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We develop an approach for incorporating both medium and off-shell effects in the calculation
of full-folding nucleon-nucleus optical potentials for elastic scattering. The approach is based on
a Hexible scheme for calculating the nucleon-nucleon effective interaction in the nuclear medium.
Using this scheme, we calculate a fully off-shell, energy-dependent effective force which includes
effects arising from Pauli blocking and the nuclear mean Beld via an interacting nuclear matter
model. Calculations of the elastic scattering observables for p+ Ca and for p+ Pb at energies
between 30 and 400 MeV are presented and discussed. We also study total cross sections for neutron
scattering off Ca, Zr, and Pb in the 5 —400 MeV energy range. The theory gives a reasonable
overall description of the data in the energy range under study.

PACS number(s): 24.10.Ht, 13.75.Cs, 21.30.+y, 25.40.Cm

I. INTRODUCTION

Elastic nucleon scattering from nuclei continues to
challenge and advance our understanding of the basic
microscopic mechanisms which determine the nonrela-
tivistic nuclear dynamics [1]. The ability to include ex-
plicitly on- and ofF-shell efFects [2—4] and the presence of
a bound-state singularity [5] in the underlying internu-
cleon force when calculating the scattering observables,
mainly in the 200—400 MeV energy range, has provided
a new way to better understand the scattering data, par-
ticularly spin observables. The simple phenomenological
picture of the interaction of nucleons with nuclei has, to
a large extent, given way to microscopic theories charac-
terized by the calculation of the elastic channel average
nucleon-nucleus (NA) interaction, the optical potential
model.

To first order, a common assumption underlying the
most recent intermediate energy nonrelativistic optical
potential models is that the effective nucleon-nucleon
(NN) force can be approximated by the free NN t ma-
trix [1—4]. The expectation is that, at sufBciently high
incident energies, medium eKects such as Pauli blocking
and the nuclear mean field are of secondary importance
in determining the scattering observables. Based on this
assumption, two main lines of research have been devel-
oped to evaluate the leading term of the nucleon-nucleus
optical potential corresponding to the single scattering
approximation in a multiple scattering series expansion.
One of them is the full-folding model [4] which treats ex-
plicitly the o8'-shell behavior and energy dependence of
the NN t matrix when convoluting the e8'ective internu-
cleon force with the target ground state mixed density.
The other approach is based on an expansion about the
so called "tp" approximation [1—3,6]. In these tp models
the assumption made is that the oK-shell and energy de-
pendence of the NN t matrix is weak enough to allow,
in momentum space, a factorized expression for the op-
tical potential as the product of the target density with
an on-shell or ofF-shell NN effective force. Comparisons

of the two approaches show some interesting differences,
with the full-folding model calculations giving a better
description of the data for energies between 200 and 400
MeV. Recent full-folding results show, however, that the
NN free t matrix approximation for the efFective NN
force is rather poor at 200 MeU and below [5]. Indeed, a
careful treatment of the pole singularity in the deuteron
channel of the t matrix leads to results that make the
validity of the tp approach questionable as a reasonable
starting point to which medium and higher order contri-
butions should be added.

In order to improve our current description of NA scat-
tering beyond. the &ee t-matrix approach and extend the
range of energies where the microscopic optical potential
is accurate for describing data, it is important to develop
a model which contains the most distinctive features of
the full-folding approach as well as a realistic account of
explicit medium effects. Extensive work has been done
in the past towards achieving this goal based on what
is generally known as the folding model for the optical
potential [7—10]. This model relies on a local density
argument to obtain an efFective internucleon force &om
infinite nuclear matter calculations. Further averaging
procedures are devised to obtain a local effective force
which depends on the density of the target nucleus as
well as on the energy of the incident nucleon. Although
quite successful in describing the scattering data, mainly
in the 100—200 MeV region, the folding model treats in-
directly the off-shell properties and the intrinsic energy
dependence of the effective force. Furthermore, with the
construction of such a simplified local effective interac-
tion it becomes impossible to identify unambiguously the
role and importance of eKects due to the nuclear medium
relative to genuine off-shell contributions.

Recently, some effort has been inade [11,12] to improve
the calculation of the optical potential starting &om the
NN t matrix. With the use of the tp approximation for
the leading term of the optical potential, medium efFects
have been introduced to second order when considering
particle propagation in the finite target nucleus [ll]. Al-
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ternatively, a difFerent approach has been followed [12]
with corrections to the optical potential coming &om
binding energy and Pauli blocking effects. Whether these
approaches will be successful in providing a systematic
description of the data remains to be seen as they have
only been applied to NA scattering above 80—100 MeV
and to lighter targets (A ( 40).

In this paper we develop a framework to account for
medium effects in the calculation of the nonlocal and
energy-dependent effective internucleon force and then
generalize the full-folding model to include these effects
in the calculation of the NA optical potential. Our ap-
proach to the calculation of the effective NN interaction
provides a formalism which can be used as a starting
point for simplifying schemes in subsequent calculations.
For example, the idea of the local density approximation
[7] for the optical potential can be derived as a limiting
case of this more general approach.

In principle, the effective NN interaction depends on
specific properties of the target nucleus and its excita-
tion spectrum. However, most nucleon scattering data
and the associated phenomenological analyses suggest
that the NA optical potential depends primarily on gross
properties of the target nuclei rather than on particular
details [13]. Based on this fact, we use a global single-
particle model based on infinite nuclear matter to de-
scribe the particle propagation in the nuclear medium
rather than a target —specific model. Thus we incorpo-
rate average medium effects throughout the density of
the target nucleus. The resulting effective force can be
identified with the nuclear matter g matrix. Neverthe-
less, as will be shown, we do not need to invoke a local
density argument to use this g matrix in the full-folding
model.

This paper is organized as follows. In Sec. II we
develop the formalism for constructing an effective two-
nucleon interaction starting from the bare NN force. We
discuss an approximate solution for the effective force and
show how it can be calculated in the context of a given
model for the target nucleus. Then in Sec. III we ob-
tain a generalized expression for the full-folding model
for the optical potential. In Sec. IV we show the results
of our calculations for proton elastic scattering from Ca
and Pb in the 30—400 MeV energy range followed by
a discussion concerning the relative importance of Pauli
blocking and the nuclear mean field in the scattering ob-
servables. In Sec. IV we also present and discuss total
cross section calculations for neutron elastic scattering
&om Ca, Zr, and Pb. In Sec. V we summarize
our work.

II. THE EFFECTIVE INTERACTION

In this section we present a formalism for calculat-
ing the NN effective force which takes into account the
nuclear medium. The problem of constructing an in
medium effective interaction starting &om the bare in-
ternucleon force is crucial for evaluating the NA optical
potential. Also, it plays a central role when evaluating a
diversity of microscopic processes involving two nucleon
transitions from an initial to a Anal state.

Our approach assumes that only two-nucleon correla-
tions are important in the nuclear medium while other
nucleons propagate without interacting with the pair
[14,15]. In this context, the most important point relates
to the construction of a two-nucleon propagator which de-
termines the characteristics of the effective force. Since
this calculation is very diKcult for a finite nucleus, we
shall eventually introduce an interacting nuclear matter
model to describe the nuclear excitation spectrum. Once
the effective interaction is constructed we discuss in Sec.
III the calculation of the NA optical potential in the full-
folding &amework.

Let us consider the simplest model for a general two-
nucleon force I"(~) which accounts for multiple scattering
of the nucleons to all orders in the ladder approximation
[14,15]. Then, for an initial or starting energy w, I" sat-
is6es the integral equation

P((u) = V+ V A(ur) F((u),

where V corresponds to the bare N% potential and A(w)
is a two-body propagator for nucleons propagating in the
intermediate states.

The calculation of I"(~) in Eq. (1) faces two main diffi-
culties: one is technical and relates to solving the full in-
tegral equation in a given representation for the two-body
system. The other difhculty relates to the construction
of the two-body propagator A(~) which should account
for the excitation modes of the target nucleus and the
restrictions imposed by the Pauli exclusion principle.

A. Approximate solution for the two-nucleon force

To address the first issue mentioned above we consider
matrix elements of the E force in a momentum represen-
tation. Denoting the center-of-mass momentum (c.m. )
of two interacting nucleons by K and the relative mo-
mentum of the pair by F, Eq. (1) yields

x;q Eu) K;K (2)

where we have assumed that the bare NN interaction V conserves the total momentum for the NN pair. In order
to investigate alternative ways to calculate the E-matrix elements beyond the "straightforward" numerical solution
of Eq. (2), we introduce the average c.m. momentum P and the change in the c.m. momentum p defined by

P = 2(K+ K'), (3a)
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p= K —K'. (3b)

Then, Eq. (2) can be written as

x P —2pq' A ~ P —-p —p';q P —2p —p';q E ~ P+ 2p~

where we have integrated over the b function associated with the NN total momentum conservation in the integrand.
Guided by the translational invariance characteristic of two nucleons interacting in free space or in infinite nuclear
matter, it is convenient to express the two-body matrix elements of F in the general case in terms of its (partial)
Fourier transform over the c.m. position variable,

P —2p K' E ~ P+'2p;K =
3

dBe'"" K' ~ K (5)

The function (K,
~
f (cu) ~f7) will be identified as the matrix elements of a reduced two-body effective force f (w)

evaluated at the average c.m. momentum P and localized at the coordinate B in the system. Similarly, we take the
following representation for the two-body propagator A(ur) by Fourier transforming over the c.m. coordinate,

1 . & P P 1 . gB —xR P (6)

+
where A (~) is the reduced two-body propagator acting at the coordinates P and R, respectively, and may be
expressed as

q' A u) q = dr"e '"' B+ 2r";q' A ~ R —2r;q

The matrix elements of the reduced two-body force f are now obtained directly. From Eq. (5) we have

dpe '" P —2pK' E ~ P+ 2pK

Combining Eqs. (2), (5), (6), and (8) we obtain the following integral equation for the f force

1
R ( ) (2~)6

fdgfggfq V ) ( )
—iP' (R' —R") iP (R——R")y (~)

where, for simplicity, we have suppressed the dependence of the matrix elements on the relative coordinates. Making
use of Eq. (7) we can recast the integral equation for f in a more symmetric form. We obtain,

f (te) = V+ f dr dr' d77d77' VA (te) e'~" rr ' fr, , (te)'.
P —R—,R—— (10)

This is an exact result for the reduced two-body e8'ective
force f It should be. stressed that, up to this point, no
assumption about nuclear structure has been made other
than that of assuming the generalized force E is two-body
in nature and satisfies Eq. (1).

The main advantage of Eq. (10) for f is that it provides
a framework for developing approximations to simplify
the calculation of the effective NN force. Indeed, if we
expand perturbatively the solution to Eq. (10) we have,
to second order in the bare interaction V,

f (ur) = V+ V A (cu)V+.

We observe that the leading nontrivial term for the force
evaluated at the coordinate R and momentum P involves

the A propagator localized at the same position R and
average c.m. momentum P. Therefore, it is reasonable to
expect that the dominant contribution to the integrand
in Eq. (10) comes from those matrix elements of the
A propagator centered around the P and R coordinates
while the interacting pair propagates in the intermediate
states throughout the nuclear medium.

An approximate solution to Eq. (10) can be sought if
we expand the A propagator around P and R,

[P+ 7;R+r)(7) [P;R)(

and keep only the first order term. Thus we obtain a so-
lution which we identify as a generalized g matrix which
satisfies a simplified integral equation,
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g ((u) = V+ V A ((u) g, (~) .

This g matrix is much easier to calculate than the ex-
act f matrix in Eq. (10) and yet can be regarded as a
substantially improved. first approximation for the effec-
tive force, relative to approximations which ignore the
nuclear medium.

In general, the scheme we propose provides a result
for the two-body effective force which enters in the cal-
culation of the nuclear dynamics. As suggested by Eq.
(5) we account very naturally for the c.m. motion of
the interacting pair through a localization of the reduced
two-body f force in the nuclear medium. Then, in the
g-matrix approximation, the two-body F-matrix solution
to Eq. (1) is

A„(x', x;z) = dk 8[z —e(k; k~)] e'"-'~*
27r 3

xO[e(k; kp) —e~] . (16)

Here, e(k; k~) is the single-particle energy of a nucleon
of momentum k in the infinite medium of Ferxni mo-
mentum kF [16],

Fermi gas for constructing the spectral function A(z).
Furthermore, we neglect hole propagation in the two-
body propagator, an assumption usually adopted in
the calculation of effective forces for nucleon scattering
[16,17]. In a coordinate representation, the particle spec-
tral function A„(z) for a Fermi gas characterized by a
Fermi momentum k~ and a Fermi energy e~ is given in
a quasiparticle approximation by

e(k; k~) = + Re [U„M(k; ky) ]

k2

2m (17)

, f dRe'~'~(r. '
g, „,(~) r) . (14)

This new structure for the effective force will be applied
later in this paper to the calculation of the nucleon-
nucleus optical potential.

with m the nucleon mass, 5 = 1 and U„(k;k~) the
complex self-consistent mean field at ky. The problem
arises as to how the nuclear matter particle spectral func-
tion may be related to the corresponding spectral func-
tion of a finite system. We adopt the widely used pre-
scription

B. The two-body propagators

As mentioned previously, the other important issue re-
lated to the calculation of an effective force is the specifi-
cation and construction of a propagator which describes
adequately the propagation of the nucleon pair in the in-
termediate states. This consideration enters explicitly in
the calculation of either the f matrix in Eq. (10) or the
approximate g matrix in Eq. (13).

Quite generally, the reduced two-body A propagator is
obtained &om the two-body A propagator through Eq.
(7). On the other hand, the A propagator in a many-
body system can be expressed as [15]

p(R) = ,k~(R),

to relate the density p of the nucleus with that of the
Fermi gas, thus generating a spatial dependence for k~
as we identify R with the average coordinate of the in-
teracting nucleons,

R = —,'(x+ x') . (19)

Now we can calculate the particle spectral function in
momentum space for further use in Eq. (15) for the two-
body propagator A(u). From Eq. (16) and using the
prescription expressed by Eqs. (16)—(19) we have in mo-
mentum space

(6';q2'I A(~)
I ~~ q. )

dz dz', 15
A(gy, gy ,'z) A(q2, q2, z )

~ —z —z'+ zg

Ap (q~ ', q~., z) =

(20)

i R(q —q ') ir( 1+ 1 )
(2~)s

xA„(R —zr, R+ 2r;z),

where A(z) is the single-nucleon spectral function [15]
and q; are the single-particle momenta. The alternative
models one might choose to describe the nuclear excita-
tion spectrum determine the properties of the spectral
function A(z) and, therefore, of the two-body propaga-
tor.

In this work, we consider a symmetric, interacting
I

where r = x —x'. Introducing the average and trans-
ferred momenta,

(21a)
(21b)

and integrating over the relative coordinate r we obtain
for the particle spectral function

A„(Pq —2pq, P) + 2pq., z) = A„(Pj,pq., z)

(2~)s
dR e* "' b[z —e(P~; kp (R))] O[e(Pq, kp (R)) —ep (R)] . (22)

The calculation of the two-body A propagator is now straightforward. Introducing Eq. (22) for the particle spectral
function in Eq. (15) for the two-nucleon propagator, and neglecting the delocalization of the two particles in the
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medium when integrating over the spatial coordinates,

k~ B+ 2r -k~ B (23)

we obtain for the A propagator, expressed in the c.m. (Q) and relative momentum (q) coordinates for the nucleon
pair [Eq. (2)],

q' AM;q =bq-q' XA 21 + '; — ';q ~ (24)

with

+I —,'(Q+Q');(Q —Q');q;~
I =, dRe* (~ ~ ) A, (g(u;k~(R)),l (2~)' (25)

NM
and A is the nuclear matter single-particle propagator
[16] at the Fermi momentum k~

NM i Q(P+ i P kji' )(q) M ) k~)
u) +i@—e(P+., k~) —e(P; k~)

with P~ =
z P + j and Q the Pauli blocking function

Q(P+; P; kp ) = O[e(P+; k~) —ep ]

xO[c(P;k~) —e~] .

q' A ~ q =bq —q'A q~kp B . 28

This result completes our scheme for calculating the in-
ternucleon effective force E which, in the g-matrix ap-
proximation, is given by Eq. (14). It is interesting to note
that although we use a local density ansatz to construct
the single-particle spectral function in the quasiparticle
approximation, the resulting effective force P only dis-
plays a functional dependence on the density of the target
nucleus. Indeed, the density only enters in determining
the radial (R) dependence of the g matrix in Eq. (13).

Equations (24)—(26) for A(u) represent a particular
two-body propagator for nucleons in a finite nucleus.
The interacting Fermi gas used to calculate this prop-
agator averages the effect of the gas throughout the nu-
cleus via the local density ansatz used to construct the
single-particle spectral function in Eq. (22). We remark,
however, that the local density ansatz expressed by Eqs.
(16)—(1S) need not be used as a means of modeling the
two-body propagator in a finite nucleus and therefore for
calculating the effective force E. Other more realistic
models could be used to account for this effect. In this
sense the present approach is general and departs notably
from more intuitive ways used to define an effective force
[7-10].

The reduced A propagator required to calculate either
the f or the g matrix, Eq. (10) or (13), respectively, is
obtained directly from Eqs. (7) and (24),

III. THE OPTICAL POTENTIAL

In this work we focus on investigating the role of
medium effects in the leading term of the optical po-
tential. The NA optical potential for a nucleon of en-
ergy E can be cast, in momentum space, as the antisym-
metrized matrix elements of the NN effective interaction

[1—4,14,18,19],

U(k, k;E) = ) (k if ~E(E + E )~ k;q4), (29)
cx(eF

with (P, e ) the single-particle wave functions and en-
ergies of the target ground state; k and k' are momenta
associated with the scattered nucleon. Using the two-
body force F(ur), as expressed in Eq. (5), we obtain

U(k' k E) = ) dRdP dye' (' ~C (P+ 'S»P —-p)-
(22r) s

a(ep

x K ——p —q E+e K+4 p —q (30)

where we have denoted

K' =
2 (K —P —qj, K =

2 (K —P + q),
with K and q defined by

K = —,
' (k+ k '), (32a)

(32b)

corresponding to the average and transferred momentum

I

of the projectile, respectively; the ground state density
p associated with the state o. is given by

&-(P+ »P —-R = ~- @-(P+ R~-(P —-R (3-3)

with n the occupancy of level o..
Equation (30) represents the most general expression

for the leading term of the optical potential when the ef-
fective interaction is calculated taking into account finite
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size effects. An advantage of this approach over now stan-
dard finite nucleus models [7,9] is that we do not require
an explicit local density assumption to convolute the ef-
fective force with the target density. Furthermore, we
are able to keep track of the approximations that need to
be introduced when establishing the connection between
the finite many-body problem and the construction of an
effective force which incorporates nuclear correlations in
a realistic way.

The calculation of the optical potential as expressed by
Eq. (30) is quite challenging. It involves the calculation
of the reduced force f from Eq. (10) and the evalua-

'k + ]
W (R;P) = dpe '"' p-(P+ —,'p, P ——,'Sg.

(34)

Then, replacing Eq. (34) in Eq. (30) and making the
change of variable p + p+ q, we obtain

tion of multidimensional integrals. In order to find an
approximate, simplified expression for the optical poten-
tial, let us introduce the Wigner transform [17] W of
the single-particle density p, namely

U(k', k;E) = 1

(2x)s ~
-+ I jX K —4p

dRdR'dPd e' ~W (R''; P) e'"'~

f,g„„,(E+ e ) d+ —,'ii) (35)

Now we realize that the role of the momentum p in Eq.
(35) is to give a measure of the delocalization of the av-

erage bound nucleon (R') with respect to the average
incoming particle (R). Since the f-matrix elements do
not depend on p for an R independent interaction f, we
have assumed in the general case that a weak dependence
on p justifies taking p = 0 when evaluating the f-matrix
elements in the integrand of Eq. (35). We expect this
approximation to be reasonable since the off-shell sam-
pling is still dominated by the variation of the average
momentum P of the target nucleons. Thus, the optical
potential becomes

U(k', k;E) = fdEeg") f dPkg (E;P).
X K E+6~ K

Equation (36) is an explicit expression for the optical po-
tential in terms of the local nuclear density in phase space
(W ) and the reduced effective force acting between the
interacting nucleons at each R coordinate in the system.
When the f matrix is approximated by the g matrix and
the latter is calculated using nuclear matter correlations
for the propagator in the intermediate states [Eq. (28)],
then Eqs. (35) and (36) for U provide a framework for
developing the local density (and other) approximations.
In this way, our derivation overcomes some of the heuris-
tic arguments often used to relate nuclear matter and
finite nucleus results.

In the limit of a medium independent internucleon in-
teraction, as in the case when using the &ee NN t matrix
as the effective interaction, we recover the expression for
the full-folding optical potential used in some of our ear-
lier work [4,20], namely U(k', k; E) -+ U (k ', k; E), with

U (k k;E) = ) f',dPg (P+ —,g, P —~g)

X K' t E+~

The results presented later in this work use the g ma-

I

trix as the effective interaction instead of the exact f
matrix. Moreover, we introduce two further simplifica-
tions which we estimate shall not change our findings
significantly. One simplification refers to taking an aver-
age binding energy e for each single-particle state of the
bound nucleons [20]. In this case, Eq. (36) reduces to

U(k', k;E) = f dE

x (-'
dP e'~' W(R; P)

g g (E+E) g) (38)

1

(2') s dpe 'R "p(P+ -'p, P '—-'pQ. (39)

The other simplification refers to using an approximate
form for the mixed density [20,21], namely

p(P+ -p, P —-pQ = p(p; P)

( )' ' '
(R)

x O[k(R) —P], (40)

with k(R) a local mornenturn function given by either the
Slater or Campi-Bouyssy approximations [21], and

j(R) = k~(R). (41)

In this case the signer transform takes a simple form
given by

W(R; P) = p(R) 8[k(R) —P], (42)

with p the target ground state density. Using this re-
sult in Eq. (38) we obtain an explicit expression for the
optical potential in the g-matrix approximation,

with W(R; P) the Wigner transform of the target mixed
density,

W(R;P) =) W. (R;P)
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U(k', k;R) = dRe' 'ep(R) ( dP8(k(R) —P) (x' g (R+e) x) ) .

In actual calculations Eq. (43) separates into proton and
neutron contributions. For example, for proton scatter-
ing we have the schematic form U kg"" + p g"

It is interesting to note from Eq. (43) how the approx-
imate mixed density naturally suggests a nuclear matter
approach for calculating the effective force. This is made
explicit with the introduction of the Wigner transform
which provides a representation where at each point B
in the nucleus the momentum of the target nucleons is

uniformly distributed up to a value k(R). Indeed, in the
Slater prescription for the local momentum function we
have k(B) = ky (R), with the Fermi momentum k~ given
in terms of the local density p by Eq. (18). Then, at each
point B in the nucleus the Pauli blocking forces the inter-
acting nucleons to propagate, on average, with momenta
above k~(B) in the intermediate states and generates a
particular B dependence for the effective force. However,
as it has been stressed earlier, the B dependence of the
force could be determined in more detail for each tar-
get provided a more realistic model is used to calculate
the particle spectral functions (Eq. 15) leading to the
construction of the reduced A propagator in Eq. (7).

A final point remains to be clarified regarding the
choice of the average energy ~ of the nucleons in the tar-
get. Following the nuclear matter model used in con-
structing the two-nucleon propagator A [Eqs. (24)—(27)]
which determines the effective interaction, we consider
the most consistent deBnition for the nucleon average
binding energy to be

O[kp (B) —k ]e(k; k~(R))
8[kg(R) —k ]

with e(k; k~) the single-particle energy in nuclear mat-
ter given by Eq. (6). An alternative approach is to calcu-
late e &om realistic single-particle energies in the target
nucleus [20], but we find that the different prescriptions
make no major differences in the calculated observables
as will be discussed in the next section.

IV. RESULTS

In this section we report results obtained &om the the-
ory developed in Secs. II and III. The full-folding optical
potentials given by Eq. (43) were calculated following
the general procedure outlined elsewhere [4]. The effec-
tive internucleon force, the g matrix, was calculated using
correlations obtained &om infinite nuclear matter. Ap-
plications have been made for proton elastic scattering
on Ca and Pb in the 30—400 MeV energy range. By
considering two targets of very different size we expect
to have a stringent test on the theory. Also, we have
included calculations of total cross sections for neutron
scattering &om different targets.

A. Calculation of the efFective interaction

The two-body effective interaction for the NN pair
can be expressed in terms of a reduced effective force as
shown in Eq. (5) or (14) which reduces the problem to
calculating either the f or g matrix depending on the
level of approximations introduced in the two-body A

propagator. In the context of Sec. II, where we use
symmetric nuclear matter information to construct the
reduced A propagator (Eq. 28), the g matrix as expressed
by Eq. (13) satisfies a Bethe-Goldstone integral equation
[16],

I7;' g ~ ~ = K' V~ + dK,
" ~' V~"

xA- (K";~;k~(R))

X K g & K (45)

NM
with A defined by Eq. (26) and the Bdependence spec-
ified through the relationship between the target density
p and the Fermi momentum k~ in Eq. (18).

The g matrix was calculated using the Paris [22] poten-
tial V by solving the integral equation [Eq. (45)] using
standard matrix inversion methods [23]. Both central
and spin-orbit parts of the g matrix were used to cal-
culate the NA optical potential. The R dependence was
obtained by calculating the g matrix at different densities
corresponding to k~ values in the 0—1.4 fm range. The
real mean field, U„M (k; k~) in Eq. (17), was determined
self-consistently &om

U„(k; kp) = ) (g'(k —k ) g (e(k)+e(k ))
CX(E'y

x -'(k —k )), (46)

using the continuous prescription [16] for Re[U„M] at the
Fermi energy. The Pauli blocking effect represented by
Q in Eq. (26) was simplified to its angle-averaged form.
Since we emphasize an accurate off-shell sampling of the
NN effective interaction, the g matrix was calculated at
several (over 16) values of the total NN c.m. momentum
in the 0 —7 fm interval. Higher densities of mesh points
were used in regions where the g matrix, as a functiori of
the NN c.m. momentum, varies most rapidly.

In Figs. 1 and 2 we show, for reference, the results
of symmetric nuclear matter calculations we have per-
formed for the mean Beld U . In Fig. 1 we present the
real part of UNM as a function of the momentum k for
several values of k~. In Fig. 2 we show the correspond-
ing imaginary part of U„. Our results for the Paris
potential agree with other similar calculations [24,25].

Another consideration in the present calculations was
the treatment of the deuteron singularity in both the g
and the t matrix. As discussed recently [5], a correct cal-
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FIG. 1. Real part of the self-consistent mass operator in
nuclear matter for A:p- between 0.6 and 1.4 fm

FIG. 2. Imaginary part of the self-consistent mass operator
in nuclear matter for k~ between 0.6 and 1.4 fm

culation of the KN interaction off-shell as required by
full-folding calculations samples regions in phase space
near the deuteron bound state. In this region the efFec-
tive force varies rapidly as a function of the total mo-
mentum of the interacting pair. Although this aspect
was addressed in the context of the free t matrix, similar
features are observed in the case of the g matrix for finite
(nonzero) density. The effects in the case of the g matrix
are less pronounced than in the t matrix case, with the
pole singularity following a trend similar to that reported
in studies of the propagation of deuterons in nuclear mat-
ter [26]. We have adapted our computing codes in order
to evaluate deuteron contributions in the calculation of
the optical potential [5].

B. Proton elastic scattering

Applications were made for elastic scattering of pro-
tons on 4oCa and 2osPb. The nuclear density for Ca was
determined from a single-particle model using a Woods-
Saxon parametrization for the mean field to fit the rms
radius of the point-proton density determined from elec-
tron scattering and to experimental single-particle ener-
gies [20]. The average single-particle energy e for protons
and neutrons (K„and e ) was estimated from the interact-
ing Fermi gas for consistency following Eq. (44). Then we
have that cz and e vary inside the nucleus, as a function
of the radial dependence of the corresponding density dis-
tributions. For comparison, we And e„= —24.0 MeV and

= —31.4 MeV in the Woods-Saxon model. The over-
all average binding is e = &(Ze„+ %e ) = —27.7 MeV,
with Z the proton number, N the neutron number, and
A = Z+%. Although the values for the average nucleon
binding vary significantly according to the model used, it
is worthwhile to remark that on average the nucleus has
a typical Fermi momentum in the range 0.8 —1.0 fm
Therefore, the dominant contributions to the g matrix

come with an average nucleon binding in the range of —22
to —32 MeV which is close to the realistic average value
of —27.7 MeV obtained from the single-particle model.
In the case of Pb the nuclear density was determined
from the work by Negele [27] which gives an overall aver-
age binding e = —24.0 MeV. However, in our calculations
we followed the binding energy procedure outlined in the

Ca case since the same considerations apply. For cal-
culations where no medium corrections are included and
the t matrix acts as the effective KK force, we have used
the average nucleon binding given by the realistic single-
particle model throughout.

Calculations of differential cross sections (do. /dB), ana-
lyzing powers (A„), and spin rotation functions (Q) were
made for proton elastic scattering on Ca and Pb at
energies between 30 and 400 MeV. Coulomb scattering
was treated as described elsewhere [4].

In Figs. 3—5 we present calculations for p+ Ca elastic
scattering and compare them to the measured observ-
ables at 30.3 [28,29], 40 [30,31], 65 [32], 80 [33,34], 160
[33,34], 181 [34,35], 200 [36], 300 [3?,38], and 400 [37]
MeV as functions of the momentum transfer. The full
curves represent our most complete full-folding calcula-
tions using the nuclear matter g matrix for the NN ef-
fective force. The dashed curves represent calculations
based on the free t matrix. We note that medium ef-
fects are present throughout the range of energies consid-
ered in this analysis, as evidenced by differences between
scattering observables obtained using g- and t-matrix ap-
proaches. These difFerences are more evident at energies
of 200 MeV and below, particularly in the cross sections.
We also note that the medium corrected full-folding cal-
culations (solid curves) provide a systematic and qualita-
tively correct description of the data. Difliculties do ap-
pear, however, in describing the spin observables with the
g-matrix approach, especially in the lower energy regime.
We have explored possible sources of sensitivity of our re-
sults such as density, prescription for k(R) in Eq. (41),
average binding energies, and deuteron contributions and
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find variations much too small to account for differences
between the theory and experiment.

208In Figs. 6—8 we present calculations for p+ Pb elas-
tic scattering corresponding to measured observables at
energies of 30.3 [28,29], 40 [39], 65 [32], 80 [34,33], 98 [34],
160 [33], 200 [37], 300, [37], and 400 [37] MeV. As in the
previous case, the full curves correspond to results based
on the g-matrix approach for the NN efFective interac-
tion and the dashed curves correspond to those based on
the &ee t matrix. Overall, the theory works better for
this heavier nucleus than for Ca. This result is consis-
tent with the hypothesis used in calculating the effective
NN interaction. Furthermore, the agreement between
the full-folding model and the data at energies between
65 and 400 MeV is remarkable when using the g matrix.
At 400 MeV, however, the description of the analyzing
power deteriorates, and the difFerential cross section is
overestimated at q ) 1 fm . At 30.3 MeV we still have
a quite reasonable description of the differential cross
section, but the analyzing power is poorly reproduced.
Another interesting result is that differences between g-
and t-matrix approaches are quite evident throughout
the energy range considered, a feature already noted in
the case of p+ Ca scattering. These differences are very
pronounced at energies of 200 MeV and below.

40The results for proton elastic scattenng on Ca and
Pb shown in Figs. 3—8 represent the most complete

test of a parameter free approach to the optical potential
over a wide range of energies. Although the present cal-
culations show some improvement over the early folding
models with density-dependent effective forces [7,9,10],

it is clear that more work needs to be done in order to
describe more accurately the data below 200 MeV. The
average correlations provided by nuclear matter and used
to construct the effective force do not appear detailed
enough to allow the calculation of a suKciently realistic
g matrix at these lower energies. These findings are less
optimistic than results reported recently [11] for proton
scattering based on a tp approach to the optical poten-
tial.

Regardless of the overall quality of our description of
the data in the 30—400 MeV range, we are able to clarify
some points concerning the role of the nuclear medium
in determining the scattering observables 1n t e 1nter-
mediate energy region. At 400 MeV beam energy we
observe that medium effects become more visible than
would have been expected from the converging trend ob-
served between the g- and t-matrix approaches at lower
energies. Indeed, scattering results for both Ca and

Pb at 300 MeV show relatively small differences be-
tween the g and t matrix approaches. At 400 MeV, how-
ever, we note an increase in the difFerences between the
two approaches, particularly for Pb, which supports
the fact that medium effects are still relevant at these
energies. These difFerences are due to the nature of the
physical content of the NN effective force. The free t-
matrix propagator does not account for Pauli blocking
nor nuclear mean fields.

In order to understand better the role of Pauli block-
and the nuclear mean fields in nucleon scattering, we

have calculated the cross sections and analyzing powers
corresponding to + Pb scattering at 98, 200, and 400
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FIG. 7. As in ig. or pF . 3 f + Pb lastic scattering at 80, 98, and 160 MeV.e
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self-consistent Gelds are set equal to zero. The scattering
data has been omitted. As observed, nuclear medium ef-
fects are noticeable at all three energies considered here
and become most pronounced at 98 MeV, as expected.
The sensitivity of the cross section to the nuclear medium
is manifested in the sharpness of the cross sections, with
the calculations without Pauli blocking showing sharper
diffraction minima relative to the calculations in which
the full g matrix is used. At 98 MeV the medium effects
are very pronounced in both observables. In this case
the omission of the nuclear mean field yields an overesti-
mated cross section relative to both the data and. the full
g-matrix calculations, a feature which resembles the re-
sults obtained with the t matrix in Fig. 7. The omission
of Pauli blocking, on the other hand, reduces the cross
section, particularly for q &1 fm . At 200 MeV the ef-
fects of both Pauli blocking and the nuclear mean fields
are still noticeable. Again, the sensitivity to these two ef-
fects can be seen in both the cross section and analyzing
power. This result, combined with the observations made
&om Figs. 7 and 8 when comparing the g- vs t-matrix ap-
proaches in p+ Pb scattering, demonstrate that at 200
MeV neither Pauli blocking nor nuclear mean fields are
negligible for describing the scattering process. However,
the effect of the real part of the self-energy U„M tends to
become less important as the energy increases. Indeed,
in Fig. 1 we observe that Re[U„] 0 for a nucleon with
a local momentum k 4.2 fm or an energy E —320
MeV. Thus we expect that the Pauli blocking will be the
dominant efFect around 300 MeV. At 400 MeV the role
of both blocking and the mean field is again sizeable,
more in the analyzing power than in the cross section. In
this case, the sensitivity to UNM is due to the repulsive
character of the mass operator (Fig. 1) at this energy.

The role of medium effects at beam energies above
400 MeV has also been investigated in the context of

both relativistic [40] (tp-type) and nonrelativistic [10] (lo-
cal) approaches. These studies also show that medium
afFects are still significant at these energies. It is also
claimed that these effects are more noticeable in the spin
observables than in the cross sections. The results shown
here are consistent with those findings.

C. Neutron scattering and total cross sections

The subject of microscopic calculations of neutron to-
tal cross sections has been an issue of increasing interest
lately [11,41—44]. These data provide a source for global
comparison between theory and experiments since they
cover a wide range of energy and targets and are of a
very high quality.

Microscopic calculations of the total cross section for
relatively light (A ( 40) systems having X = Z have
very recently met with some success [11,44]. Although
there has been an extensive analysis of total cross sec-
tions based on Dirac phenomenology [43], we are unaware
of any recent microscopic calculations for targets with a
neutron excess. The simultaneous consideration of both
light and heavy nuclei poses a particularly challenging
problem. First, the size of the system being studied
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FIG. 10. Measured and calculated (solid lines) total cross
sections for neutron scattering from Ca, Zr, and Pb.
See text for reference to the data.

changes considerably, and second, the isovector part of
the NN interaction participates.

In Fig. 10 we present calculations and data [41,45]
of total cross sections (crT) for neutron scattering from
4 Ca, Zr, and Pb as a function of the neutron inci-
dent energy. The solid curves correspond to calculations
based on full-folding optical potentials with medium ef-
fects treated as described earlier in this paper. It is worth
noting that although these full-folding calculations do
not describe crT (E) in detail, they do follow, on aver-
age, the energy dependence of the respective data, even
at energies as low as 5 MeV. We also observe that for
the heavier nuclei, particularly Pb, the data exhibit
more structure than the calculated oz. This feature is
different from that exhibited by phenomenological calcu-
lations where the cross section is overestimated but its
structure is accurately reproduced [43]. We should ein-
phasize that the present calculations include the symme-
try potential through the treatment of the folding of the
effective force with the neutron and proton densities. In
Ref. [43] the neutron o T was calculated by simply turning
off the Coulomb part of the proton-nucleus potential.

Recent results [44] based on a refined tp approach to
the optical potential with nuclear medium modifications
are in good agreement with experiment for light nuclei.
Our findings for Ca are of similar quality but over a
wider range of energy. We estimate, however, that def-
inite conclusions on the theory cannot be drawn until
calculations for heavier nuclei are performed using both
approaches. To reinforce this point we show in Fig. 11 the
exact total cross sections for neutron scattering off Ca
and Pb (full curves), as in Fig. 10, together with those
calculated using the &ee off-shell t matrix as the effective
internucleon force (dashed curves). In both calculations,
the presence of the deuteron and its efFects on the ab-
sorptive part of the optical potential are fully included
[5]. For the 4oCa target we observe that both results are
relatively close, notably in the 10—50 MeV range. How-
ever, there are notable differences above 70 MeV. Our
interpretation is that medium effects, and in particular
the presence of the nuclear mean field Re[U„],generates
a shift in energy of the total cross section Rom the dashed
to the full curve as required by the data. This effect is not
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FIG. 11. Calculated total cross sections for neutron scat-
tering from Ca and Pb. The solid lines represent calcu-
lated oT from the g matrix as in Fig. 10, and the dashed
curves correspond to or obtained using the free t matrix.

V. SUMMARY' AND CONCLUSIONS

In this work we have addressed the problem of cal-
culating the optical potential for NA elastic scattering
when nuclear medium effects are treated within the full-
folding context. In order to achieve this goal we devel-
oped a scheme for calculating the effective NN inter-
action and suggested some plausible approximations to
obtain a readily workable model. Our approach provides
a general &amework for understanding how nucleons in-
teract in the nuclear medium; the range of applicability
of the approach can be extended well beyond the NA
scattering problem. The effective force was calculated
using an interacting infinite nuclear matter model while
describing the propagation of particles in the medium,
although more realistic, target-specific, models could be
used within the same formalism. Nevertheless we are
able to account for average medium effects such as Pauli
blocking and the nuclear mean field.

The NA optical potential was calculated within the
full-folding &amework. As a result, we have been able
to to treat accurately the ofF-shell effects and the energy
dependence of the eH'ective interaction as prescribed by
the Fermi motion of the nucleons in the nucleus. The op-
tical potential takes a relatively simple form, Eq. (43),
when we consider an average binding energy for the tar-
get nucleons and let the off-shell sampling be driven by
the mean bound nucleon momentum P in Eq. (36). We

seen in the 10—50 MeV range due to the lack of structure
in oz . For the Pb case, the difFerences between the g-
and t-matrix results are significant over the entire energy
range considered. The most striking feature is the loss of
structure in the total cross section when medium effects
are included in the calculation of the effective force, and
at present this is not understood. It is clear that the av-
erage information about the nuclear medium as provided
by symmetric nuclear matter is not suKciently accurate
to give the details of the effective force required to explain
these extensive and. high-precision data.

believe that the latter approximation needs to be tested
in more detail although it requires a considerable amount
of extra computing eKort.

Nonrelativistic full-folding calculations of the optical
potential which include medium corrections were made
for p+ Ca and p+ Pb elastic scattering at energies be-
tween 30 and 400 MeV. Scattering observables obtained
from these calculations were compared with full-folding
calculations based on the free t matrix to describe the
NN effective interaction. The differences between these
two approaches show that medium eÃects are significant
over the entire range of energies studied in this work (30—
400 MeV). Since all calculations presented here treat the
o8'-shell contributions accurately and on the same foot-
ing, the differences in the scattering observables between
the two models for the NN interaction can be attributed
exclusively to medium effects. Furthermore, since no lo-
calization procedure is carried out to construct a simpler
effective interaction, we have been able to isolate sources
of sensitivity of elastic scattering observables obtained
from the corresponding optical potentials.

On the other hand, we have observed that applica-
tions of the medium-corrected full-folding calculations
presented here are qualitatively superior in the case of
proton scattering on Pb than on Ca. This observa-
tion is consistent with the closer resemblance that Pb
has to an extended system than does Ca. The nuclear
matter two-body propagator we have used for calculating
the effective interaction is less justifiable at the surface
of the nucleus than in its volume due to the fact that the
range of the nuclear correlations is comparable to the dif-
fuseness of the nucleus at the surface. Furthermore, as
the volume of the nucleus increases, the &action of vol-
ume contributions increase relative to the surface ones.
This observation and the assumption of the dominance of
one-step processes should favor applications for heavier
systems.

We have also investigated the relative importance of
medium effects by studying the sensitivity of scattering
observables to Pauli blocking and the nuclear mean field.
We observe that these two aspects play a noticeable role
over the full range of energies considered here. Although
medium effects at 400 MeV seem to be less important
than at the lower energies, the scattering observables are
still visibly affected by the inclusion of blocking and the
mean fields.

The calculation of total cross sections and comparison
with the data for neutron scattering &om Ca, Zr,
and Pb provided another interesting test of the mi-
croscopic optical potential, now in the 5—400 MeV en-

ergy range. The average magnitude of the total cross
section, as a function of the energy, is well reproduced.
However, the data show more structure than the calcu-
lations as the mass (and size) of the target and therefore
its neutron excess increase.

Overall we conclude that the med. ium corrected full-
folding calculations provid. e a quite reasonable descrip-
tion of the elastic scattering data at energies between 30
and 400 MeV for proton scattering on Ca and 2 Pb
and total cross section data for neutron scattering be-
tween 5 and 400 MeV. DiKculties do remain, however, in
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the description of spin observables at momentum trans-
fers below 1 fm . These difBculties were also noted
in previous studies based on full-folding calculations of
the optical potential using the &ee %N t matrix to rep-
resent the NN effective interaction. The origin of these
discrepancies is not well understood. Apparently some ef-
fects are either missing or misrepresented. ' Some of these
could be attributed to the bare internucleon force we use
(Paris potential) especially at the higher energies consid-
ered, or to the simplified, nuclear matter based, effective
%N interaction we calculate. Others effects may require
going beyond the erst order model discussed here. In

any case, the model we have developed and the calcu-
lations we have presented constitute a suitable starting
point &om which further corrections can be investigated.
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