21], which is also a bound of
the training error. This value depends on (i) the number of
times that the corresponding feature—computed on the trai-
ning samples—falls into this partition block (weighted his-
tograms), (ii) the class of these samples (y;), and (iii) their
importance D(i). The value of ¢; is given by [21]:

1 Wil +¢ )

cj==In{ ——) with
2 W' +e

W/ = > DG =Pr[f(xi) e Finyi=1].
iif(xi)eFjnyi=l

where [ = %1,
(6)

and ¢ a regularization parameter.

The outputs of a weak classifier (c;), obtained during trai-
ning, are stored in a LUT for speeding up its evaluation. Thus,
a weak classifier will be defined by 2(f(x)) = hryrlx] =
LUTlindex f(x)], with index a function that returns the
index (block) associated to the feature value f(x)inthe LUT.
After having evaluated the feature value, when using equally
sized partitions and independently of the number of blocks,
this implementation allows to compute the weak classifiers
in constant time (the same time that takes to evaluate decision
stumps). In this case the training time of (6) grows linearly
with the number of training examples. Another important
advantage of using domain partitioning is the possibility of
using features that can not be handled by decision stumps
(e.g., mLBP).

3.1.2 Features

The features we employ are rectangular Haar-like features
[31] and mLBP features [6]. Rectangular features are simple
features that can be evaluated very quickly, independently
of their size, using the integral image [31]. We partition
the range of each feature in blocks of equal size for obtai-
ning the weak classifiers. mLBPs correspond to a variant of
Local binary patterns—LBP (also known as texture numbers
or census transform), and unlike rectangular features they
are invariant to linear constrast changes. A mLBP feature is
obtained by taking a patch of 3 x 3 pixels within the proces-
sing window and comparing each pixel in the patch to the
average pixel value of the patch. The output of each of these
comparisons is encoded as a 0 or as a 1, and then concate-
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Fig. 1 Nested cascade classifier

nated for obtaining a binary number of 9 bits. Therefore for
mLBP features the partition of the domain is already defined
by the feature itself.

3.2 Training procedure

When developing a complex learning machine special atten-
tion should be given to the training process. It is not only
important the adequate selection of the training examples,
they should be statistically significant, but also the order in
which they are “shown” to the learning machine. It is also
important how to train each part of the learning machine.
In the case of a nested cascade of boosted classifiers, it is
not obvious which the best training strategy is, because seve-
ral interrelated layers are trained at different moments. The
following questions should be answered: Which examples
should be presented to a specific part of the machine in a
given moment? Which criterion should be used for stopping
the training of a given part of the machine? How are these
criteria related with the required final performance of the
machine (TPR, FPR, and processing speed)?

3.2.1 Design of the strong classifier

The real Adaboost learning algorithm [21] is employed for
selecting the features and training the weak classifiers hf (x).
The implemented real Adaboost learning algorithm takes into
account both, the nested configuration of the cascade [a given
layer of the cascade should not be trained without taking into
account the previously trained layers, see (2)—(4)], and also
the asymmetrical distribution of the two classes. The pseudo
code of this algorithm is shown in Fig. 2.

The mainidea of cascade classifiers is to process most non-
object windows as fast as possible, and to process carefully
the object windows and the object-like windows. The final
TPR and FPR of the whole classifier are the product of the
corresponding rates in each layer. Therefore, for obtaining a

@ Strong Classifier
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high TPR and low FPR for the whole cascade classifier, high
TPRs (larger than 0.99) but reasonable low FPRs (lower than
0.5) in each layer are required. For instance, a cascade with
ten layers and TPR and FPR values of 0.999 and 0.2, in each
layer, will produce a resulting TPR and FPR of 0.99(0.999'0)
and 1.024 x 1077(0.20'9), respectively. Therefore the design
and selection of the optimal parameters of each node of the
cascade is very important. For handling the tradeoff between
the TPR, the FPR and the processing speed we do not fix the
number of features nor the target rates in each layer as most
of the works do [6,31,32,35]. We manage this by setting the
maximum allowed FPR (fprMax) and the minimum allowed
TPR (tprMin) per layer, while the minimum number of fea-
tures is selected such that fprMax and tprMin are achieved. At
each iteration of Adaboost several values of a bias, b, > 0,
are tested for fulfilling the classification requirements of the
layer (see Fig. 2, ValidateClassifier function).

As [25] we need to select a priori two parameters. The
main difference between our procedure and [25] is that we
minimize the number of features following a greedy proce-
dure that assures the minimum desired TPR for each layer,
while Sun et al. [25] propose a greedy optimization procedure
for maximizing the TPR using a cost function that considers
the target FPR and the expected number of evaluated features.

3.2.2 Selection of the training examples

How to select adequate negative examples when training a
specific part of a nested cascade of boosted classifiers is not
obvious. Moreover, detection problems require discrimina-
tive analysis between objects and non-objects (the rest of the
world). This produces two types of asymmetries: (1) there is
a high asymmetry in the a priori probability of occurrence
of the classes: in an image there are much more non-object
windows than object windows, and (2) one of the classes is
the negation of the other, therefore there is a high asymmetry
in the “size” of the classes (as regions of the input space).
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Fig. 2 Real Adaboost training
algorithm for a layer k of a
nested cascade

RealAdaboostTraining(H ., H:', PT,NT,PV,NV, fprMax,tprMin){
Given {(x,,y,),....(x,,, ¥, ) }where x,e X =NT UPT,y, €Y ={-1,+1}

){ xe NT
NT
D) | =

1 Li=1,...,m
ADTl xe PT

D, (i) < D,(i)exp(—=y,H ' (x),i =1,..,m
normalize D, toap.d.f.
HE(x)«— HI'(x)
te1
while(—ValidateClassifier(H; ,k, PV NV, forMax,trpMin){
for each feature f, € F',p=1,..,Pdo{
// train all weak classifiers :
W= Y D(i)where =%l j=1..,J

iof , (e Fyayi=l

1, (Wi+e
h (j)=—In[ — JJj=L.J
) 2 (W_{+£J /

2, =235 W]
J

}

select it =argmin,,_, ,Z,
HE(xX) «— HE(D)+h,(x)

D, () ¢ D, ()exp(=y,h, (x)),i =1,....m

normalize D

1+l

toap.d.f.
te—t+1

}
ValidateClassifier (H ., k, PV, NV, frpMax,tprMin){
for b, in B,/ =1,....Ldo
H <« H{-b,
k k
it (for(H,NV)< [ [ froMax ntpr(H,PV)2 ] | tprMin){

1=1 1=1

H{«H
return TRUE
}
return FALSE
}
with:

PT /PV : Positive Training/Validation Set ; NT /NV : Negative Training/Validation Set

tpr(H,P) : true positive rate of a classifier H evaluated on the set P
tprMin : minimum allowed true positive rate for a layer
fpr(H,N) : false positive rate of ta classifier H evaluated on the set N

fprMax : maximum allowed false positive rate for a layer

From several millions examples (the rest of the world), one
should select the ones that correctly define the classification
boundary (positive class versus negative class). If we take a
face detection system as a case study, every window of any
size in any image that does not contain a face is a valid non-
object training example. Obviously, to include all possible
non-face patterns in the training database is not an alterna-
tive. For defining such a boundary, non-face patterns that look
similar to faces should be selected. This is commonly solved
using the bootstrap procedure [26], which corresponds to ite-
ratively train the classifier, each time increasing the negative
training set by adding examples of the negative class that were
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incorrectly classified. When training a cascade classifier the
bootstrap can be applied in two different situations: before
starting the training of a new layer and for re-training a layer
that was just trained. After our experience, it is important to
use bootstrap in both situations. When we apply this proce-
dure for a layer already trained, we call it internal bootstrap,
while when we apply the bootstrap before starting the trai-
ning of anew layer, we call it external bootstrap. The external
bootstrap is applied just one time for each layer, before star-
ting its training, while the internal bootstrap can be applied
several times during the training of the layer. The bootstrap
procedure in both cases is the same (see Fig. 3) with only one
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N —{g}

}

return N

Bootstrap(CASCADE, SIZE, NEG _IMGS _SET){

while(|N| < SIZE){ //the size of the output set
x < Sample(NEG _IMGS _SET)// extracts arandom window of the set of negative images
if (Ocyscape (X)) 2 0) // the negative sample is classified as positive
N « N U{x}//the negative sample is added to the negative training set

Fig. 3 Bootstrap procedure

NestedCascadeTraining(){
C < {¢} //Nested cascade C, initially empty
H) <0
k < 0// Cascade layers counter
do{ // Training procedure of cascade layer k
k—k+1

k

k
/[Train layer k of C

oCcClyH¢

k

ONTk < NT, uBNTk

C«C
}while(fpr(C,NVk) > fprMaxC)
return C

}
with:

NT, « Bootstrap(C, InitSizeNT , NegIMTrainSet) //External bootstrap
NV, « Bootstrap(C, SizeNV , NegIMValSet)

for b=1...Bdo// Number of internal bootstrapps
o RealAdaboostTraining(H ), H.™', PT, NT,, PV, NV,, frpMaxL,trpMinL)

© BNT, « Bootstrap(C,(FinalSizeNT — InitSizeNT)/ B, NegIMTrainSet)

PT / PV : Positive Training/Validation Set ;NT,/NV, : Negative Training/Validation Set at layer k
BNT, : Bootstrapped Negative Training Set at layer k

tprMinL : minimum allowed true positive rate of a Layer

Jpr(C,N) : false positive rate of the cascade evaluated on the set N

fprMaxL : maximum allowed false positive rate of a layer

fprMaxC : target overall false positive rate of the cascade

NegIMValSet :set of images containing non - positives patterns (to be used in the validation set)
NegIMTrainSet : set of images containing non - positives patterns (to be used in the training set)
SizeNV :size of the bootstrapped validation set of negative windows

InitSizeNT : inicial size of the training set of negative windows

FinalSizeNT : final size of the training set of negative windows

Fig. 4 Nested cascade training procedure using internal and external bootstrap

difference, before starting an external bootstrap all negative
samples collected for the training of the previous layer are
discarded. The use of internal bootstrap in the training of the
layers of a cascade classifier is a key point that until now, to
our knowledge, has not been carefully analyzed, being just
briefly mentioned in [6].

The training procedure of the whole nested cascade is des-
cribed in Fig. 4. The nested cascade is trained until the target
overall FPR is achieved. The training of each layer includes
the use of 1 external bootstrap (applied before training), and
B internal bootstraps (applied after training). Every time an

internal bootstrap is applied, the layer under training is rebuilt
(reset).

3.2.3 Training time

As we mentioned in Sect. 2 the training time is an impor-
tant issue. The training time mainly depends on two factors,
the time required to train each layer of the cascade using
Adaboost, and the time required to perform the bootstrap. The
time required for the bootstrap depends mainly on the compu-
tational time required to evaluate the cascade, which becomes
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larger for the last layers of the cascade. This happens because
more windows need to be analyzed for colleting the negative
examples, and because these windows are processed by more
layers of the cascade. Therefore the only way to reduce the
time required for the bootstrap is having a faster cascade,
which we achieve thanks to the use of a nested cascade, and
fast weak classifiers (such as the domain-partitioning clas-
sifiers previously described). Concerning the training of the
layers of the cascade, in the work of [32] the training time
for one layer is O (m log(m)| F|T) plus the time required for
the bootstrap, with m the number of training examples of
that layer, | F'| the number of features being tested, and 7 the
number of selected features in the layer. The O (m log(m))
factor comes from the selection of the threshold of the deci-
sion stump. This time can be reduced to O (m) if an “off-line”
evaluation of the features for each training example and a sor-
ting of these values is done, but the memory requirement is
not longer O (m), but O (m|F|), which could be prohibitive2
when the training set and number of features are large.

In the present work the training time of the layers is greatly
reduced thanks to several factors. First, the weak classifiers
can be trained in time O (m) with a memory requirement of
O(1), thanks to the use of domain partitioning with equally
spaced blocks of the feature domain. This reduces the training
time of each layer to O(m|F|T). A second factor for redu-
cing the training time is the sampling of the features before
each iteration of Adaboost. This reduces the training time
to O(gm|F|T), with 0 < g < 1 the percentage of features
considered at each iteration. Third, the training time is fur-
ther reduced by using rectangular features for the first layers
of the cascade and mLBP based features for later layers. For
example, when using processing windows of 24 x 24 pixels
and 3 x 3 pixel neighborhoods for evaluating the mLBP fea-
tures, there are about 135,000 possible rectangular features
and only 484 mLBP features. Therefore the selection of fea-
tures and classifiers using only mLBP features is about 257
times faster.

3.3 Face detection system
3.3.1 General organization

The block diagram of the face detector system is presented in
Fig. 5. The system is based on five main modules. The sys-
tem is designed for being able to detect faces appearing at dif-
ferent scales and positions within the image being analyzed.
First, for detecting faces at different scales, a multiresolution
analysis is performed by downscaling the input image by a
factor of 1.2 (Multiresolution Analysis module). This scaling

2 With current computers’ memory this is becoming no longer valid
(~4 GB of memory is needed when 10,000 examples and 100,000 fea-
tures are used).

@ Springer

is performed until the width or the height of the downscaled
image is smaller than the processing window (image region)
size. Afterwards, in the Window Extraction module, windows
of 24 x 24 pixels are extracted for each of the scaled versions
of the input image (the cascade classifier was trained for ana-
lyzing windows of that size). Depending on the application,
not all windows are extracted (see Sect. 3.3.2 for details).
The extracted windows can be then pre-processed for obtai-
ning illumination invariance, by using methods like variance
normalization [31] or histogram equalization [19]. In our sys-
tem, thanks to the use of mLBP features we do not perform
any kind of preprocessing, which allows a reduction in the
processing time. Later on, each of the pre-processed win-
dows is analyzed by the nested cascade of boosted classifiers
(Cascade Classification module). After all selected windows
have been classified as faces or non-faces, in the Overlapping
Detection Processing module the windows classified as faces
are analyzed and fused (normally a face will be detected at
different scales and positions) for determining the size and
position of the final detections. In this module the confidence
values associated to the detections are used for fusing them:
if the number of overlapped windows in a given position is
larger than a given threshold ¢4,,,,,, and also if the detection
volume [4] of the overlapped face windows in a given posi-
tion is larger than a threshold 7/,,;, then the face windows
are considered as a true detection and fused. The detection
volume is defined as the sum of all confidences values corres-
ponding to a set of the overlapped windows corresponding
to a face. The fusion procedure is described in [28].

3.3.2 Algorithms flavors

Different flavors of the face detection system designed to be
used in different types of applications are implemented. In
the following paragraphs a brief description of them is given.

Full search versus Speed search: The difference between
Full Search and Speed Search is that in the full search case
all possible image’s windows are considered, while in the
speed search a multi-grid approach is employed for selecting
the windows’ positions to be evaluated. The speed search is
based in the procedure described in [7]. A multi-level grid is
defined over the image plane. At the first level of the grid, a
step size of 6 pixels is used for selecting the windows’ posi-
tions. At this resolution almost 2.8% of all possible positions
are evaluated. At each analyzed grid position the output given
by the cascade, i.e., the confidence of the classification, and
the index of the last layer where the window was proces-
sed, are fed back to the Window Extraction module. At this
module it is decided if the image, at neighbor window posi-
tions, should be further processed or not. If the confidence
is above a threshold #hs/, a second level of the grid is ana-
lyzed, considering a finer grid around each starting point of
the coarse grid (using a grid step of 3 pixels). Then, each grid
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Fig. 5 Block diagram of a face
detection system

Multi-resolution Window | [—] - [—]
Analysi: »| Extraction
>
Inputimage Image pyramid A Windows to be
e processed
i
+ <
!
H secceccens
- « Face ?|  Overlapping
Pre-Processing - Cascade | “ecccccos o D jon
7| Classification g Processing
« Non-face .

position with a score value above a threshold ths2 is evalua-
ted in the third stage using a 3 x 3 neighborhood. The speed
of the process is controlled by the thresholds values ths!
and ths2. Higher threshold’s values means higher processing
speed, but possible lower detection rates (many true faces
can be lost) and false positive rates. Given that a nested cas-
cade is being used, different values of ths/ and ths2 for each
of the layers have to be selected. This is done using a multi-
objective genetic algorithm [29], which optimizes the system
for having a fast detection speed, a high TPR and a low FPR.
All faces versus Most relevant faces: There are some face
detection applications where it is required to detect all pos-
sible faces (e.g., surveillance), while in others is required to
detect just one (e.g., passport processing) or the most relevant
ones (e.g., video conference). For the second case we have
implemented a variant of our algorithm that detects just the
most relevant faces in a given image or video frame, which
reduces considerably the number of false positives. The most
relevant faces procedure consists on searching for all faces in
a given image, but to filter out the detections that have a confi-
dence value (CV) much lower than the CV of the face with
the largest CV. In our implementation much lower means 20
times lower for images where only one face is expected.
Summarizing, we have four variants of our face detec-
tion algorithm: Full-All (full search, all faces), Full-Most
(full search, most relevant faces), Speed-All (speed search, all
faces) and Speed-Most (speed search, most relevant faces).

3.4 Eyes detection system

The eye detector follows the same ideas that the face detector
does, i.e., it has its same processing modules. The only diffe-
rence is that the search for the eyes is performed in the upper
part of the face area, i.e., the Window Extraction module
extracts windows from already detected face regions. A left
eye detector is used to process the left upper part of the detec-
ted face, and a right eye detector is used in the same way in
the right upper part of the face. Only one eye detector has to
be trained (the left eye detector in our case), the other is a mir-
rored (flopped) version of the one that was trained. Because

there are at most two eyes per face, for the eye detector, the
Overlapping Detection Processing returns at most one left
eye and at most one right eye.

The left eye detector we have trained is a boosted clas-
sifier consisting of a 1-layer cascade, its weak classifiers
are based on rectangular features; it works over windows of
24 x 24 pixels, and it can process faces of 50 x 50 pixels or
larger. We use only one layer because of two reasons: (1) the
bootstrap procedure is not needed, a representative negative
training set can be obtained by sampling not-centered win-
dows of eyes, and (2) the processing time is not an important
issue because only a small region of the image (the face)
needs to be analyzed and the scale of the face is already
known. Because the eye detector will be applied to a res-
tricted, reduced image area (upper part of a face), only one
flavor of the eye detector is needed, which is equivalent to
the Full-Search used for the face detector.

4 Experimental methodology and results

In this section we will present a comparative analysis of
the critical components of the proposed learning framework.
Afterwards we will compare the trained face and eyes detec-
tion systems with state of the art similar systems using stan-
dard image databases. Finally, we will show the performance
of a gender classification system built using the same frame-
work, as an example of the application of this framework to
the construction of classification systems.

4.1 Analysis of training the procedure

We have performed an analysis of the different improvements
and variations proposed for designing and training cascades
of boosted classifiers. In this analysis we compared the follo-
wing elements: (1) the use of normal cascades versus nested
cascades, (2) the application of internal-bootstrap, (3) the
use of rectangular and/or mLBP features, (4) the effect of
the maximum FPR per layer, and (5) the use of feature’s
sampling.
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The whole analysis presented in this section was carried
out in the face detection problem, namely, using face detec-
tors built using the proposed learning framework. The obtai-
ned results should be valid for other classification or detection
systems (eyes, gender, race, etc.) to be built using the same
framework.

For carrying out this analysis more than 9,000 images,
obtained from different sources such as Internet and family
photograph albums, were employed. No single image emplo-
yed for testing (see Sect. 4.2) was employed in this analy-
sis. The following image datasets were built: PT (Positive
Training set): 5,000 training examples obtained from several
hundreds images; PV (Positive Validation set): the mirrored
version (flop) of all faces from the PT; NIT (Negative Images
Training set): 3,500 images not containing faces, used for the
bootstrap procedure; NIV (Negative Images Validation set):
1,500 images containing non-faces used for the bootstrap
during validation. NT; (Negative Training set for layer k):
the negative non-face examples employed for the training of
layer k, and obtained using bootstrap from NIT. Due to the
use of internal and external bootstrap, this set changes in each
layer and in each iteration; and NV, (Negative Validation set
for layer k): the negative non-face examples employed for
the validation of a layer, and obtained using bootstrap from
NIV. Due to the use of internal and external bootstrap, this
set changes for each layer and in each iteration.

The presented analysis was performed using ROC (Recei-
ver Operating Characteristic) curves. In these ROCs, each
operation point was obtained by evaluating cascade instances
with different number of layers, using the validation sets PV
and NV. In other words, the parameter to be changed for
obtaining the ROCs is the number of layers of the cascades.
In the following experiments the minimum TPR per layer
was set to 0.999.

4.1.1 Nested versus non-nested cascades

In Fig. 6a > is shown the effect of using a nested cascade ver-
sus a non-nested cascade in terms of classification accuracy,
while in Fig. 6b is shown the number of features obtained
for each layer of the cascades. In these graphs it can be seen
that in the first layers, the non-nested cascade has larger FPR
per layer than the nested one. Moreover, it can be noticed
that for the layers 2—4 of the cascade, the non-nested cascade
needs more than two times the number of features required
by the nested cascade. Given that the training and classifica-
tion time are directly related with the number of features, a

3 Notice that in all graphs shown in Fig. 6, with the exception of Fig. 6b,
the operation points shown in the left side (with lower TPR and lower
FPR) correspond to later layers of the cascade, while operation points
in the right side correspond former layers of the cascade.
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nested cascade has a faster training and operation speed than
a non-nested one.

4.1.2 Internal bootstrap

As already explained in Sect. 3.2, we propose to use both
internal and external bootstrap. After several experiments
we found out that it is better to repeat the internal bootstrap
several times, three times in the case of our training data-
sets. However, we wanted to quantify the real effect of this
internal bootstrap in the performance of the whole cascade.
Figure 6(c) shows the effect of performing the internal boots-
trap. Clearly the effect for the first layers (the ones with larger
FPR) is quite important: the use of internal bootstrap reduces
the FPR to the half, while the number of selected features at
each layer is almost the same, producing a faster and accurate
cascade.

4.1.3 Feature sampling during training

For reducing the training time, at each iteration of the Ada-
boost feature selection (and weak classifier training) not all
features are considered, but only a subset of the possible
features [1,28]. We have tested the training algorithm consi-
dering 100 and 20% (randomly sampled) of the features at
each iteration of Adaboost. In Fig. 6d, are shown the obtai-
ned results. As it can be seen, when using less features better
results are obtained for the first layers of the cascade, pro-
bably because the chance to over fit has been reduced. For
the remaining layers of the cascade the performance does not
change very much with the number of features. Taking into
account this situation, we use only the 20% of the features
for reducing the training time.

4.1.4 LBP versus rectangular features

We have tested the use of rectangular and mLBP features. We
make three different experiments: training using only mLBP
features, training using only rectangular features, and trai-
ning using both kind of features, rectangular ones for the first
two layers and mLBP features for the subsequent layers. As
it can be notice in Fig. 6e, the use of only mLBP features has
a much lower performance than using only rectangular fea-
tures, but when using both kind of features, the performance
is not greatly affected compared with the situation when only
rectangular features are employed. But, why it is interesting
to use mLBP features and not just rectangular features? First,
mLBP features are invariant to difficult illumination condi-
tions, and they have shown to have a better performance than
rectangular features in images with extreme illumination [6].
Second, the number of mLBP features to be selected is much
smaller than the number of rectangular features; therefore,
the training is much faster when using mLBP features. Taking
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Fig. 6 Analysis of training parameters. a Evaluation of nested and
non-nested cascade on the validation set. b Number of features nee-
ded at each stage of the nested and non-nested cascades. ¢ Effect of

this into consideration and also the fact that when using both
kinds of features a similar performance is obtained, in our
final detection and classification systems we use rectangular
features in the first two cascade layers and mLBP features in
the subsequent ones.

4.1.5 Selection of maximum FPR per layer

The selected maximum FPR per layer has an important effect
in the performance of the final system. As it can be noti-

False Positive Rate

using internal bootstrap. d Effect of feature sampling during training.
e Effect of selecting different features types. f Effect of selecting dif-
ferent maximum FPR per layer

ced in Fig. 6f, the use of a larger maximum FPRs per layer
reduces the performance of the system instead of increasing
it. We think that this is mainly because of two reasons: (1)
the internal bootstrap has a much greater effect when more
difficult examples are bootstrapped, which happens when the
maximum FPR is smaller, and (2) large maximum FPRs can
induce the selection of a few weak classifiers for a layer,
which has a negative effects in the following layers. This
effect is also seen in some of the experiments done by [21]:
at the first iterations of Adaboost the performance is very
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poor, for boosted classifiers of sizes from 1 to 5-10, the error
even increases when adding new weak classifiers, however
after adding at least ten or more classifiers, the error starts
to diminish very quickly when new classifiers are added. In
our case, when the maximum FPR is large (0.5 in Fig. 6f),
only four weak classifiers are needed in the first layer, which
is a small number of weak classifier for a boosted classifier.
On the other hand, when the maximum FPR is lower (0.35 in
Fig. 6f), the number of selected weak classifiers in the first
layer is seven. We believe that having a very small number
of weak classifiers in the first layers can have an important
negative effect in final performance of the cascade classifier.

4.2 Evaluation of the proposed face and eyes
detection systems

4.2.1 Experimental datasets

For testing our face and eyes detection systems we employed
three standard face databases (BiolD, FERET and CMU-
MIT), and a new face database (UCHFACE). No single image
from theses databases was used for the training of our sys-
tems. The BiolD Face Database (http://www.humanscan.de/
support/downloads/facedb.php) consists of 1,521 gray level
images with a resolution of 384 x 286 pixels. Each one shows
the frontal view of a face of one out of 23 different test per-
sons. During the recording special emphasis has been laid
on “real world” conditions, therefore the test set features a
large variety of illuminations, backgrounds, face sizes, and
face expressions. The FERET database [ 18] was assembled to
support testing and evaluation of face recognition algorithms
using standardized tests and procedures. The final corpus
consists of 14,051 eight-bit grayscale images of human heads
with views ranging from frontal to left and right profiles. For
compatibility with our previous study about face recognition
algorithms [20], we selected 1,016 images containing frontal
faces (254 persons, four images for each person) for testing
our detection systems. The employed FERET subset is avai-
lable in http://vision.die.uchile.cl. The CMU-MIT database
[19] consists of 130 grayscale images containing 507 faces. It
was originally created for evaluating algorithms for detecting
frontal views of human faces. Due to its low resolution and
low quality (some images are very noisy), we do not employ it
for evaluating the eye detector. It is important to notice that in
some publications people has used different subsets of this
dataset, because some of the annotated faces are face dra-
wings; therefore comparison is not always straight forward.
In this case we use all 130 images and we considered all
507 faces. The UCHFACE database was especially created
for evaluating eyes detection algorithms in images obtained
under uncontrolled conditions. It consists of 142 grayscale
images obtained from Internet, containing 343 frontal and
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semi-frontal faces. Face, eyes and gender information was
annotated in all these images, and it is available for future
studies in http://vision.die.uchile.cl/.

To have a first impression of the capabilities of the built
classifiers, in Fig. 7 are presented some selected examples of
face and eyes detection, as well as gender classification, in
the BiolD, FERET, CMU-MIT, and UCHFACE databases.

4.2.2 Face detection evaluation

Our face detection system uses a nested cascade composed
by domain-partitioning weak classifiers implemented using
LUTs. The employed features are rectangular features for the
first two layers and mLBP-based for the subsequent layers.
The cascade was trained using a maximum FPR per layer
of 0.20 (experimentally this value gave us better classifica-
tion results and a more compact cascade than when using a
maximum FPR per layer equal to 0.35), a minimum TPR per
layer of 0.999, three internal bootstraps for the training of
each layer, and a positive training set of 5,000 examples.
The initial negative training set for each layer had 2,400
examples (obtained using external bootstrap), and in each
internal bootstrap steps 400 more examples were added,
obtaining a total of 3,600 negative examples for the final
training of each layer. The final training time of the whole
nested cascade was about 15h in a 1.8 GHz Pentium 4, with
1,280 MB running Debian GNU/Linux. The obtained final
trained cascade has ten layers.

— Face detection in Single Face Images: BiolD database. In
Fig. 8a are shown the ROC curves of the different face
detector flavors on the BiolD database. For this database,
selected points of these ROCs are shown in the Table 1. In
[6] it was reported “while achieving comparable results
on the CMU sets, we reach the best published results on
the BioID database”. In Table | it can be seen that our
results are much better than to the ones reported by Froba,
especially in the lower parts of the ROCs (low FPR). Other
authors reported detection rates of 91.8% [9] and 92.8%
[10], but they do not indicate the FPR. In any case these
numbers are lower than ours.

— Face detection in Single Face Images: FERET database.
In Fig. 8b are shown the ROC curves of the different
face detector flavors in FERET. Some selected points of
these ROCs are shown in Table 2. No other groups have
reported face detection results in this subset of FERET.
Nevertheless, we can affirm that the detection rate in the
dataset is very high. From the 1,016 faces to be detected,
our best performing algorithms, Full-All and Full-Most,
detect 98.7% of them with O false positives and 99.5%
with 1 false positive. These numbers are very good if we
think on the potential application of a face recognition
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Fig. 7 Some selected examples of our face detection, eyes detection and gender classification systems at work on the FERET a, BiolD b, UCHFACE

d—e and CMU-MIT f databases
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Table 1 Comparative

evaluation (TPR) of the face False positives 0 1 2 5 6 13 14 15 20 25
detector on the BioID Database ;1 4y 941 951 965 96.9 97.6 98.1
(1,521 images)
Full-Most 941 951 965 96.9 97.6 98.1
Speed-All 771 840 874 902 94.6 95.6
Speed-Most 771 861 88 926 946 951 952 953 956
Froba and Ernst [6] ~50 ~65 ~84 ~94 ~98

Table 2 Comparative evaluation (TPR) of the face detector on the
FERET Database (1,016 images)

False positives 0 1 3 4 7 8 9 11 12
Full-All 98.7 99.5 99.7 99.7
Full-Most 98.7 99.5 99.6 99.7 99.8

Speed-All 94 957 96.4 97.6

Speed-Most 94 96.2 964 96.7 973 97.6 97.7 97.7

Table 3 Comparative evaluation (TPR) of the face detector on the
UCHFACE (142 images, 343 faces)

False positives 2 3 5 6 7 8 9 17
Full-All 87.8 88.0 94.8 96.5 97.1 985
Full-Most 87.8 88.0 948 959 965 97.1 985
Speed-All 88.6 95.6 96.8 98.5 99.1
Speed-Most 88.6 96.5 98.5 98.8 99.1

system after the face detection stage (FERET is a face
recognition test set).

Face detection in Multiple Face Images: UCHFACE data-
base. In Fig. 8c are shown the ROC curves of the dif-
ferent face detector flavors on the UCHFACE database.
Some selected points of these ROCs are shown in Table 3.
No other groups have reported face detection results on
this new database. However, considering that the images
were obtained under uncontrolled conditions, and that
they contain several faces per image, we consider that the
obtained results are rather good (e.g., 96.5% with three
false positives, 98.5% with five false positives).

Face detection in Multiple Face Images: CMU-MIT data-
base. In Fig. 8d are shown the ROC curves of the different
face detector flavors applied to the CMU-MIT database.
Because of some of these images are noisy and low-
quality, all the results here presented were obtained by
preprocessing the images with a low pass filter.

Some selected points of these ROCs are shown in Table 4
for comparing these results with the best results reported in
the literature in this database. As it can be seen in Fig. 8d all
flavors have similar performance for low FP (false positives)
values. However, for operation points with larger FP, the Full-

@ Springer

Most flavor of the face detector gives better results. If we
compare these results to the ones obtained by other metho-
dologies presented on the literature in terms of TPR and FP,
we obtain better results than [19,31], slightly better results
than [12], slightly worse results than [4] (but our system is
much faster*), and worse results than [35], [22] and [2]. It is
difficult to compare our system with [6], because they use a
reduced subset of the CMU-MIT databases. But considering
that using the complete database is more difficult, because
drawings of faces are considered on the original dataset, our
results are better than the ones of Froba and Ernst [6]. We
think that we have lower detection rates than Wu et al. [35]
and Schneiderman [22] mainly because of the size of the
training database. As we have mentioned, our training data-
base consists of 5,000 face images, while for example in [35]
20,000 training faces are employed. The better performance
of Brubaker et al. [2] might be because of two reasons: the
use of CARTs (Classification And Regression Trees) as weak
classifiers, and the criteria used for selecting the trade-off bet-
ween the FPR and TPR of the classifier. Although Brubaker et
al. [2] does not give any number, we think that the processing
time and training time of our detection system is shorter. One
of the reason is that we use weak classifiers, which can be
evaluated just by reading one array (LUT) value—after eva-
luating the feature—while Brubaker et al. [2] used CART
classifiers of depth four, which require at least four compa-
rison evaluations, therefore is at least four times slower. In
terms of the training time, as already mentioned, in our case
it takes O (m|F|T) while the training time of Brubaker et al.
[2] is at least O (m log(m)|F|T).

4.2.3 Eyes detection evaluation

As already mentioned, our eye detector was trained using a
1-layer cascade, and the initial training set was not modi-
fied using the bootstrap procedure. This difference with the
training of the face detector comes from the fact that we
aim to detect eyes only within face regions (the negative
examples domain is constrained), therefore the bootstrap step

4 That system is about eight times slower than Viola and Jones [31,32].
Our system has about the same processing speed than Viola and Jones
[31,32].
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Table 4 Comparative evaluation (TPR) of the face detector on the CMU-MIT database (130 images, 507 faces)

False Positives 0 3 5 6 10 13 14 19 22 25 29 31 57 65
Full-All 773 832 86.6 88 89.9 90.1 92.1
Full-Most 773 832 86.6 92
Speed-All 74.6 81.3 826 858 87.6 90.1
Speed-Most 74.6 81.3 826 854 87

Froba and Ernst [6]* ~66 ~87 ~90

Wu et al. [35] 89 90.1  90.7 94.5

Viola and Jones [31] 76.1 88.4 92
Rowley et al. [19] 83.2 86

Schneiderman [22] 89.7 93.1 94.4

Schneiderman and Kanade [23] 94.4
Lietal. [12] 83.6 90.2

Brubaker et al. [2] 89.1  90.5 93.1

Delakis and Garcia [4] 88.8 90.5 91.5 92.3

4 Subset of 483 from 507 faces. This set is called CMU 125 testset

is not needed. The used training set was generated using
faces contained in one of our face databases (this database
can not be make public). The positive examples were extrac-
ted by cropping windows centered at eyes positions, while
the negative examples (non-eye examples) were obtained by
cropping windows from face area positions that are not cente-
red in the eyes (it should be remembered that the eye detector
is always applied over faces windows). The size of the posi-
tive training and validation sets was 6,000 in each case, while
the size of the negative (non-eye) training and validation sets
was 20,000 in each case.

Several eyes detection algorithms have been proposed
during the last years. For comparison purposes, we selec-
ted state of the art eyes detection algorithms that fulfill the
following requirements: (i) they should be real time, (ii) a
quantitatively characterized of them, using standard data-
bases, should be available, and (iii) the evaluation databases
should include complex background and variable illumina-
tion conditions. Two recently proposed systems that fulfill
these requirements are [15] and [5]. Both of them make use
boosted classifiers, are applied after previous stage of face
detection, and have been evaluated in the BiolD database.

For evaluating the eyes detection accuracy only correctly
detected faces are used. We employ cumulative curves of eyes
localization relative error [15]. The relative error is defined
as the Euclidian distance between the ground truth of the
eyes and the centers of the detected eyes, normalized by the
Euclidian distance between the ground truth eyes centers.
We have considered as center of the eyes the middle point
between the boundaries of the eye. In Fig. 9 are shown these
cumulative curves for the eye detector on the BiolD, FERET,
and UCHFACE databases using the different flavors of the
face detector. No eyes detection experiments were performed
on the MIT-CMU database because in many cases the reso-

lution of the contained faces is too low for performing eyes
detection. It can be noticed that all search flavors used for the
face detector gives almost the same results for the eye detec-
tor. Some selected points of these error cumulative curves,
when using the Full-All flavor of the face detector, toge-
ther with the mean error in pixels for the eyes detection are
shown in Table 5. The obtained results are very accurate: for
example 3.02pixels error and 97.83% detection rate (DR)
in the BiolD database. The average distance between the
eyes for the BioID database is 54 pixels, hence for a 97.83%
detection rate the normalized error (in terms of the eyes dis-
tance) is only 5.6%. In the case of the FERET images, for a
99.65% DR the normalized error is 5.38%. In the case of the
UCHFACE images, for a 95.16% DR the normalized error is
5.08%.

This small error (close to 5% when all eyes are detected)
might be due to an inaccurate annotation of the ground truth
(both for the training and evaluation datasets). For example,
when annotating a face in which the distance between the
eyes is 100 pixels, it is very likely that there will be an error of
5 pixels in the annotation. We think that the obtained accuracy
of the detector is very close to one of the human being, and
that it would be very difficult to obtain more accurate results
without a very careful annotation of the training faces, and a
processing performed at larger faces’ resolutions.

By looking at the cumulative error curves on the BiolD
database we observe that we obtain much better results that
the ones reported in [15]. For a given eye DR, the error we
obtain is less than 50% the one obtained in that work. For ins-
tance, for DR of 80% we obtain an error of about 0.047, while
in [15] the erroris 0.1. In [5] a completely different methodo-
logy is employed for evaluating the performance of the eye
detector. No curves are given but median accuracy measured
in terms of irisis. It is very difficult to compare this kind of
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Fig. 9 Cumulative curves of

Evaluation of the eye detector on the BioID, Feret and Uchile databases

eye localization error of the eye 100
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Relative error

Table 5 Comparative
evaluation of the eyes detection
on the BiolD, FERET and

BiolD
DR % 31.8

UCHFACE databases when the Normalized error 0.027
Full-All flavor of the face Mean error in pixels 1.47
detector is used FERET
DR % 31.0
Normalized error 0.029
Mean error in Pixels 1.84
UCHFACE
DR % 29.3
Normalized error 0.017
Mean error in pixels 0.69

39.8 50.6 572 68.7 79.9 89.4 97.8
0.031 0.035 0.038 0.0421 0.047 0.051 0.056
1.67 1.90 2.03 227 2.51 2.73 3.02
38.6 53.8 61.3 68.0 80.4 88.8 99.7
0.032 0.038 0.040 0.042 0.046 0.049 0.0548
2.06 2.45 2.65 2.81 3.13 3.35 3.69
40.0 47.2 59.2 71.7 79.9 90.3 95.2
0.023 0.026 0.031 0.037 0.041 0.047 0.051
0.86 0.96 1.12 1.29 1.41 1.61 1.71

results with ours. But, by analyzing the employed training
methodology, and the eyes detection examples showed in
that paper, we believe that those results are comparable with
ours. No other groups have reported eyes detection results in
our subset of the FERET database or in the new UCHFACE
database. We hope in a near future other research groups can
employ these databases and the available ground truth for
evaluating their systems.

4.3 Gender classification using the proposed framework

Several methods have been proposed for solving the gen-
der classification problem, including neural networks, PCA
projections, SVM classifiers, and Adaboost classifiers. Best
reported results have been obtained using SVM [3,16] and
Adaboost [24,34]. We will briefly analyze some relevant
works. In [24] a gender classification system based on
Adaboost, that uses decision stumps and rectangular fea-
tures, is presented. The system reached a performance of 79%

@ Springer

correct rate in a set of face images obtained from Internet that
were manually annotated and cropped prior to the classifi-
cation. On the same dataset, this system was favorably com-
pared against the one proposed in [16], being 1,000 times
faster and having a higher classification rate (79% against
75.5%). In [34] is described a LUT-based Adaboost sys-
tem for gender classification that uses rectangular features.
Prior to the classification the faces are aligned. This is done
through a face alignment method called SDAM that is a kind
of AAM (Active Appearance Model). After alignment, gray-
level normalization (histogram equalization) is performed.
The system achieves a classification rate of 88% on images
downloaded form Internet (using 36 x 36 face windows), and
it is favorably compared against a SVM-based system and a
decition-stumps based Adaboost system.

We have applied the proposed framework to gender clas-
sification using facial information. The implemented gender
classification system is applied after face and eyes detec-
tion. Face detection is employed for obtaining face windows,
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Table 6 Gender classification. Correct classification rates at operation
points with equal error rates in both classes

Database SVM (RBF) Adaboost.-Rectangular Adaboost.-mLBP
UCHFACE 79.82 79.22 80.12
FERET 84.13 83.95 85.89
BiolD 79.05 79.52 81.46

Only best performing methods are shown. Faces were cropped using
automatically detected eyes. Best results are shown in bold

Table 7 Average gender classification processing time on a given face
image

Method SVM PCA SVM+PCA Adaboost- Adaboost-
Rectangular mLBP
Time (ms) 10.48 625 205 0.244 1.465

This time does not include the time required for the face detection, face
scaling and eyes detection

which are aligned using the detected eyes and then downs-
caled to 24 x 24 window’s size. The gender classifier is built
using Adaboost classifiers. Implemented features are rectan-
gular and mLBP. Using these features, different flavors of the
gender classification system were built. These flavors were
evaluated using the FERET, BiolD and UCHFACE data-
bases, and compared against SVM-based systems (see details
in [30]). As can be observed in Table 6, when using mLBP
features, the proposed gender classification system outper-
forms SVM-based systems and Adaboost with rectangular
features in terms of classification rate. In Table 7 it is shown
the average time required by the different methods for the
gender classification of a given face image. It can be seen that
Adaboost-mLBP is about ten times faster than SVM-based
systems, while Adaboost-Rectangular is six times faster than
Adaboost-mLBP, and 60 times faster than SVM. To com-
pare with other methods is not easy because the previously
used databases are not available. Nevertheless we can observe
that the obtained results are similar to the ones obtained by
Shakhnarovich et al. [24] and slightly lower than Wu
et al. [34]. Notice that Shakhnarovich et al. [24] does not
automatically detect the face and eyes, and that we can handle
smaller faces than Wu et al. [34].

5 Conclusions

An important goal of machine vision is to develop systems
that can detect objects in cluttered backgrounds, with the
ability of generalization across intra-class variability. In this
context, in the present work we have described a unified
learning framework for object detection and classification

using nested cascades of boosted classifiers. The most inter-
esting aspect of this framework is the integration of powerful
learning capabilities together with effective training proce-
dures. This framework is based on the use of Adaboost for the
training of a nested cascade classifier, domain-partitioning
for the design of weak classifiers, a procedure for handling
the tradeoff between the classification rates and the com-
plexity of each layer, and rectangular and mLBP features.
For the training of the detection systems, internal and exter-
nal bootstrap is used, which together with feature sampling
during training, combined use of rectangular features in the
first two cascade layers, and mLBP features in the subsequent
layers, and an adequate selection of the maximum FPR per
layer allows us to train a face detection system in about 15h
using in a Pentium 4 personal computer.

The framework has been used for the development of
face detection and eyes detection systems. We have com-
pared both systems with state of the art similar systems. Our
face detection system obtains the best-reported results on the
BiolD database, and the best reported results on the CMU-
MIT database. Our eyes detection system obtains an impor-
tant improvement over the best-reported results on the BiolD
database. For future comparisons with the here presented sys-
tems, a performance evaluation was carried out in images of
the FERET database and in the new UCHFACE database.
This new database includes the annotation of the faces, eyes
(plus other landmarks), and gender, and it has been made
available for the research community.

We have also used the proposed framework for building
gender classification systems that were evaluated using the
FERET, BioID and UCHFACE databases. The main impro-
vements over previous works are: (1) the use of more suitable
features for addressing this problem—mLBP features behave
better than rectangular features; (2) the usage of smaller face
windows (24 x 24) which allows analyzing smaller faces, and
(3) a faster processing, because, besides the eye alignment,
we do not perform any geometric or photometric normaliza-
tion. From the shown experiments it can be concluded that
these systems achieve high accuracy in dynamical environ-
ments, and that they largely outperform SVM-based systems
in terms of processing speed.

As has been shown, the most interesting aspect of this
framework is the possibility of building detection and clas-
sification systems with high accuracy, robustness, high pro-
cessing speed, and high training speed. In a near future we
plan to use the proposed learning framework for building
other classification tools for the analysis of faces (race clas-
sification, face expressions detection, mouth detection, etc.),
and for the detection of other kinds of objects. We plant to
extend the framework to detect objects with in-plane and out-
of-plane rotations, and to accurately estimate their poses. We
also want to explore the use of other kinds of features, and
the use of LUT classifiers with partitions of variable size.
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