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a b s t r a c t

A methodology for the analysis and design of fall sequences of robots that minimize joint/articulation
injuries, and the damage of valuable body parts is proposed. These fall sequences can be
activated/triggered by the robot in case of a detected unintentional fall or an intentional fall, which are
common events in humanoid soccer environments. The methodology is human-based and requires the
use of a realistic simulator as development tool. The obtained results show that fall sequences designed
using the proposed method produce less damage than standard, uncontrolled falls.
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1. Introduction

In soccer, as in many other sports that allow contact among
players, it is usual that players fall down, as consequence of fouls,
collisions with other players or objects, or extreme body actions,
such as fast movements or ball kicks from unstable body positions.
In addition, soccer players can intentionally fall down to block
the ball trajectory (defense player) or to gain control of the ball
(goalkeeper). Therefore, we can affirm that the management of
falls—i.e. how to avoid an unintentional fall, how to fall without
damaging the body, how to achieve fast recovering of the standing
position after a fall—is an essential ability of good soccer players. In
general terms, the adequate management of falls is important for
any physical human activity.
Given that one of the main goals of robot soccer competitions

(RoboCup and FIRA contests) is to allow robots to play soccer
as humans do, the correct management of falls in legged robots,
especially in highly unstable systems such as biped humanoid
robots, is a very relevant matter. However, to the best of our
knowledge this issue has almost not been addressed in the
robot soccer and other mobile robotics communities. The current
situation in robot soccer is that:

(i) In case of an unintentional fall, the standard situation is that
robots do not realize they are falling down. Therefore, they
do not perform any action for diminishing the fall damage.
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After the fall, they recognize they are on the ground using
their internal sensors, and they start a standing up sequence
of movements. There are some few examples of systems that
detect unstable situations and avoid the fall [1–4].

(ii) In most cases, unintentional or intentional falls, robots fall as
deadweight, without using a fall sequence that allows them
to dissipate some of the kinetic energy of the fall or to protect
some valuable body parts, as humans do. Twoof the fewworks
that address this issue are [5,6], although none of them was
developed in the context of robot soccer. In some other works
this issue is partially addressed by switching off the robot’s
motors, once the fall is detected. The idea behind this action is
to lower the motor’s damage.

(iii) The damage of robot components or parts of the surrounding
environment after a fall is a real problem. This is one of the
reasons for limiting the size of robots in some robot soccer
leagues (e.g. RoboCup TeenSize league).

In this context, the aim of this paper is to address the manage-
ment of falls in robot soccer. In concrete, we propose a method-
ology to design fall sequences that minimize joint/articulation
injuries, as well as the damage of valuable body parts (cameras and
processing units). These fall sequences can be activated/triggered
by the robot in case of a detected unintentional fall or in case of
an intentional fall. The idea is to take control of the fall, as soon as
the robot detects it. The proposed design methodology is iterative,
it consists on the application of consecutive synthesis and analy-
sis steps by a human designer, and it makes use of a realistic robot
simulator, as a development and evaluation tool.
It is not our intention to cover exhaustively the management of

falls in this article, but to propose a methodology for the design of
fall sequences and to focus the attention of the community on this
important problem.
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A preliminary version of this work was presented in the
RoboCup Symposium 2008. This extended version includes an
improved fall’s damage model (in each joint the radial torque
was added to the model), a much more detailed evaluation and
analysis of the proposedmethodology (design examples using data
obtained from human-activity videos and motion capture devices,
more detailed experiments, and deeper analysis of pairs of fall
sequences), and testing of the designed fall sequences in reality
using the UCH H1 humanoid robot. In these tests a fast speed
camera was employed to analyze the fall sequences.
This paper is organized as follows: In Section 2, some related

work about human’s fall is presented. The analysis of these studies
suggests someguidelines for themanagement of falls in robots. The
here-proposed methodology for the design of fall sequences that
minimize the robot damage is described in Section 3. In Section 4,
the presented methodology is used, as a case study, in the design
process of fall sequences for simulated Nao humanoid robots, and
validated in reality using the UCH H1 humanoid robot. Finally, in
Section 5 some conclusions of this work are given.

2. Related work

Uncontrolled falls in biped humanoid robots have been largely
ignored except for some very interesting works such as [5–7].
In general, falls are characterized by violent impacts that quickly
dissipate and transfer important amounts of kinetic energy
through joints, bones, and tissues. In this section, we will review
some of the existing literature on human’s falls, which can give us
some insights on how to manage falls in robots. We will review
several of the approaches to study falls in humans: what has been
reported in medical literature, the studies done by researchers in
biomechanics, the techniques developed in martial arts, and the
results developed by the animation industry.

2.1. Medical studies

In [8] a fall is defined as ‘‘an unintentional event that results in
a person’s coming to rest on the ground or on another lower level’’.
Falls are in general the result of the convergence of several intrinsic
(muscle weakness, visual deficit, poor balance, gait defects, etc.),
pharmacological (walking under the influence of alcohol, being
under strong medication, etc.), environmental (uneven terrain,
poor lighting conditions), and behavioral related factors (daily
tasks, sports, violence, etc.) [9–11]. The rapid transmission of
forces through the body that follow an impact against a surface
causes injuries according to the magnitude and direction of the
forces, the energy-absorbing characteristics of the surfaces that
receive the impact, and the capacity of the tissues to absorb
damage [10]. Fall prevention in humans has focused onbalance and
gait impairments, which are mainly affected by the interaction of
the sensory (ability to determine whether the center of gravity of
the body is within the support of the body or not), neuromuscular
(transmission speed of the nervous impulses) andmusculoskeletal
systems (the available muscular force determine the range of
possible movements), and their integration by the central nervous
system (Parkinson’s disease).
In general, falls from a standing height produce forces that are

one order of magnitude greater than those necessary to break any
bone of an elderly woman [10]. However, approximately no more
than 10% of falls in older people cause fractures [9,10]. The most
common examples of serious injuries, besides tissue and organ
damage, are hip and wrist fractures [10]. This is a clear indicator
that people constantly use fall-managing strategies that help to
reduce injury-producing falls. Wrist injuries are also interesting
because they indicate an active intent of people to stop their falls
using limbs to shift the impact to less important organs or bones
as the hands and the hips.
2.2. Biomechanical approach

Even though medical literature has been studying falls for
several decades, the needs posed by high efficiency sports and
the possibilities created by technological advances such as motion
capture equipments has spawned new approaches to the science
of human movement, also called biomechanics. This has made
possible to understand human dynamics with greater detail and
to generate more precise mathematical models of this biological
machine:
(i) Themusculoskeletal system is nowmodeled as a combination
of something that exerts the force, a spring, and a damping
system [12,13].

(ii) Machine learning approaches have been used to classify
movements in order to understand their relationships, and to
prove the existence of clusters of movement patterns [14].

(iii) It has been possible to determine the role of the center ofmass
of the body in all types of movements, i.e. rock climbing [15].

(iv) Another important aspect are interactions with external
objects, where, for example, it has been possible to determine
that people require severalminutes to adjust theirmovements
to changing asymmetrical loads [16,17], or how vision and
limbs coordinate to follow and to manipulate balls while
juggling [18].

(v) Control of synchronization between many people exhibiting
rhythmicmovements under some conditions has been proven
to be independent from force control [19].

Of special interest, from the point of view of studying falls, are
studies of people displaying fast interactions with the ground or
objects. Of special interest is the study of Gittoes et al. [20], which
proves that soft tissue strongly contributed to reduce loadingwhen
landing on the ground. Other studies of voluntary fast transitions
show that it is possible to generate complex activation patterns
that allow control sudden movements with an amazing degree of
control [21–24].

2.3. Martial arts

In the previous paragraphs we have pointed out the biological
aspects of falling. But, is it possible to control a fall in order
to minimize damage? Is it possible to modify a fall in order to
achieve some dynamic objective such as continuing running as
fast as possible? These questions have been answered long ago
by martial arts (see [25]). Out of these, Judo and Taekwondo, are
perfect examples. Both disciplines teach how to fall from different
positions: forward, backward, and sideways. All these techniques
are extremely effective in the sense that produce a sequence of
movements that vary the geometry of the human body in order
to lower the force of the impacts, and spread the kinetic energy
transfer through a wider contact area, a longer lapse of time,
and limb movements. Moreover, some of these techniques are
designed to allow the fighter to move away from the attacker and
prepare himself to continue the combat by quickly recovering an
upright stance.

2.4. Human dynamics simulation

The constant pressure of the computer animation market for
more realistic special effects has spurred a lot of research in this
topic in the last decades [26–28]. This research has even tackled
problemsnot studied by other disciplines, such as the reproduction
of destructive movements that are impossible to study in humans
due to their nature [29,30]. Given that the tools created by this
industry are completely located in simulated environments, many
of them naturally produce very realistic falls with physically
plausible kinematics and dynamical interactions.
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2.5. Summary

In general, human falls are characterized by unexpected or
expected impacts that affect the whole body. Overall, a fall should
not be analyzed as a very local impact. On the contrary, its
forces propagate along the entire body and help to distribute and
dissipate its effects. In general, falls can be classified into three
cases according to the degree of awareness of the person falling:

(i) The person is not aware of the fall and only passive elements of
the body help to absorb the impacts. Given that every fall has
a great potential for causing important body damage, there is
strong evidence that the very nature of human joints,modeled
with springs and dampers, and soft tissue passively contribute
to ameliorate the effects of falls. In addition,medical literature
reports that external padding may also help to diminish the
effects of the falls.

(ii) The person detects when a fall is initiated and responds
accordingly. This explains, for example, why wrist fractures
are common: limbs are commonly used to change the impact
points in order to redistribute the impact zones along the
different surfaces of the body and over time.

(iii) As done in martial arts, if the person can predict a fall, then
he/she can take control of the fall and change it into a fluid
movement that helps to quickly recover the desired behavior.
This is one step further into distributing the fall into different
and wider surfaces of the body and over time, aiming towards
diminishing or even eliminating fall damage.

When falls are considered from the point of view of robots,
things change. For example, medical literature does not talk about
joint damage but of bone fractures. In robots it is more plausible
that the opposite is more important: it is always possible to build
very strong limbs, while the motors in the joints are the ones that
suffer damage during impacts. In this sense there has been work
done that points out the problems that need to be solved in order
to map human movement into robot movement [31].
In general, the study of human falls suggests that for robots it is

important to:

(i) Design a body that passively helps as much as possible to
walk and to fall. A body that uses joint models with springs
and dampers as movable parts that act like soft tissue, and
padding specially designed to protect important, frail, and/or
expensive parts.

(ii) Detect a fall as soon as possible to trigger fall-related
movements that allows reducing the fall damage.

(iii) If possible, predict falls and redesign normal moves in order
to lower the probability of a fall, or to simply control a fall
in order to eliminate it as much as possible or to reduce the
damage.

This work is directly related with the design of fall-related
movements that allows reducing the fall damage, and therefore
connected to the second and third points.

3. A Methodology for designing fall sequences that minimize
robot damage

3.1. Modeling

Let us consider a humanoid robot with n rotational articula-
tions/joints qi. Each articulation is composed by a DCmotor, a gear-
box and mechanical elements that fix these components (e.g. an
articulation built up using a standard servomotor). In this model
each articulation can rotate in a given angular operational range:

θmini ≤ θi ≤ θ
max
i ; i = 1, . . . , n. (1)
Fx

Fr

α

Fz

Fy

τr

Fig. 1. External forces and torques that can damage an articulation, illustrated for
the case of a Dynamixel DX117 motor.

The dynamics of each joint i can be characterized in terms of
the forces and torques applied in the different axes. Due to the
symmetry of the joints, only the axial and radial forces need to
be considered. The axial force Fa = Fx and the magnitude of the
radial force Fr =

√
F 2y + F 2z (see Fig. 1) are external forces that

can damage the articulation due to impacts produced during a fall.
The rotational torque τrot = τx is an external torque applied in the
direction of rotation of the joint, while the radial torque τrad = τr is
the torque produced by the radial force. These forces and torques
can be produced directly by the fall impacts or be transmitted by
the robot body to the articulation. In the short period of time after
an impact, a joint can be damaged if the linear or angular impulses
(i.e. the integral of each external forces or torques over the time
period) surpass a given magnitude that depends on the physical
properties of the articulation (motor characteristics, gear material,
etc.). Let us define Jfa, Jfr , Jrot and Jrad as the impulses produced by
the axial force, radial force, rotational torque, and radial torque
respectively. The damage can be avoided if the following relations
hold:

Ji,fa ≤ Jmaxi,fa ; Ji,fr ≤ Jmaxi,fr ; Ji,rot ≤ Jmaxi,rot ;

Ji,rad ≤ Jmaxi,rad; i = 1, . . . , n
(2)

with Jmaxi,fa , J
max
i,fr , J

max
i,rot , J

max
i,rad threshold values that depends on the

physical properties of the joint.
In addition to the joints’ damage, the robot body (mainly

frames) can be damaged if the intensity of the fall surpasses a given
threshold. Therefore, we need a globalmeasure of the fall intensity.
In the biomechanics literature and in studies about falls in humans
the impact velocity vimp is used as a measure of the fall intensity.
From the physics point of view, in rigid body collisions the damage
is produced by the change of momentum of the colliding objects.
Given that in our case collisions are produced between the robot
and the ground, which has a much larger mass than the robot, we
can assume that the impact velocity is an adequate measure of
the fall impact. Hence, to avoid robot body damage, the following
should hold:

vimp ≤ v
max
imp (3)

with vmaximp themaximal impact velocity that do not produce damage
in the robot.
Naturally, (2) and (3) are related because the change of the total

momentum, which depends on the impact velocity, is equal to the
total impulse. This total impulse is then propagated through the
robot body, producing local impulses in the joints. In this sense,
we have mentioned both measures because in the simulation
environment, the impulses over each joint during a fall can be
easily obtained, but in real robots, these measures are difficult to
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obtain. However, with the use of a high speed camera we can track
selected points in the robot, and their velocities can be estimated,
then we can test falls designed in a simulation environment using
real robots.
An important additional requirement to avoid the robot damage

is that valuable bodyparts (CPU, cameras, etc.) should be protected.
We assume that these parts will be protected if they do not touch
the ground or if they touch it at a low speed. Let us consider K
valuable body parts, then the following constraints should hold for
each of them:

pkz > 0 ∨ v
k
z ≤ v

max
k,z ; k = 1, . . . , K (4)

with pkz and v
k
z the vertical position and speed of each valuable part,

respectively.
Let us define the joints’ positions during the whole fall period

as ΘTFall = {Θ(t)}t=0,...,TFall ∈ Θ
∗, with Θ(t) a vector containing

the joints’ positions at time step t , TFall the fall period, and Θ∗ the
domain of all possible joint configurations over different periods
of time. The process of designing a fall sequence is modeled as a
search for the ΘTFall that minimizes the damage produced by the
fall in robot’s joints, frames and valuable parts. From (1)–(4), the
general expression thatmodel the proposed optimization problem,
for a givenΘTFall , is given by:

min
ΘTFall∈Θ

∗
f (ΘTFall , Ji,fa, Ji,fr , Ji,rot , Ji,radial, vimp)

subject to
Ji,fa ≤ Jmaxi,fa ; Ji,fr ≤ Jmaxi,fr ; Ji,rot ≤ Jmaxi,rot ;

Ji,rad ≤ Jmaxi,rad; i = 1, . . . , n

pkz(t) > 0 ∨ v
k
z (t) ≤ v

max
k,z ; k = 1, . . . , K ; t = 0, . . . , TFall

θmini ≤ θi(t) ≤ θmaxi ; i = 1, . . . , n; t = 0, . . . , TFall.

(5)

In this work, a particular objective function to use with the
simulation environment is defined as:

min
ΘTFall∈Θ

∗
f (ΘTFall , Ji,fa, Ji,fr , Ji,rot , Ji,radial)

=

4∑
j=1

αj


n∑
i=1
βi · Ji,j

n
+ µ · max

i=1...n
(Ji,j)γ

 (6)

withαj andβjweight factors that depends on the resistance of each
axis and on the importance of each joint (e.g. the neck joint is far
more important than a finger joint for a human) respectively, µ a
weight factor of the global maximal impactmeasure over all joints,
γ a constant that allow to control how a higher maximal increases
the value of the objective function, and Ji,1 = Ji,fa, Ji,2 = Ji,fr , Ji,3 =
Ji,rot , Ji,4 = Ji,rad; i = 1, . . . , n. It should be noted that in (6), the
force and torque impulses should be measured in the short period
of time after an impact. On the other hand, velocity terms have not
been considered in this objective function, due to the redundancy
of thismeasure respect of the impulses. Velocitywill be considered
just when we will analyze a fall in a real robot.

3.2. Proposed methodology

As already explained, the process of designing a fall sequence
consists on searching for aΘTFall that minimizes an expression that
quantifies the damage (Eq. (6)). However, to implement directly
this search process is highly complex because:

(i) when working directly with real robots a large amount of
experiments is required, which would eventually damage the
robots,
(ii) it requires measuring in each joint two linear and two
rotational impulse values, as well as the impact velocity, in
real-time (at a rate of few milliseconds), and

(iii) the high-dimensionality of the parameter space; the search
process requires the determination of the position of each
joint during the whole fall period.

The first two problems can be overcome if a realistic simulator
is employed for the analysis and design of the fall sequences.
Using this computational tool, robot damage due to extensive
experiments is avoided. In addition, if the simulator is realistic
enough (see for example [32,33]), all physical quantities that need
to be known for evaluating (6) can be easily determined. The
high dimensionality of the parameter space is the hardest problem
to be tackled. As a suboptimal design strategy, we propose a
human-based design procedure consisting on iteratively applying
the following consecutive steps: synthesis of fall sequences using a
simulation tool, and quantitative analysis of the obtained sequences
using Eq. (6). The proposed procedure consists of the following
main components:

(i) Fall Initialization: The seeds of the design process, i.e. initial
values for the joints’ positions during thewhole fall period, are
examples of human falls, obtained either from standard videos
of falls (e.g. martial arts or human sports) or from data ac-
quired using motion capture equipments (e.g. exoskeletons).
In this step, just some general concepts of a ‘‘good’’ falling
movement are used: bend knees to lower the center of mass,
protect important parts keeping them away of the ground or
using robust parts to cover themduring the fall. Due to thenat-
ural difference between human’s bodies and robot’s bodies,
the human inspiration just helps us to have a general starting
point on the design of a good fall.

(ii) Fall Evaluation: The second step consists on executing the
current fall to evaluate the objective function, and to obtain
the maximal impulses over the joints during the fall. An
interactive tool is employed by a human operator for the
synthesis of fall sequences (see example in Fig. 2). For each
frame of the sequence, the designer set up all joints’ positions
and tests the current fall. After the fall is finalized, the
objective function given by (6) is evaluated, and all the
maximal impulses over the joints can be retrieved.

(iii) Fall Re-Design: The joints with maximal impulses indicate to
the human operator what should be corrected in the fall. The
human operator changes the position of the joints to reduce
the impact over the jointswithmaximal impulses. In addition,
the human operator has to move the joints with lower
impulse values allowing them to dissipate part of the energy
initially dissipated in the joints with high impulse values.
The restrictions over the important and sensible parts of the
robot (e.g. head) are reviewed in each step of this manual
interaction process, to ensure that they are not touching the
ground during the fall.

The steps (ii) and (iii) are repeated iteratively until the objective
function gives acceptable low values, and the procedure ensures
that all maximal impulses are controlled and all restrictions are
accomplished.
It is important to note that the proposed human-based

search strategy can be automated using any numeric search
procedure such as GA (Genetic Algorithms) or PSO (Particle Swarm
Optimization). However, due to the high complexity of the solution
space, added to the fact that each experiment (fall sequence
execution) is a time consuming task with current simulation tools,
we are still not using those approaches.
In the next section we will describe how the proposed strategy

has been used in the design of falls sequences for Nao robots in the
simulated environment of Webots.
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Fig. 2. Image capture of the interactive tool used for the falls design.
Table 1
Nao’s joint names and motion ranges.

Body part Id Joint name Motion Range (degrees)

Head 1 HeadYaw Head joint twist (Z) −120 to 120
2 HeadPitch Head joint front & back (Y ) −45 to 45

Left arm

7 LShoulderPitch Left shoulder joint front & back (Y ) −120 to 120
8 LShoulderRoll Left shoulder joint right & left (Z) 0 to 95
9 LElbowRoll Left shoulder joint twist (X) −120 to 120
10 LElbowYaw Left elbow joint (Z) 0 to 90

Left leg

17 LHipYawPitch Left hip joint twist (Z45◦) −90 to 0
18 LHipPitch Left hip joint front & back (Y ) −100 to 25
19 LHipRoll Left hip joint right and left (X) −25 to 45
20 LKneePitch Left knee joint (Y ) 0 to 130
21 LAnklePitch Left ankle joint front & back (Y ) −75 to 45
22 LAnkleRoll Left ankle joint right & left (X) −45 to 25

Right leg

11 RHipYawPitch Right hip joint twist (Z45◦) −90 to 0
12 RHipPitch Right hip joint front and back (Y ) −100 to 25
13 RHipRoll Right hip joint right & left (X) −45 to 25
14 RKneePitch Right knee joint (Y ) 0 to 130
15 RAnklePitch Right ankle joint front & back (Y ) −75 to 45
16 RAnkleRoll Right ankle right & left (X) −25 to 45

Right arm

3 RShoulderPitch Right shoulder joint front & back (Y ) −120 to 120
4 RShoulderRoll Right shoulder joint right & left (Z) −95 to 0
5 RElbowRoll Right shoulder joint twist (X) −120 to 120
6 RElbowYaw Right elbow joint (Z) −90 to 0
4. Case study: Design of fall sequences for simulated Nao
humanoid robots and validation in a real humanoid robot

4.1. Experimental tools and setup

To validate the proposed strategy, the problem of designing fall
sequences for simulated Nao robots [34] was chosen. This robot
was selected for the following reasons:

(i) it corresponds to an humanoid robot with 22 degrees of
freedom (see Table 1 for details about the joints and their
motion ranges),which represents a complexproblem from the
point of view of the design of fall sequences,

(ii) there is a realistic simulator available for this robot (Webots
[32]) and

(iii) the simulator and the robot controller are URBI-compatible
[35], which allows building an interactive interface for
designing falls, without modifying the simulator or accessing
to its source code.
The first step was to build a user interface that allows designing

the falls, i.e. specifying the joints positions for the whole frame
period (Θ(t); t = 0, . . . , TEndFall), and measuring the velocity and
impulses values of the falls. This interface was built using URBI to
interact with the robot, and using an ODE plug in to obtain forces
and velocities form the simulator. Fig. 2 shows the appearance of
the developed tool. It can be seen that:

(i) The main window contains the values of all joint positions
for the current frame. These values can be modified by the
designer (user).

(ii) The bottomwindow contains the commands for executing the
fall, either continuously or in frame-to-frame mode.

(iii) The right window displays the values of the force and torque
impulses, the impact velocity, and flags that indicate if any
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22.127 mm

a

b

Fig. 3. Simulation sequences showing selected frames of the frontal falls under analysis. FrontHead: (a1)–(a6). FrontLow: (b1)–(b6).
a

b

Fig. 4. Simulation sequences showing selected frames of the back falls under analysis. BackHead: (a1)–(a6). BackLow: (b1)–(b6).
Table 2
Impulses, maximal impulses and objective function over the joints.

BackHead fall Joint ID Maximal
impulses

Impulses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Axial (Nm) 270.6 1.5 11.6 64.1 20.3 54.9 9.2 81.1 20.3 54.5 144.6 75.1 92.0 74.9 74.9 171.0 135.9 76.1 85.3 76.1 76.0 152.9 270.6
Radial (Nm) 368.4 437.5 139.9 74.7 46.8 23.9 179.4 89.9 46.4 23.9 142.8 192.0 187.8 192.5 209.9 168.8 139.9 178.2 178.0 176.1 189.4 157.9 437.5
Axial Tor. (Nms) 1.2 41.6 12.8 1.5 0.0 0.1 12.4 0.6 0.0 0.1 32.2 41.5 20.3 41.5 28.9 3.8 30.0 38.8 19.9 38.6 27.1 3.5 41.6
Radial Tor. (Nms) 101.4 0.1 13.5 6.0 0.3 3.3 15.2 5.2 0.3 3.3 33.2 21.1 44.7 21.1 12.6 17.3 33.8 20.2 41.6 20.2 11.6 16.2 101.4
Fitness value 3088.1

BackLow fall Joint ID Maximal
impulses

Impulses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Axial (Nm) 26.5 0.5 0.1 19.4 11.7 36.4 0.1 19.4 11.7 36.4 200.3 67.1 61.1 67.3 50.4 21.5 198.7 71.1 58.7 67.4 50.5 21.6 200.3
Radial (Nm) 107.1 112.3 75.7 59.4 31.0 13.8 75.7 59.4 31.0 13.8 243.8 312.4 331.0 71.9 49.6 52.2 241.4 307.2 326.7 71.9 49.7 52.3 331.0
Axial Tor. (Nms) 0.1 7.6 10.5 0.2 0.0 0.1 10.5 0.2 0.0 0.1 24.1 20.0 4.1 6.3 4.1 0.5 23.8 19.8 4.1 6.3 4.1 0.5 24.1
Radial Tor. (Nms) 24.8 0.1 6.6 1.6 0.2 1.7 6.4 1.6 0.2 1.7 13.6 9.9 27.6 7.9 4.6 2.9 43.8 25.5 18.4 17.5 5.9 2.1 43.8
Fitness value 1575.2
of these values have surpassed their maximal thresholds. In
addition, some flags indicate if valuable parts, camera and CPU
in this case, touch the ground. The user employs this tool in
the designing process, and he/she can see simultaneously the
resulting fall sequence directly in the simulator main window
(see examples of fall sequences obtained from the simulator
main window in Figs. 3 and 5).

4.2. Design process of fall sequences

For the purpose of showing the potentiality of the proposed
fall designing methodology, frontal and back ‘‘good’’ and ‘‘bad’’ fall
sequences were designed; ‘‘good’’/‘‘bad’’ means low/high damage.
The designed sequences are (see videos in [36]):

- FrontHead: Frontal fall sequence where the robot impacts the
ground with its head. This is the typical frontal fall of a robot
that do not detect it is falling. See Fig. 3(a1) to (a6).
- FrontLow: Frontal fall sequence where the robot folds its legs
in order to lower its center of mass before the impact. The
lowering of the center of mass allows reducing the impact
velocity. See Fig. 3(b1) to (b6).
- BackHead: Back fall sequence where the robot impacts the
ground with its head. This is the typical back fall of a robot that
do not detect it is falling. See Fig. 4(a1) to (a6).
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Fig. 5. BackHead/BackLow falls’ indices in red/blue. In the first/second fall the head/right-hip impacts the ground after 1150 ms.
Table 3
Impulses, maximal impulses and objective function over the joints.

FrontHead fall Joint ID Maximal
impulses

Impulses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Axial (Nm) 155.1 233.5 0.1 37.7 10.5 25.1 0.1 37.9 10.3 24.8 77.2 49.2 73.4 49.2 49.1 145.7 80.9 50.4 68.8 50.5 50.5 140.3 233.5
Radial (Nm) 263.7 217.0 71.6 44.4 29.4 24.8 71.7 44.1 29.6 25.0 87.3 106.9 105.3 146.7 171.7 110.9 89.4 108.1 109.2 143.5 167.7 113.3 263.7
Axial Tor. (Nms) 0.0 10.5 6.8 1.0 0.3 0.1 6.8 0.7 0.3 0.2 21.3 27.2 11.4 26.9 16.9 2.3 21.1 26.6 11.8 26.2 16.8 2.1 27.2
Radial Tor. (Nms) 62.1 10.5 7.4 2.2 0.5 2.6 7.0 2.2 0.0 1.3 23.3 12.2 39.4 12.2 6.6 20.6 12.6 12.5 39.1 12.5 6.7 20.7 62.1
Fitness value 1679.2
FrontLow fall Joint ID Maximal

impulses
Impulses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Axial (Nm) 17.4 13.4 16.6 91.5 88.6 89.5 26.5 69.4 58.4 43.9 43.8 29.6 130.9 30.9 23.1 17.9 57.2 37.4 161.5 27.1 17.1 28.1 161.5
Radial (Nm) 79.2 68.3 147.7 108.5 100.5 102.8 100.0 59.6 42.6 61.7 178.6 164.7 54.1 98.8 62.6 42.2 196.1 191.9 75.2 84.3 73.6 40.3 196.1
Axial Tor. (Nms) 1.3 3.9 25.5 4.6 5.4 6.1 17.5 3.4 2.6 4.1 6.0 7.1 2.7 7.2 4.7 0.3 3.3 6.6 1.9 6.9 4.1 0.3 25.5
Radial Tor. (Nms) 14.8 1.3 7.4 11.7 9.5 18.1 10.0 10.3 5.1 9.6 22.7 4.2 9.8 3.5 2.4 0.9 12.6 2.0 9.9 3.6 1.9 0.9 22.7
Fitness value 887.3
- BackLow: Back fall sequence where the robot separates and
folds its legs in order to lower its center of mass before the
impact. This action reduces the impact velocity. See Fig. 4(b1)
to (b6).

It is important to stress that the process of finding ‘‘good’’ fall
sequences is a very difficult task, due to the high dimensionality
of the search space. The first step of the proposed methodology
described in Section 3.2, says that we need use some basic human
based behaviors as lower the center of mass and protect the
important parts to find an initial fall. In our case the initial FrontLow
and BackLow falls were designed by analyzing data generated
by a motion capture exoskeleton (Gypsy-5 from Animazoo [37])
and analyzing videos of martial arts. These initial falls were
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Fig. 6. FrontHead/FrontLow falls’ indices in red/blue. In the first/second case the head/right-lower arm impacts the ground after 1150 ms/1100 ms.
iteratively improved following the steps (ii) and (iii) of the
proposed methodology. Although the final results look like the
original human inspirited falls, to obtain falls with low damage
values that accomplish the proposed restrictions, it is necessary to
make several iterations of the step (ii) and (iii) of the methodology
(almost 5–10 iterations for each fall), to decrease progressively the
maximal impulse values, while the objective function decreases
until an acceptable value.

4.3. Analysis of the fall sequences

Figs. 5 and 6 show comparisons in terms of force and torque
impulses in each joint, force and torque values in the nearest
joint to the first contact point, and speed, potential energy and
kinetics energy of the first contact point. Tables 2 and3 resumes the
impulses data, the maximal values, and the result of the objective
function for each pair of compared falls. The joint IDs can be seen
in Table 1. The parameters of the objective function (Eq. (6)) are:

- αaxial = αradial = 0.25 (due to the used units, the magnitude of
the impulses produced by the forces are 4 times the impulses
produced by the torques)
-

αradial−torque = αaxial−torque = µ = βi = 1.0; i = 1, . . . , n
- γ = 1.5 (this value was adequate to penalize enough the
maximal values of the impulses).
As it can be observed in Fig. 5 and Table 2, much larger maximal

impulses are obtained in the BackHead fall sequence than in the
BackLow fall sequence: 271 Ns vs. 200 Ns in the case of the axial
force impulse, 437 Ns vs. 331 Ns in the case of the radial force
impulse, 42 Nms vs. 24 Nms in the case of the rotational torque
impulse, and 101 Nms vs. 49 Nms in the case of the radial torque
impulse. In addition, in the case of the BackHead, fall maximal
impulses are produced mainly in the head articulations (IDs 1 and
2), while in the BackLow fall, maximal impulses are produced in
the right hip articulation (IDs 11–13) and in the left hip articulation
(IDs 17–19), which are less vulnerable parts than the head. It can be
also observed that in the BackHead fall, the axial force at the impact
time is very high in the head (60 N), and that also a very high radial
torque (12 Nm) is produced later on in the head. In the case of the
BackLow fall the radial force and the rotational torque at the impact
time are very high in the right hip, 100 N and 6.5 Nm, respectively.
Regarding the speed, we can see that at the impact time, the speed
of the contact point in the case of the BackHead fall (the head)
is more than three times larger than in the case of the BackLow
fall (right hip). Finally, if we analyze the magnitude of the kinetic
and potential energy, we can observe that much larger values are
observed in the case of the BackHead fall than in the case of the
BackLow fall. Impact speed, kinetic energy and potential energy are
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Fig. 7. Simulation sequences showing selected frames of the back falls under analysis. BackHead: (a1)–(a4). BackLow: (b1)–(b4).
a

b

Fig. 8. Simulation sequences showing selected frames of the frontal falls under analysis. FrontHead: (a1)–(a4). FrontLow: (b1)–(b4).
global measures of the magnitude of the impact. The value of the
objective function for the BackHead fall is two times larger than the
BackLow fall, which shows that the employed objective function is
a good indicator of the fall’s quality.
Fig. 6 and Table 3 show indices of the FrontHead and FrontLow

fall sequences. As in the former case, we observe that in all axes
the maximal impulses obtained in the bad fall case are larger than
the ones obtained in the good fall: 233 Ns vs. 161 Ns, 264 Ns vs.
196 Ns in, 27 Nms vs. 26 Nms, and 62 Nms vs. 23 Nms for the
axial force impulse, radial force impulse, rotational torque impulse,
and radial torque impulse, respectively. In addition higher impulse
values are produced in a valuable articulation (the head) for the
case of the bad fall sequence,while in the case of good fall sequence
higher impulse values are produced in stronger articulations (hip
and knee). The FrontHead fall shows very high radial force, axial
force and radial torque values in the head articulations, 80 N in
the first two cases and 57 Nm in the last case. The FrontLow fall
shows relative high rotational torque values (3.8 Nm) in the hip.
Regarding impact velocity, in the FrontHead fall is about 20% higher
than in the FrontLow case. It is important to stress that in the first
case the first contact point with the ground is in the head, while
in the second case it is in the right lower arm. The magnitude of
the kinetic energy at impact time is more than 3 times larger in
the case of the FrontHead fall. The potential energy shows much
higher values in the case of the FrontHead fall, during the whole
falling period. Finally, the objective function is two times larger in
the FrontHead fall case than in the FrontLow case.

4.4. Fall sequences validation in reality

To validate our methodology, the fall sequences were trans-
ferred to a real humanoid robot. Due to the current fragility of Nao
robots, we could not use them in these experiments. Instead, we
tested the fall sequences in amore robust humanoid robot, theUCH
H1 robot (see description in [38]), which has a similar structure
than Nao robots, but it has much stronger frames and joints.
In a real robotwe cannotmeasure the force and torque impulses

in the different articulations. However, the speed and acceleration
of some body parts, which are related to the impulses, are good
indicators of the fall sequences damage, and can be measured in
reality. To carry out these measurements we used a fast speed
camera [39], and we analyzed the falls using a video sequence
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Fig. 9. BackHead/BackLow-fall’s speed and acceleration of the first robot’s contact-point. (a) and (c) correspond to BackHead fall, and (b) and (d) to BackLow fall.
taken at 500 fps, with a resolution of 1280×1024 pixels (see some
selected frames in Figs. 7 and 8). Speed and acceleration of selected
body parts were obtained by tracking these points in the video
sequences.
Speed and acceleration graphs of the robot’s first contact point,

for all fall sequences under analysis are displayed in Figs. 9
and 10. It can be observed that much lower values of speed and
acceleration are obtained in the cases of the designed BackLow and
FrontLow fall sequences, and that therefore they produced much
less damage in the robot than the BackHead and FrontHead fall
sequences. While the BackHead and FrontHead have a maximal
speed of 175 m/s, the BackLow and FrontLow falls have just 75 m/s
as maximal speed. The module of the vertical acceleration impulse
produced at the moment of the impact, is reduced from 5.0 m/s2
to 2.2 m/s2 if the BackLow fall is used instead of the BackHead fall.
If we compare the FrontHead and FrontLow falls, the module of the
acceleration impulse is reduced from 4.7 m/s2 to 2.2 m/s2. These
measurements validate the results obtained in the simulation
process.
Furthermore,we estimated thepotential headdamage (e.g. neck

articulations) by measuring the derivative of the acceleration in
the head at the impact time. The obtained values were 220 m/s3
and 63.1 m/s3 for the BackHead and BackLow falls, respectively,
and 261 m/s3 and 27.2 m/s3 for the FrontHead and FrontLow fall,
respectively. Again, the Fig. 4(a1) to (a4) and (b1) to (b4) show that
much less damage is produced in the BackLow andFrontLow cases.
5. Conclusions

In this paper, a methodology for designing fall sequences that
minimize the robot damage was presented. The methodology
consists basically on to model the fall design process as a search
procedure that looks for the joints’ values thatminimize the robot’s
damage. The search process is human-based, and it includes the
use of a realistic simulator for the synthesis and analysis of the falls,
and an interactive tool that allows the human designer to select
fall sequence parameters (joints values, sequences extension, etc.),
and to observe damage’s indices that indicate the quality of the
obtained sequence.
Experiments using a simulated humanoid robot, which were

validated in a real humanoid robot, show that modeling falls after
what is observed in humans greatly decreases the robot damage.
Thus, longer fall sequences, with several contact points, and a
lowering of the center of mass produce much less damage in the
robot. In addition, fall sequences that protect valuable body parts,
as the head, can also be designed using the proposedmethodology.
As future work, we would like to:

(i) Use the designed fall sequences in real soccer games.
(ii) Automate the human-based search strategy using any numeric
search procedure such as GA (Genetic Algorithms) or PSO
(Particle Swarm Optimization).
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Fig. 10. FrontHead/FrontLow-fall’s speed and acceleration of the first robot’s contact-point. (a) and (c) correspond to the FrontHead fall, and (b) and (d) to FrontLow fall.
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