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Abstract. This paper is devoted to the asymptotic analysis of the spectrum of a mathematical
model that describes the vibrations of a coupled fluid–solid periodic structure. In a previous work
[Arch. Rational Mech. Anal., 135 (1996), pp. 197–257] we proved by means of a Bloch wave homog-
enization method that, in the limit as the period goes to zero, the spectrum is made of three parts:
the macroscopic or homogenized spectrum, the microscopic or Bloch spectrum, and a third compo-
nent, the so-called boundary layer spectrum. While the two first parts were completely described
as the spectrum of some limit problem, the latter was merely defined as the set of limit eigenval-
ues corresponding to sequences of eigenvectors concentrating on the boundary. It is the purpose of
this paper to characterize explicitly this boundary layer spectrum with the help of a family of limit
problems revealing the intimate connection between the periodic microstructure and the boundary
of the domain. We therefore obtain a “completeness” result, i.e., a precise description of all possible
asymptotic behaviors of sequences of eigenvalues, at least for a special class of polygonal domains.
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1. Introduction.

1.1. Setting of the problem. This paper is devoted to the study of some
boundary layer phenomena which arise in the asymptotic analysis of the spectrum
of a mathematical model describing the vibrations of a coupled periodic system of
solid tubes immersed in a perfect incompressible fluid. This simple model is due to
Planchard, who studied it intensively (see [31], [32]). Since we introduced it at length
in section 1.2 of our previous work [3] we content ourselves with briefly recalling the
statement of this problem.

We consider a periodic bounded domain Ωε obtained from a fixed bounded open
set Ω in RN by removing a collection of identical, periodically distributed holes
(T ε

p)1≤p≤n(ε). The distance between adjacent holes as well as their size are both
of the order of ε, the size of the period which is a small parameter going to zero.
Correspondingly, the number of holes n(ε) is of the order of ε−N , where N is the spa-
tial dimension. More precisely, let us first define the standard unit cell Y = (0; 1)N

which, upon rescaling to size ε, becomes the period in Ω. Let T be a smooth, simply
connected, closed subset of Y , assumed to be strictly included in Y (i.e., T does not
touch the boundary of Y ). The set T represents the reference tube (or rod) and the
unit fluid cell is defined as

Y ∗ = Y \ T.
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344 GRÉGOIRE ALLAIRE AND CARLOS CONCA

For each value of the small positive parameter ε, the fluid domain Ωε is obtained from
the reference domain Ω by removing a periodic arrangement of tubes εT with period
εY . Denoting by (T ε

p) the family of all translates of εT by vectors εp (where p is a
multi-index in ZN ) and by (Y ε

p ) the corresponding family of cells, we define

Ωε = Ω \
n(ε)⋃
p=1

T ε
p .(1)

Although p is a multi-index in ZN , for simplicity we denote its range by 1 ≤ p ≤ n(ε).
To obtain the fluid domain Ωε in (1), we remove from the original domain Ω only
those tubes T ε

p which belong to a cell Y ε
p completely included in Ω. This has the

effect that no tube meets the boundary ∂Ω. Analogously, (Γε
p) denotes the family of

tubes boundaries (∂T ε
p).

We are interested in the following spectral problem in Ω: find the eigenvalues λε

and the corresponding normalized eigenvectors uε, solutions of
−∆uε = 0 in Ωε,

λε
∂uε

∂n = ε−N~n ·
∫

Γε
p

uε~nds on Γε
p for 1 ≤ p ≤ n(ε),

uε = 0 on ∂Ω,

(2)

where ~n denotes the exterior unit normal to Ωε.
The homogenization of this model has already attracted the attention of several

authors (see [1], [14], [16], [17]). Even though it is a spectral problem involving the
Laplace operator, it is easily seen to admit only finitely many eigenvalues, exactly
Nn(ε) (the number of tubes times the number of degrees of freedom in their displace-
ments). To this end, a finite-dimensional operator Sε is introduced, which acts on the
family of tube displacements ~s = (~sp)1≤p≤n(ε) with ~sp ∈ RN ,

Sε : RNn(ε) −→ RNn(ε),

(~sp)1≤p≤n(ε) 7→
(

1
εN

∫
Γε

p

uε~nds

)
1≤p≤n(ε)

,(3)

where the fluid potential uε is now the unique solution in H1(Ωε) of
−∆uε = 0 in Ωε,
∂uε

∂n = ~sp · ~n on Γε
p for 1 ≤ p ≤ n(ε),

uε = 0 on ∂Ω.
(4)

According to [17], Sε is self-adjoint, positive definite, and its spectrum, denoted
by σ(Sε), coincides with the set of eigenvalues of (2). Of course, since Sε acts in a
finite-dimensional space, σ(Sε) is made up of Nn(ε) real numbers. It has been further
proved that all eigenvalues of Sε are uniformly bounded away from zero and from
infinity (see, e.g., Proposition 1.2.1 and Lemma 1.2.2 in [3]). As the period ε goes
to zero, σ(Sε), considered as a subset of R+, converges to a limit set σ∞ which, by
definition, is the set of all cluster points of (sub)sequences of eigenvalues of Sε

σ∞ = {λ ∈ R+ | ∃ a subsequence λε′ ∈ σ(Sε′) such that λε′ → λ}.

Finding an adequate characterization of the limit set σ∞ was the main goal of our
previous paper [3]. A positive answer to this problem is given in the present article
for a special class of polygonal domains.
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 345

1.2. Survey of the previous results. The characterization of σ∞ amounts
to studying the asymptotic behavior of the spectral problem (2), or, in other words,
to homogenize (2) as the parameter ε goes to zero. To our knowledge, this can be
done, at least, using two different approaches: the classical homogenization process
for periodic structures (see, e.g., the reference books [7], [8], [24], [28], [35]) or the
so-called Bloch wave method (also called the nonstandard homogenization procedure
in [16]; see [8], [33], [34], [36] for an introduction to Bloch waves in spectral analysis).
The former naturally yields the homogenized or macroscopic spectrum of (2), while
the latter is associated with the so-called Bloch or microscopic spectrum.

Historically the second approach was the first applied to problem (2) by C. Conca,
M. Vanninathan, and their coworkers [1], [15], [16], [17]. The key point in this method
is to rescale the ε-network of tubes to size 1 and, therefore, as ε goes to zero, to obtain
an infinite limit domain containing a periodic array of unit tubes. Then, the limit
problem is amenable to the celebrated Bloch wave decomposition (also known as the
Floquet decomposition; see the original work of F. Bloch [11] or the first mathematical
papers [19], [30], [36] or the books [8], [33]). The spectrum of this limit problem is
called the Bloch spectrum.

Although it seems the easiest to apply, the first approach (i.e., the classical ho-
mogenization) has only been recently applied to problem (2) in our previous article
[3]. By homogenizing the operator Sε with the help of the two-scale convergence (see
[2], [29]), a homogenized equation is obtained in the domain Ω. Its spectrum is called
the homogenized spectrum. It turns out that the homogenized spectrum is completely
different from the Bloch spectrum, and therefore both approaches are complementary.
This is possible since in neither case the underlying sequences of linear operators con-
verge uniformly to their limit which are noncompact operators. In addition to this
homogenization result, our paper [3] provides a unified theory for both approaches
that we called the Bloch wave homogenization method. We refer to [3] for more details
(see also [4], [5]), and we simply recall our main results.

The homogenization of model (2) amounts to analyzing the convergence of the
sequence of operators Sε. Since these operators are defined on a space which varies
with ε, we extend them to the fixed space [L2(Ω)N ]K

N

, where K is an arbitrary
positive integer. Denoting by SK

ε this extension, it will be amenable to a standard
asymptotic analysis, while keeping essentially the same spectrum as Sε. Following
the lead of Planchard [32], the reference cell of our homogenization procedure is KY
instead of simply Y (this technique is referred to as homogenization by packets in
[32]). To give a precise definition of SK

ε we introduce two linear maps: a projection
PK

ε from [L2(Ω)N ]K
N

into RNn(ε) and an extension EK
ε from RNn(ε) into [L2(Ω)N ]K

N

such that SK
ε = EK

ε SεP
K
ε . To do so, some notation is required concerning the two

indices p (indexing constant vectors in RNn(ε)) and j (indexing vector functions in
[L2(Ω)N ]K

N

).

Definition 1.1. Let KY be the reference cell (0, K)N which is made of KN

subcells Yj of the type (0, 1)N containing a single tube Tj. The multi-integer j =
(j1, . . . , jN ) which enumerates all the tubes in KY takes its values in {0, 1, . . . , K−1}N

(we use the notation 0 ≤ j ≤ K − 1). Let p = (p1, . . . , pN ) be the multi-integer
which enumerates all the tubes in Ωε (see (1)). We define a third multi-integer ` =
(`1, . . . , `N ) which enumerates all the periodic reference cells ε(KY ) in Ωε (its range
is denoted by 1 ≤ ` ≤ nK(ε)). These three indices are assumed to be related by the
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346 GRÉGOIRE ALLAIRE AND CARLOS CONCA

following one-to-one map:

`m = E
(pm

K

)
, jm = pm − K`m ∀m = 1, ..., N,(5)

where E(·) denotes the integer-part function.
Then, PK

ε and EK
ε are defined by

PK
ε : [L2(Ω)N ]K

N −→ RNn(ε),

(~sj(x))0≤j≤K−1 −→
(
~sp = 1

|ε(KY )`|
∫

ε(KY )`
~sj(x)dx

)
1≤p≤n(ε),

(6)

EK
ε : RNn(ε) −→ [L2(Ω)N ]K

N

,

(~sp)1≤p≤n(ε) −→
(

~sj(x) =
∑̀

χε(KY )`
(x)~sp

)
0≤j≤K−1,

(7)

where p is related to (`, j) by formula (5). One can easily check that the adjoint
(PK

ε )∗ of PK
ε is nothing but (εK)−NEK

ε and that PK
ε EK

ε is equal to the identity in
RNn(ε). Therefore, SK

ε is also self-adjoint compact and its spectrum is exactly that
of Sε, plus the new eigenvalue 0 which has infinite multiplicity.

The homogenization of the extended operator SK
ε is now amenable to the two-

scale convergence method [2], [29]. However, the limit operator SK has a complicated
form which can be simplified by using the following discrete Bloch wave decomposition
(see [1]).

Lemma 1.2. For any family (~sj)0≤j≤K−1 of vectors in CN , let ~s(y) be the fol-
lowing KY -periodic function, piecewise constant in each subcell Yj:

~s(y) =
K−1∑
j=0

~sjχYj
(y) ∀y ∈ KY.

There exists a unique family of constant vectors (~tj)0≤j≤K−1 in CN such that

~s(y) =
K−1∑
j=0

~tje
2πı j

K ·E(y) ∀y ∈ KY,(8)

where E(·) denotes the integer-part function. Moreover, the Bloch wave decomposition
operator B, defined by B(~sj) = KN/2(~tj), is an isometry on (CN )KN

.
The first main result in [3] (see Theorem 3.2.1) is the following theorem.
Theorem 1.3. The sequence SK

ε = EK
ε SεP

K
ε converges strongly to a limit

SK ; i.e., for any family (~sj(x))0≤j≤K−1, SK
ε (~sj) converges strongly to SK(~sj) in

[L2(Ω)N ]K
N

. Furthermore, the limit operator SK is given by

SK = B∗TKB, with TK = diag
[
(TK

j )0≤j≤K−1
]
,(9)

where the entries TK
j are self-adjoint continuous but noncompact operators in L2(Ω)N ,

defined by

TK
j

~tj =
{

(A(0) − I)∇u − (A(0) − |Y ∗|I)~t0 if j = 0,

A( j
K )~tj if j 6= 0,

(10)
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 347

where I is the identity matrix and u is the unique solution of the homogenized problem{
−div(A(0)∇u) = div((I − A(0))~t0) in Ω,
u = 0 on ∂Ω,

(11)

and, for θ ∈ [0, 1]N , A(θ) is the Bloch homogenized matrix with components
(Amm′(θ))1≤m,m′≤N defined by

Āmm′(θ) =
∫

Y ∗
∇wθ

m(y) · ∇w̄θ
m′(y)dy,(12)

where (wθ
m)1≤m≤N are solutions of the so-called cell problem at the Bloch frequency

θ:  −∆wθ
m = 0 in Y ∗,

(∇wθ
m − ~em) · ~n = 0 on ∂T,

y → e−2πıθ·ywθ
m(y) Y ∗-periodic.

(13)

The first component TK
0 of the limit operator TK is the same for all K and is

denoted by S in what follows. It is called the macroscopic or homogenized limit of Sε

((11) is also called the homogenized equation). The spectrum σ(S) is essential and has
been explicitly characterized in Theorems 2.1.4 and 2.1.5 of [3]. The other components
of TK are simple linear multiplication operators that represent the microscopic or
Bloch limit behavior of the sequence SK

ε .
According to Proposition 3.2.6 in [3], the matrix A(θ) is Hermitian and positive

definite for any value of θ. Furthermore, it is a continuous function of θ, except at
the origin θ = 0. Nevertheless, it is continuous at the origin along rays of constant
direction (see Proposition 3.4.4 in [3]). Denoting by 0 < λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λN (θ)
its eigenvalues, we can define the so-called Bloch spectrum by

σBloch =
N⋃

m=1

λm(]0, 1[N ),

where λm(]0, 1[N ) denotes the closure of the image of ]0, 1[N under the maps λm(·).
We deduce our second main result.

Theorem 1.4. The strong convergence of SK
ε to the limit operator SK implies

the lower semicontinuity of the spectrum

σ(SK) ⊂ lim
ε→0

σ(SK
ε ).

By letting K go to infinity, we obtain

σ(S) ∪ σBloch ⊂ lim
ε→0

σ(Sε).(14)

Remark 1.5. As a matter of fact, the Bloch spectrum σBloch and the homogenized
spectrum σ(S) do not coincide. Therefore, both type of limit problems (macroscopic
(11) and microscopic (13)) are complementary. As already mentioned, the Bloch
spectrum has already been characterized by C. Conca and M. Vanninathan in [17] by
means of a different method, the so-called nonstandard homogenization procedure (see
also the book [16]).
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348 GRÉGOIRE ALLAIRE AND CARLOS CONCA

The question is now to see whether the inclusion in (14) is actually an equality,
i.e., if our asymptotic analysis is complete. It turns out that the homogenized and the
Bloch spectra are usually not enough to describe σ∞ because the interaction between
the boundary ∂Ω and the microstructure is not taken into account in our analysis.
More precisely, there may well exist sequences of eigenvectors of (2) which concentrate
near the boundary ∂Ω of Ω. They behave as boundary layers in the sense that they
converge strongly to zero locally inside the domain. Clearly the oscillations of these
eigenvectors cannot be captured by the usual homogenization method; neither are
they filtered in the Bloch spectrum which is insensitive to the boundary.

Nevertheless, the third main result of our previous paper [3] shows that for any
other type of sequences of eigenvectors (not concentrating on the boundary), the limits
of the corresponding sequences of eigenvalues belong to σ(S) ∪ σBloch. More exactly,
introducing the subset of σ∞

σboundary = {λ ∈ R | ∃(λε′ , ~sε′
) such that S1

ε′~sε′
= λε′~sε′

, λε′ → λ,

‖~sε′‖L2(Ω)N = 1, and ∀ω with ω ⊂ Ω, ‖~sε′‖L2(ω)N → 0},
(15)

where ε′ is a subsequence of ε and S1
ε is the extension to L2(Ω)N of Sε, we proved the

following theorem (see Theorem 3.2.9 in [3]).
Theorem 1.6. The limit set of the spectrum of the operator Sε is precisely made

of three parts; the homogenized, the Bloch, and the boundary layer spectrum

lim
ε→0

σ(Sε) = σ∞ = σ(S) ∪ σBloch ∪ σboundary.

The proof of this completeness result is the focus of section 3.4 in [3]. It involves a
new type of default measure for weakly converging sequences of eigenvectors of Sε, the
so-called Bloch measures which quantify its amplitude and direction of oscillations.

Of course the definition of σboundary is not satisfactory, since it does not charac-
terize that part of the limit set σ∞ as the spectrum of some limit operator associated
with the boundary ∂Ω. In particular, it is not clear whether σboundary is empty or
included in σ(S) ∪ σBloch. It is the purpose of the present paper to characterize ex-
plicitly σboundary, at least for special rectangular domains Ω and associated sequences
of parameters ε.

Remark 1.7. By their very definitions, the limit spectrum σ∞ and the bound-
ary layer spectrum σboundary depend a priori on the choice of the sequence of small
parameters ε. On the contrary, the homogenized spectrum σ(S) and the Bloch spec-
trum σBloch are independent of the sequence ε. We believe that σboundary is actually
strongly dependent on the sequence ε. In particular, we shall characterize it only for
a specific sequence ε. We thank C. Castro and E. Zuazua for clarifying discussions
on this topic [12].

1.3. Presentation of the main new results. There are mainly two new re-
sults in this paper which correspond to the next two sections. First, in section 2 we
introduce a new class of limit problems involving the interaction between the tubes
array and the domain boundary. We assume that the domain Ω is cylindrical;

Ω = Σ×]0;L[,(16)

where Σ is an open bounded set in RN−1 and L > 0 is a positive length. A generic
point x in RN is denoted by x = (x′, xN ) with x′ ∈ RN−1 and xN ∈ R (xN is the
coordinate along the axis of Ω). Let us define a semi-infinite band

G = Y ′×]0; +∞[,
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 349

where Y ′ =]0, 1[N−1 is the unit cell in RN−1. This new “boundary layer” limit problem
takes place in the fluid part of G, denoted by G∗ and defined by

G∗ = G \
⋃
q≥1

Tq,

where (Tq) is the infinite collection of tubes periodically disposed in G. With each
tube Tq is associated a displacement ~sq ∈ RN . We denote by `2 the space of families
(~sq)q≥1 such that

∑
q≥1 |~sq|2 is finite. Introducing a Bloch parameter θ′ ∈ [0, 1]N−1,

we define a “boundary layer” operator dθ′ by

dθ′ : `2 −→ `2,

(~sq)q≥1 7→
(∫

Γq

uθ′~nds

)
q≥1

,(17)

where uθ′(y) is the unique solution of
−∆uθ′ = 0 in G∗,
∂uθ′
∂n = ~sq · ~n on Γq, q ≥ 1,

uθ′ = 0 if yN = 0,

y′ 7→ e−2πıθ′·y′
uθ′(y′, yN ) Y ′-periodic.

Our first result (see Theorem 2.18) is concerned with the continuity of the spectrum
of dθ′ , considered as a subset of R, with respect to the Bloch parameter θ′.

Theorem 1.8. For all θ′ ∈ [0, 1]N−1, dθ′ is a self-adjoint continuous but non-
compact operator in `2. Its spectrum σ(dθ′) depends continuously on θ′, except at
θ′ = 0. Defining the boundary layer spectrum associated with the surface Σ

σΣ
def=

⋃
θ′∈]0,1[N−1

σ(dθ′) ∪ σ(d0),

we have

σΣ ⊂ lim
ε→0

σ(Sε).

In general, σ(dθ′) is not included in the previously found limit spectrum σ(S) ∪
σBloch (see Proposition 2.17). Therefore, the new class of limit problems defined by
(17) is not redundant with the homogenized or the Bloch limit problems. Our main
tool for proving this theorem is a variant of the two-scale convergence adapted to
boundary layers, using test functions which oscillate periodically in the directions
parallel to the boundary Σ and decay asymptotically fast in the normal direction to
Σ (see section 2.1). Remark that the above result holds for any cylindrical domain of
the type (16) and for any sequence of periods ε going to zero.

Section 3 is devoted to our second main result which requires additional assump-
tions on the geometry of the domain and on the sequence of periods ε. More precisely,
we now assume that Ω is a rectangle with integer dimensions

Ω =
N∏

i=1

]0;Li[ and Li ∈ N∗(18)
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350 GRÉGOIRE ALLAIRE AND CARLOS CONCA

and that the sequence ε is exactly

εn =
1
n

, n ∈ N∗.

These assumptions imply that, for any εn, the domain Ω is the union of a finite number
of entire cells of size εn. Then, the above analysis of the boundary layer spectrum
σΣ can be achieved for any face Σ of the rectangle Ω. Of course a completely similar
analysis can be done for all the lower dimensional manifolds (edges, corners, etc.) of
which the boundary of Ω is made up. For each type of manifold, a different family of
limit problems arise which are straightforward generalizations of (17). For example,
in two space dimensions, the corners of Ω give rise to a limit problem in the quarter
of space R+ × R+ filled with a periodic array of tubes (see section 3.3). Finally, we
prove a completeness result (see Theorem 3.1).

Theorem 1.9. The limit set of the spectrum of the operator Sεn
is precisely

made of three parts; the homogenized, the Bloch, and the union of all boundary layer
spectra, as defined in Theorem 1.8,

lim
εn→0

σ(Sεn
) = σ(S) ∪ σBloch ∪ σ∂Ω,

with the notation

σ∂Ω =
⋃

Σ⊂∂Ω

σΣ,

where the union is over all hypersurfaces and lower dimensional manifolds composing
the boundary ∂Ω.

Remark 1.10. The difference between the above completeness theorem and The-
orem 1.6 is that, here, the boundary layer spectrum σ∂Ω is explicitly defined for the
specific sequence of parameters εn as the spectrum of a family of limit operators, while,
in our previous result, the boundary layer spectrum σboundary was indirectly defined
for any sequence ε but not explicitly characterized.

We conclude this introduction by giving a few references to related works on
boundary layers in homogenization and by a short discussion on numerical studies
concerning problem (2). Apart from the classical books [7, Chapter 7] and [26], we
refer mainly to the papers [6], [9], [10], and [27]. Planchard’s model has already been
studied numerically. The Bloch eigenvalues λi(θ) were computed by F. Aguirre in a
two-dimensional example. A brief account of his work is given in [1]. On the other
hand, direct numerical computations of the entire spectrum σ(Sε) (for a fixed value of
ε, and without using homogenization) have been reported in [23]. To our knowledge,
these are the only available numerical results concerning a large tube array (see also
[21], [22]). Of course, these results are consistent with Theorem 1.9 describing the
asymptotic behavior of σ(Sε). In particular, some vibration modes displayed in [23]
are numerical evidence that σ∂Ω is not empty; i.e., there exist eigenvectors which are
localized near the boundary or the corners of Ω.

2. Boundary layer homogenization. In this section we assume that Ω is a
cylindrical bounded open set in RN in the sense that it is defined by

Ω = Σ×]0;L[,(19)

where Σ is an open bounded set in RN−1 and L > 0 is a positive length. With no loss
of generality, we assume that the axis of the cylindrical domain Ω is parallel to the Nth
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 351

canonical direction. Therefore, a generic point x in Ω is denoted by x = (x′, xN ) with
x′ ∈ Σ and xN ∈]0;L[. The goal of this section is to analyze the asymptotic behavior
of that part of the spectrum σ(Sε) which corresponds to eigenvectors concentrating
on the boundary Σ×{0}, under the sole geometric assumption (19) (in particular, no
restrictions are made on the sequence ε which goes to zero).

2.1. Two-scale convergence for boundary layers. We begin by adapting
the classical two-scale convergence method of Allaire [2] and Nguetseng [29] to the
case of boundary layers, that is, sequences of functions in Ω which concentrate near
the boundary Σ × {0}. This method of “two-scale convergence for boundary layers”
will allow us to understand this phenomenon of concentration of oscillations near
the boundary. The usual two-scale convergence relies on periodically oscillating test
functions with a unit period Y =]0, 1[N . Here, we use test functions which oscillate
only in the directions parallel to the boundary Σ (with period Y ′ = ]0, 1[N−1) and
which simply decay in the Nth direction orthogonal to Σ.

Let us define a semi-infinite band G = Y ′×]0; +∞[, where Y ′ =]0, 1[N−1 is the
unit cell in RN−1. A generic point y is denoted by y = (y′, yN ) with y′ ∈ Y ′ and
yN ∈]0; +∞[. We introduce the space L2

#(G) of square integrable functions in G
which are periodic in the (N − 1) first variables, i.e.,

L2
#(G) = {φ(y) ∈ L2(G) | y′ 7→ φ(y′, yN ) is Y ′-periodic}.

We also denote by C(Σ) the space of continuous functions on the closure of Σ, a
compact set in RN−1.

Combining the concentration effect in yN and the periodic oscillations in Y ′, the
following convergence result is obtained for a sequence φ(x

ε ) when φ belongs to L2
#(G)

(further modulated by x′ ∈ Σ).
Lemma 2.1. Let ϕ(x′, y) ∈ L2

#

(
G;C(Σ)

)
. Then

lim
ε→0

1
ε

∫
Ω

∣∣∣ϕ (
x′,

x

ε

)∣∣∣2 dx =
1

|Y ′|

∫
Σ

∫
G

|ϕ(x′, y)|2dx′dy.

Remark 2.2. Remark that, in the left-hand side of the above equation, the second
argument of ϕ is x/ε and not only x′/ε. This implies that there is a concentration
effect near 0 in the xN variable since ϕ is not periodic in this direction. This, in turn,
explains the 1/ε scaling in front of the left-hand side, in order to get a nonzero limit.

As usual in the context of two-scale convergence, the above result is not specific
to the space L2

#

(
G;C(Σ)

)
, which could be replaced, for example, by L2

(
Σ; Cc#(Ḡ)

)
,

where Cc#(Ḡ) is the space of continuous functions in G, periodic in y′ of period Y ′,
and with bounded support in yN .

In view of Lemma 2.1, we define a notion of “two-scale convergence for boundary
layers.”

Definition 2.3. Let (uε)ε>0 be a sequence in L2(Ω). It is said to two-scale
converge in the sense of boundary layers on Σ if there exists u0(x′, y) ∈ L2(Σ × G)
such that

lim
ε→0

1
ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx =

1
|Y ′|

∫
Σ

∫
G

u0(x′, y)ϕ(x′, y)dx′dy

for all smooth functions ϕ(x′, y) defined in Σ × G such that y′ 7→ ϕ(x′, y′, yN ) is
Y ′-periodic and ϕ has a bounded support in Σ × G.
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352 GRÉGOIRE ALLAIRE AND CARLOS CONCA

This definition makes sense because of the following compactness theorem which
generalizes the usual two-scale convergence compactness theorem in [2], [29].

Theorem 2.4. Let (uε)ε>0 be a sequence in L2(Ω) such that there exists a con-
stant C, independent of ε, for which

1√
ε
‖uε‖L2(Ω) ≤ C.

There exists a subsequence, still denoted by ε, and a limit function u0(x′, y) ∈ L2(Σ×
G) such that

lim
ε→0

1
ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx =

1
|Y ′|

∫
Σ

∫
G

u0(x′, y)ϕ(x′, y)dx′dy(20)

for all functions ϕ(x′, y) ∈ L2
#

(
G;C(Σ)

)
.

Remark that Theorem 2.4 does not apply to sequences which are merely bounded
in L2(Ω) but also converge strongly to zero in L2(Ω) as the square root of ε. Of course,
this is the case for a sequence of the type ϕ(x′, x

ε ), where ϕ(x′, y) is as in Lemma 2.1;
then, the limit is nothing but ϕ(x′, y) itself.

It is not difficult to check that the L2-norm is weakly lower semicontinuous with
respect to the two-scale convergence (see Proposition 1.6 in [2]); i.e., in the present
situation

lim
ε→0

1√
ε
‖uε‖L2(Ω) ≥ 1

|Y ′|1/2 ‖u0‖L2(Σ×G).

The next proposition asserts a corrector-type result when the above inequality is
actually an equality.

Proposition 2.5. Let (uε)ε>0 be a sequence in L2(Ω) which two-scale converges
in the sense of boundary layers to a limit u0(x′, y) ∈ L2(Σ × G). Assume further that
it two-scale converges strongly, that is,

lim
ε→0

1√
ε
‖uε‖L2(Ω) =

1
|Y ′|1/2 ‖u0‖L2(Σ×G).

Then,
(i) for any sequence (vε)ε>0 in L2(Ω) which two-scale converges in the sense of

boundary layers to a limit v0(x′, y) ∈ L2(Σ × G), one has

lim
ε→0

1
ε

∫
Ω

uεvεdx =
1

|Y ′|

∫
Σ

∫
G

u0(x′, y)v0(x′, y)dx′dy;

(ii) if u0(x′, y) is smooth, say u0 ∈ L2
#

(
G;C(Σ)

)
, then

lim
ε→0

1√
ε

∥∥∥uε(x) − u0

(
x′,

x

ε

)∥∥∥
L2(Ω)

= 0.

In order to investigate the convergence of sequences of functions in H1
0 (Ω), we first

have to define adequate functional spaces for the two-scale limit. Let C∞
c#(G) be the

space of smooth functions in G which are Y ′-periodic in y′ and have a compact support
in yN (i.e., they vanish for sufficiently large and small yN but not necessarily on the
whole ∂G). Let H1

0#(G) be the Sobolev space obtained by completion of C∞
c#(G) with
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 353

respect to the H1(G)-norm. We denote by H1
0#,loc(G) the space of functions which are

“locally” in H1
0#(G), i.e., which coincide with a function of H1

0#(G) in any compact
set of G. We define a Deny–Lions-type space (cf. [18]) D1

0#(G) as the completion of
C∞

c#(G) with respect to the L2(G)N -norm of the gradient

D1
0#(G) =

{
ψ(y) ∈ H1

0#,loc(G) | ∃ ψn ∈ C∞
c#(G) such that

lim
n→+∞

‖∇(ψ − ψn)‖L2(G)N = 0
}

.
(21)

It is easily seen that a function in D1
0#(G) vanishes when yN = 0 but does not

necessarily go to 0 when yN goes to infinity since D1
0#(G) contains functions which

grow like yα
N at infinity with α < 1/2. We are now in a position to state our next

result.
Proposition 2.6. Let (uε)ε>0 be a sequence in H1

0 (Ω) such that there exists a
constant C, independent of ε, for which

1√
ε

(
‖uε‖L2(Ω) + ‖∇uε‖L2(Ω)N

)
≤ C.

Then, there exists a subsequence, still denoted by ε, and a limit u0(x′, y) ∈ L2(Σ; D1
0#(G))

such that

lim
ε→0

1
ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx = 0,

lim
ε→0

1
ε

∫
Ω

∇uε(x) · ψ
(
x′,

x

ε

)
dx =

1
|Y ′|

∫
Σ

∫
G

∇yu0(x′, y) · ψ(x′, y)dx′dy

for any functions ϕ ∈ L2
#

(
G;C(Σ)

)
and ψ ∈ L2

#

(
G;C(Σ)N

)
.

Remark that, in Proposition 2.6, the two-scale limit u0(x′, y) does not belong to
L2(Σ; H1(G)) as could be expected. The reason is that only ∇yu0 ∈ L2(Σ×G), while
u0 itself has no reason to belong to L2(Σ × G). Since the proofs of the above results
are very similar to those of the usual two-scale convergence theory, we simply sketch
the proofs of Lemma 2.1, Theorem 2.4, and Proposition 2.6.

Proof of Lemma 2.1. Let us first assume that ϕ(x′, y) ∈ L2
#

(
G;C(Σ)

)
has

bounded support in yN ; i.e., there exists M > 0 such that

ϕ(x′, y) = 0 if yN ≥ M.

Then, by the change of variables yN = xN/ε and for sufficiently small ε, we have

1
ε

∫
Ω |ϕ(x′, x

ε )|2dx = 1
ε

∫ L

0

∫
Σ |ϕ(x′, x′

ε , xN

ε )|2dx′dxN

=
∫ L/ε

0

∫
Σ |ϕ(x′, x′

ε , yN )|2dx′dyN

=
∫ M

0

∫
Σ |ϕ(x′, x′

ε , yN )|2dx′dyN .

(22)

The usual convergence result for oscillating functions in RN−1 (see, e.g., [2] and
references therein) yields that for almost everywhere yN ∈ (0;M)

lim
ε→0

∫
Σ

∣∣∣∣ϕ (
x′,

x′

ε
, yN

)∣∣∣∣2 dx′ =
1

|Y ′|

∫
Σ

∫
Y ′

|ϕ(x′, y′, yN )|2dx′dy′
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354 GRÉGOIRE ALLAIRE AND CARLOS CONCA

and that ∫
Σ

∣∣∣∣ϕ (
x′,

x′

ε
, yN

)∣∣∣∣2 dx′ ≤ |Σ|
∫

Y ′
max
x′∈Σ

|ϕ(x′, y′, yN )|2dy′.

Therefore, applying the Lebesgue theorem, we deduce that

lim
ε→0

∫ M

0

∫
Σ

∣∣∣∣ϕ (
x′,

x′

ε
, yN

)∣∣∣∣2 dx′dyN =
1

|Y ′|

∫
Σ

∫
G

|ϕ(x′, y′, yN )|2dx′dy.

The density of such functions ϕ(x′, y) in L2
#

(
G;C(Σ)

)
implies the desired result for

any function in L2
#

(
G;C(Σ)

)
.

Proof of Theorem 2.4. Using the assumed uniform bound on uε, by the Schwarz
inequality we obtain∣∣∣1

ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx

∣∣∣ ≤ C
(1

ε

∫
Ω

∣∣∣ϕ(
x′,

x

ε

)∣∣∣2dx
) 1

2
.

Passing to the limit, up to a subsequence, which may depend on ϕ in the left-hand
side and using Lemma 2.1 in the right-hand side, yield∣∣∣ lim

ε→0

1
ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx

∣∣∣ ≤ C
( ∫

Σ

∫
G

|ϕ(x′, y)|2dx′dy
) 1

2
.(23)

Since L2
#

(
G;C(Σ)

)
is separable, varying ϕ over a dense countable subset, by a stan-

dard diagonalization process, we can extract a subsequence of ε such that (23) is valid
for all functions ϕ in this subset. By density, we conclude that the limit in the left side
of (23), as a function of ϕ, defines a continuous linear form in L2(Σ × G). Then, the
classical Riesz representation theorem immediately implies the existence of a function
u0(x, y) ∈ L2(Σ × G) which satisfies (20). This finishes the proof of Theorem 2.4.

Proof of Proposition 2.6. By application of Theorem 2.4, up to a subsequence,
there exist two limits u(x′, y) ∈ L2(Σ × G) and ξ0(x′, y) ∈ L2(Σ × G)N such that uε

and ∇uε two-scale converge in the sense of boundary layers to these respective limits;
i.e.,

lim
ε→0

1
ε

∫
Ω

uε(x)ϕ
(
x′,

x

ε

)
dx =

1
|Y ′|

∫
Σ

∫
G

u(x′, y)ϕ(x′, y)dx′dy,(24)

lim
ε→0

1
ε

∫
Ω

∇uε(x) · ψ
(
x′,

x

ε

)
dx =

1
|Y ′|

∫
Σ

∫
G

ξ0(x′, y) · ψ(x′, y)dx′dy(25)

for any functions ϕ ∈ L2
#

(
G;C(Σ)

)
and ψ ∈ L2

#

(
G;C(Σ)N

)
. Integrating by parts in

(25), we obtain

lim
ε→0

1
ε

∫
Ω

uε(x)divyψ
(
x′,

x

ε

)
dx = 0.

In view of (24), this implies that

1
|Y ′|

∫
Σ

∫
G

u(x′, y)divyψ(x′, y)dx′dy = 0.
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 355

Another integration by parts yields that u(x′, y) does not depend on y. On the other
hand, it belongs to L2(Σ × G) and G is unbounded. Since the only constant which
belongs to L2(G) is zero, we deduce that u = 0. Now, specializing (25) to test
functions ψ such that divyψ = 0 and integrating by parts, we also obtain that

1
|Y ′|

∫
Σ

∫
G

ξ0(x′, y) · ψ(x′, y)dx′dy = 0.

As is well known, the orthogonal of divergence-free fields is exactly the set of gradients
(see Proposition 1.14 in [2] for a precise statement and references). Therefore, there
exists a function u0(x′, y) in L2(Σ; D1

0#(G)) such that ξ0 = ∇yu0 (we use the space
D1

0#(G) since u0 has no reason to belong to L2(Σ × G)).

2.2. Convergence analysis. Recall that the original operator Sε, defined by
(3), acts in the space RNn(ε) which depends on ε and that our strategy was to extend
Sε to a fixed space where a convergence analysis is possible. So far, the domain
Ω = Σ×]0, L[ was considered periodic of period εY . Nevertheless, from now on, Ω is
seen as a periodic domain with a new period GK

ε defined by

GK
ε

def= ]0; εK[N−1×]0;L[,

with K an integer larger than 1. We shall construct an extension of Sε well suited
for the previous two-scale convergence “in the sense of boundary layers” with such a
period GK

ε .
Remark 2.7. As already mentioned, we make no special hypothesis on the se-

quence of small parameters ε. However, the periodic arrangement of tubes in Ω is
required to be aligned with Σ in such a way that the first row of periodic cells εY has
a boundary which coincides with Σ×{0}. In other words, the first layer of tubes close
to Σ is at a fixed distance ε

2 of Σ × {0} (see Figure 1).
By a rescaling of ratio ε, this new period GK

ε corresponds to a finite length
truncation of the new reference cell

GK def= KG =]0;K[N−1×]0; +∞[= KY ′×]0; +∞[.

In the reference cell GK (see Figure 2) we put infinitely many layers of tubes in the
Nth direction, each layer being made of KN−1 tubes. The tubes in GK are denoted
by Tj , where j = (j′, jN ) is a multi-index such that jN ≥ 1 is an integer, which labels
the corresponding layer in GK , and j′ is a multi-integer in {0, 1, . . . , K−1}N−1, which
locates the tube Tj in its layer jN . The fluid part in GK is denoted by G∗K , i.e.,

G∗K = GK \
⋃

0≤j′≤K−1
1≤jN

Tj .

To each tube Tj in GK we associate the subcell Yj and the fluid subcell Y ∗
j = Yj \ Tj

analogous to Y and Y ∗, respectively (see Figure 2). The main idea is to attach to
each tube Tj in GK a different displacement function ~s(x′), depending only on the
variable x′ ∈ Σ, such that the family (~sj(x′)) 0≤j′≤K−1

1≤jN

belongs to the space L2(Σ; `2K),

where `2K is the Hilbert space defined by

`2K =

(~sj) 0≤j′≤K−1
1≤jN

∣∣∣ ~sj ∈ CN ,
∑

0≤j′≤K−1
1≤jN

|~sj |2 < +∞

 .
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356 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Σ

L

ε

Fig. 1. Cylindrical domain Ω = Σ × (0, L).

j
N

(j’,j
N

)

K
j’

T

Fig. 2. Reference cell GK .

Remark that this definition of `2K implies a decay of the displacement function ~sj as
jN goes to +∞. Note also that each family (~sj(x′)) ∈ L2(Σ; `2K) can be identified
with a function ~s(x′, y) ∈ L2(Σ × GK) which is constant in each subcell Yj .

We now introduce the extended operator BK
ε defined in L2(Σ; `2K) by

BK
ε = EK

ε SεP
K
ε ,

where PK
ε and EK

ε are, respectively, projection and extension operators between
RNn(ε) and L2(Σ; `2K). To define precisely PK

ε and EK
ε we need the following notation.

Definition 2.8. Let j = (j′, jN ) denote the multi-index which enumerates all
tubes in the periodic reference cell GK . We use the notation 0 ≤ j′ ≤ K − 1 to
indicate that j′ varies in {0, 1, . . . , K − 1}N−1 and jN ≥ 1 to indicate that jN takes
any positive integer value. Let p = (p1, . . . , pN ) be the multi-integer which enumerates
all the tubes in Ω (see Definition 1). The index p is such that the tube T ε

p is located
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 357

in the cell whose origin lies at the point εp ∈ Ω. To describe its range we use the
notation 1 ≤ p ≤ n(ε), where n(ε) is the total numbers of tubes in Ω. We define
a third multi-integer `′ = (`1, . . . , `N−1) which enumerates all the periodic reference
cells GK

ε,`′ covering Ω (each being identical, up to a translation, to GK
ε ). For simplicity

its range is denoted by 1 ≤ `′ ≤ nK(ε). These three indices are assumed to be related
by the following one-to-one relationship:{

`m = E(pm

K ), jm = pm − K`m for 1 ≤ m ≤ N − 1,
jN = pN ,

(26)

where E denotes the integer-part function. This yields a one-to-one map between the
tubes (T ε

p) and their location in the cell GK
ε,`′ at the position j′ in the layer jN .

Then, we define a projection

PK
ε : L2(Σ; `2K) −→ RNn(ε),

(~sj(x′)) 0≤j′≤K−1
1≤jN

7→ (~sp)1≤p≤n(ε)(27)

given by

~sp =
1

|εKY ′|

∫
(εKY ′)`′

~sj(x′)dx′,

where (p, j, `′) are related by formula (26) and (εKY ′)`′ is the cross section of the cell
GK

ε,`′ .
We also define an extension

EK
ε : RNn(ε) −→ L2(Σ; `2K),

(~sp)1≤p≤n(ε) 7→ (~sj(x′)) 0≤j′≤K−1
1≤jN

(28)

given by

~sj(x′) =
∑
`′

χ
(εKY ′)`′

(x′)~sp,

where (p, j, `′) are related by formula (26) and χ(εKY ′)`′ (x′) is the characteristic func-
tion of (εKY ′)`′ . By convention, ~sp is taken equal to 0 if the values of j and `′

correspond to a cell truncated by the boundary ∂Ω which therefore contains no tube.
One can easily check that PK

ε and EK
ε are adjoint operators (up to a multiplica-

tive constant) and that the product PK
ε EK

ε is nothing but the identity in RNn(ε).
Therefore, the spectrum of BK

ε consists of that of Sε and zero as an eigenvalue of in-
finite multiplicity. We summarize these results in the next lemma, the proof of which
is safely left to the reader.

Lemma 2.9. The operators PK
ε and EK

ε satisfy the following properties;
1. (PK

ε )? = (εK)−(N−1)EK
ε ,

2. (EK
ε )? = (εK)(N−1)PK

ε ,
3. PK

ε EK
ε = IdRNn(ε) .

Therefore, the extended operator BK
ε = EK

ε SεP
K
ε is self-adjoint and compact in

L2(Σ; `2K). Its spectrum is

σ(BK
ε ) = σ(Sε)

⋃
{0}.
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358 GRÉGOIRE ALLAIRE AND CARLOS CONCA

The convergence analysis of this sequence of extended operators BK
ε is amenable

to the two-scale convergence method in the sense of boundary layers (as introduced
in the previous section). It turns out that the corresponding limit operator BK has
a complicated form which can be considerably simplified by introducing the so-called
Bloch wave decomposition. However, we emphasize that this decomposition will affect
only the (N − 1) first variables and not the last one, orthogonal to the boundary Σ.

Lemma 2.10. Given a family (~sj) 0≤j′≤K−1
1≤jN

in `2K , there exists a unique family

(~tj) 0≤j′≤K−1
1≤jN

in `2K such that, for any fixed jN ,

∑
0≤j′≤K−1

~sjχYj′
(y′) =

∑
0≤j′≤K−1

~tje
2πı j′

K ·E(y′),

where E(·) denotes the integer part function and (Yj′)0≤j′≤K−1 is the family of subcells
of KY ′. Moreover, Parseval’s identity holds true; i.e., for any fixed jN ,∑

0≤j′≤K−1

|~sj |2 = KN−1
∑

0≤j′≤K−1

|~tj |2.

The proof of Lemma 2.10 is standard (see, e.g., [1]). Remark that `2K is isomorphic
to (`21)

KN−1
by identifying an element (~sj) 0≤j′≤K−1

1≤jN

of `2K as a collection of KN−1

elements (~s(j′,jN ))jN ≥1 of `21. Therefore, in Lemma 2.10, one could replace `2K by
(`21)

KN−1
. Let us define a linear map B′

B′ : `2K −→ (`21)
KN−1

,

(~sj) 7→ (K
N−1

2 ~t(j′,jN )),
(29)

where the vectors ~sj and ~tj are related as in Lemma 2.10. This Bloch decomposition
B′ (the prime indicates that it concerns only the first (N − 1) variables) is easily seen
to be an isometry from `2K to (`21)

KN−1
; namely, (B′)? = (B′)−1.

We are now in a position to state the main result on the asymptotic behavior of
BK

ε .
Theorem 2.11. For each fixed K ≥ 1, as ε goes to 0, the sequence BK

ε converges
strongly to a limit BK into L2(Σ; `2K); i.e., for any function ~s(x′) ∈ L2(Σ; `2K) we
have

BK
ε ~s(x′) −→ BK~s(x′) in L2(Σ; `2K) strongly.

By using the Bloch decomposition B′ defined in (29), the operator BK can be diago-
nalized

BK = (B′)?DKB′ with DK = diag(DK
j′ )0≤j′≤K−1,

where the entries DK
j′ are self-adjoint continuous (but not compact) operators in

L2(Σ; `21) defined, for any (~sjN
(x′))jN ≥1 ∈ L2(Σ; `21), by

DK
j′ (~sjN

(x′)) =

(∫
ΓjN

uj′~nds

)
jN ≥1

,
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 359

where uj′(y) is the unique solution of
−∆yuj′ = 0 in G∗,
∂uj′

∂n = ~sjN
· ~n on ΓjN

, jN ≥ 1,
uj′ = 0 on yN = 0,

y′ 7→ e−2πı j′
K ·y′

uj′(y′, yN ) Y ′ − periodic,

(30)

where G∗ is the fluid part of the semi-infinite band G (see Figure 2).
Remark 2.12. Of course, the solution uj′ of (30) depends also on the variable

x′ ∈ Σ since each displacement ~sjN
(x′) depends on x′. Nevertheless, x′ plays the role

of a parameter, since (30) is a partial differential equation in the variable y only. The
limit problem (30) admits a unique solution uj′(x′, y) in the space L2(Σ; D1

j′,#(G∗)),
where D1

j′,#(G∗) is a Deny–Lions-type space. More precisely, it is defined as D1
0#(G)

in (21), the only difference being that functions in D1
j′,#(G∗) satisfy a (e2πı j′

K , Y ′)
periodicity condition in y′, instead of the usual Y ′ periodicity. Recall that a func-
tion w(y) satisfying the periodicity condition of the limit problem (30) is said to be
(e2πı j′

K , Y ′)-periodic in y′ because such a function also satisfies the following (gener-
alized) periodicity condition:

w(y + (k′, 0)) = e2πı j′·k′
K w(y) ∀y = (y′, yN ) and ∀k′ ∈ ZN−1.

For more details on this class of functions, we refer to [1], [16].
The key of the proof of Theorem 2.11 is the following homogenization result for

the fluid potential when the displacements of the tubes are given in terms of the
projection operator PK

ε . Remark that, in view of definition (27) of PK
ε , such a family

of displacements concentrates near the boundary Σ × {0} as ε goes to 0.
Proposition 2.13. For any ~s(x′) ∈ L2(Σ; `2K) let us define uε = uε(~s) as the

unique solution in H1(Ωε) of
−∆uε = 0 in Ωε,
∂uε

∂n =
(
PK

ε ~s(x′)
)
p

· ~n on Γε
p, 1 ≤ p ≤ n(ε),

uε = 0 on ∂Ω.

(31)

Then, uε two scale converges in the sense of boundary layers to 0 and ∇uε two-scale
converges in the sense of boundary layers to ∇yu0(x′, y), where u0(x′, y) is the unique
solution in L2(Σ, D1

0#(G∗K)) of
−∆yu0 = 0 in G∗K ,
∂u0
∂n = ~sj · ~n on Γj ,
u0 = 0 if yN = 0,
y′ 7→ u0(x′, y′, yN ) KY ′-periodic,

(32)

and ∇uε two-scale converges strongly, i.e.,

lim
ε→0

1
ε

∫
Ωε

|∇uε|2dx =
1

|KY ′|

∫
Σ

∫
GK

|∇yu0|2dx′dy.(33)

Moreover, if ~sε(x′) is a sequence which converges weakly to a limit ~s(x′) in
L2(Σ; `2K), then the sequence of associated solutions uε(~sε) two-scale converges in
the sense of boundary layers to 0 and ∇uε(~sε) two-scale converges in the sense of
boundary layers to ∇u0(x′, y), where u0 is still the solution of (32).
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360 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Remark 2.14. A priori, the solution uε of (31) is defined only in the fluid domain
Ωε which is a varying set as ε goes to 0. However, it is a standard matter (see [13])
to build an extension operator Xε acting from H1(Ωε) into H1(Ω) such that, for any
v ∈ H1(Ωε),

Xεv = v in Ωε and ‖Xεv‖H1(Ω) ≤ C‖v‖H1(Ωε),

where C is a positive constant independent of ε. In what follows, we shall always
identify functions in H1(Ωε) (as uε) with their extension in H1(Ω) (as Xεuε).

To prove Proposition 2.13 we need two technical lemmas.
Lemma 2.15. The extension and projection operators EK

ε and PK
ε satisfy the

following estimates:
(i) ‖PK

ε ~s(x′)‖RNn(ε) ≤ Cε− N−1
2 ‖~s(x′)‖L2(Σ;`2K),

(ii) ‖EK
ε (~sp)‖L2(Σ;`2K) ≤ Cε

N−1
2 ‖(~sp)1≤p≤n(ε)‖RNn(ε) ,

where C is a constant independent of ε and the norms are defined by

‖(~sp)1≤p≤n(ε)‖2
RNn(ε) =

∑
1≤p≤n(ε)

|~sp|2,

‖~s(x′)‖2
L2(Σ;`2K) =

∫
Σ

∑
0≤j′≤K−1

1≤jN

|~sj(x′)|2dx′.

Proof. Let us prove (i) (the other inequality (ii) has a similar proof). By definition
of PK

ε ,

‖PK
ε ~s(x′)‖2

RNn(ε) =
∑

1≤p≤n(ε)

( 1
|εKY ′|

∫
(εKY ′)`′

~sj(x′)dx′
)2

,

where (p, j, `′) are related by formula (26). Applying the Cauchy–Schwarz inequality
and summing over `′ yield

‖PK
ε ~s(x′)‖2

RNn(ε) ≤
∑

1≤p≤n(ε)

1
|εKY ′|

∫
(εKY ′)`′

|~sj(x′)|2dx′

≤ 1
(Kε)N−1

∫
Σ

∑
j

|~sj(x′)|2dx′,
(34)

which is the desired result.
Lemma 2.16. Let ~sε(x′) be a sequence of functions which converges weakly to

~s(x′) in L2(Σ; `2K). Define a piecewise constant function

~aε(x) =
∑
`′

∑
j

( 1
|εKY ′|

∫
(εKY ′)`′

~sε
j(x

′)dx′
)
χ

Y ε
j`′

(x),

where χ
Y ε

j`′
(x) is the characteristic function of the jth subcell of the periodic cell GK

ε,`′ .

Then, ~aε two-scale converges in the sense of boundary layers to a limit ~a0(x, y) ∈
L2(Σ × GK) defined by

~a0(x, y) =
∑

j

~sj(x′)χ
Yj

(y),
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 361

where χ
Yj

(y) is the characteristic function of the jth subcell of the reference cell

GK . Moreover, if ~sε(x′) converges strongly to ~s(x′) in L2(Σ; `2K), then ~aε two-scale
converges strongly to ~a0 in the sense of boundary layers, i.e.,

lim
ε→0

1√
ε
‖~aε(x)‖L2(Ω) =

1

K
N−1

2

‖~a0(x′, y)‖L2(Σ×GK).

Proof. The proof is very similar to that of Lemma 3.3.2 in our previous work
[3], so we briefly sketch it. Let ~ϕ(x′, y) be a suitable smooth test function defined
on Σ × GK with values in RN such that y′ → ~ϕ(x′, y′, yN ) is KY ′-periodic and ~ϕ
vanishes for sufficiently large yN . We check the definition of two-scale convergence:

1
ε

∫
Ω ~aε(x) · ~ϕ(x′, x

ε )dx

= 1
ε

∑̀
,j

(
1

(εK)N−1

∫
ε(KY ′)`′

~sε
j(x

′)dx′
)

·
∫

Y ε
j`′

~ϕ(x′, x
ε )dx

= 1
KN−1

∑
j

∫
Σ ~sε

j(x
′) ·

[∑
`′

(
1

εN

∫
Y ε

j`′
~ϕ(x′, x

ε )dx
)
χε(KY ′)`′ (x′)

]
dx′.

It is easily seen that for each fixed j the term between brackets converges strongly to∫
Yj

~ϕ(x′, y)dy in L2(Σ)N . Remark that the sum in j is finite since ~ϕ has a bounded
support in GK . Thus we can pass to the limit and obtain the desired result

1
KN−1

∑
j

∫
Σ

~sj(x′) ·
(∫

Yj

~ϕ(x′, y)dy

)
dx′.

If ~sε
j converges strongly to ~sj , the strong two-scale convergence of ~aε(x) is obtained

by a similar proof, replacing in the above computation the test function ~ϕ by ~aε(x).
Proof of Proposition 2.13. Multiplying (31) by uε and integrating by parts, we

get ∫
Ωε

|∇uε|2dx =
∑

1≤p≤n(ε)

(
PK

ε ~s
)
p

·
∫
Γε

p
uε~nds

≤ ‖
(
PK

ε ~s
)
‖RNn(ε)

∥∥∥(∫
Γε

p
uε~nds

)∥∥∥
RNn(ε)

.

(35)

An easy calculation (see Lemma 2.2.3 in [3] if necessary) shows that∥∥∥∥∥( ∫
Γε

p

uε~nds
)∥∥∥∥∥

2

RNn(ε)

≤ CεN‖∇uε‖2
L2(Ωε)N ,

and hence, using Lemma 2.15 we conclude that∫
Ωε

|∇uε|2dx ≤ Cε‖~s(x′)‖2
L2(Σ;`2K).

A standard Poincaré inequality in Ω yields the same estimate for uε in L2(Ωε) :∫
Ωε

|uε|2dx ≤ Cε‖~s(x′)‖2
L2(Σ;`2K).
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362 GRÉGOIRE ALLAIRE AND CARLOS CONCA

We now apply the method of two-scale convergence for the asymptotic analysis of the
sequence uε, using test functions with GK as the periodic cell (since we decided to
consider GK to be the reference cell and not G). By virtue of Proposition 2.6 there
exists a subsequence of uε and a limit function u0(x′, y) in L2(Σ; D1

0#(GK)) such that
(uε,∇uε) two-scale converge in the sense of boundary layers to (0,∇yu0). Let ϕ(x′, y)
be a smooth function in L2(Σ; D1

0#(GK)). Multiplying the equation (31) by ϕ(x′, x
ε )

we obtain

1
ε

∫
Ω

χ
Ωε

(x)∇uε · ∇yϕ
(
x′,

x

ε

)
dx +

∫
Ω

χ
Ωε

(x)∇uε∇x′ϕ
(
x′,

x

ε

)
dx

=
∑

1≤p≤n(ε)

(
PK

ε ~s
)
p

·
∫

Γε
p

ϕ
(
x′,

x

ε

)
~nds

=
1
ε

∫
Ω

(
χ

Ωε
(x) − 1

)
~aε(x) ·

(
∇yϕ

(
x′,

x

ε

)
+ ε∇x′ϕ

(
x′,

x

ε

))
dx,

where χΩε(x) is the periodic characteristic function of Ωε and ~aε(x) is a piecewise
constant function defined as in Lemma 2.16 by

~aε =
∑
`′

∑
j

( 1
|εKY ′|

∫
(εKY ′)`′

~sj(x′)dx′
)
χ

Y ε
j`′

(x).

Remark that both terms involving ∇x′ϕ go to zero with ε. Applying Lemma 2.16, we
pass to the two-scale limit in the remaining terms to get

1
|KY ′|

∫
Σ

∫
G∗K

∇yu0(x′, y) · ∇yϕ(x′, y)dx′dy =
−1

|KY ′|

∫
Σ

∑
j

∫
Tj

~sj(x′) · ∇yϕ(x′, y)dx′dy

which is nothing but the variational formulation of the limit equation (32). A stan-
dard application of the Lax–Milgram lemma yields uniqueness of the solution u0 in
L2(Σ; D1

0#(GK)). Thus the entire sequence uε converges to the same limit u0.
The proof of the energy convergence (33) is standard by passing to the two-scale

limit in the right-hand side of (35) since ~aε two-scale converges strongly in the sense
of Proposition 2.5 (see Proposition 2.2.4 in [3]).

To prove the two-scale convergence of uε(~sε) to u0, when ~sε converges weakly to ~s
in L2(Σ; `2K), it suffices to repeat the same above arguments since Lemma 2.16 asserts
that ~aε two-scale converges to ~a0 even if ~sε converges weakly. Note that in this case
we do not have the energy convergence.

Proof of Theorem 2.11. Let ~s(x′) ∈ L2(Σ; `2K) and ~tε be a sequence which con-
verges weakly to ~t in L2(Σ; `2K). Our goal is to prove that

lim
ε→0

〈
BK

ε ~s(x′),~tε(x′)
〉

L2(Σ;`2K) =
〈
BK~s(x′),~t(x′)

〉
L2(Σ;`2K) .
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 363

By definition of BK
ε , we have〈

BK
ε ~s(x′),~tε(x′)

〉
L2(Σ;`2K) =

〈
EK

ε SεP
K
ε ~s(x′),~tε(x′)

〉
L2(Σ;`2K)

= (εK)N−1
〈
SεP

K
ε ~s(x′), PK

ε
~tε(x′)

〉
RNn(ε)

= (εK)N−1 ∑
1≤p≤n(ε)

1
εN (

∫
Γε

p
uε(~s)~nds) · (PK

ε
~tε)p

= KN−1

ε

∫
Ωε

∇uε(~s) · ∇uε(~tε)dx.

By Proposition 2.13 we know that ∇uε(~s) two-scale converges strongly in the sense of
boundary layers to ∇yu0(~s) while ∇uε(~tε) two-scale converges weakly to ∇yu0(~t). By
virtue of Proposition 2.5 we can pass to the limit in the product and we get

lim
ε→0

〈
BK

ε ~s(x′),~tε(x′)
〉

L2(Σ;`2K) =
∫

Σ

∫
G∗K

∇yu0(~s) · ∇yu0(~t)dx′dy,

where u0(~s) and u0(~t) are solutions of the homogenized problem (32) with ~s and ~t,
respectively, as the right-hand side. A simple integration by parts shows that∫

Σ

∫
G∗K

∇yu0(~s) · ∇yu0(~t)dx′dy =
〈
BK~s(x′),~t(x′)

〉
L2(Σ;`2K) ,

where the limit operator BK is defined by

BK~s(x′) =

(∫
Γj

u0(~s)~nds

)
0≤j′≤K−1

1≤jN

.(36)

This proves the strong convergence of BK
ε to BK on L2(Σ; `2K). Obviously, BK is

self-adjoint and continuous but not compact since x′ plays the role of a parameter in
the definition of BK .

It remains to diagonalize BK with the help of the Bloch decomposition B′. This
diagonalization process has already been exposed in section 3.3 of our previous pa-
per [3] in a slightly different context. For the sake of brevity, we do not repeat this
standard argument here. Let us simply indicate the three main steps of this Bloch
diagonalization. First, we apply the operator B′ to ~s(x′) = (~sj(x′)) 0≤j′≤K−1

jN ≥1
which

gives the Bloch decomposition of ~s(x′) with respect to the multi-index j′ (not in-
cluding jN ). Secondly, plugging this Bloch decomposition in the limit equation (32)
(which holds in G∗K) and using a similar Bloch decomposition of u0(~s), we decompose
(32) in a family of KN−1 equations defined in a single reference cell G∗. In a third
step, applying again the Bloch decomposition B′ to formula (36) yields the desired
diagonalization of BK .

2.3. Analysis of the limit spectrum. In this section we analyze the spectrum
of the limit operator BK and, from the strong convergence of BK

ε to BK , we deduce
the lower semicontinuous convergence of the spectrum σ(Sε) to the limit spectrum
σ(BK). Recall that for any K ≥ 1, the extended operator BK

ε has a spectrum given
by

σ(BK
ε ) = σ(Sε) ∪ {0}.
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364 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Since BK
ε converges strongly to BK in L2(Σ; `2K), by virtue of Proposition 2.1.11 in

[3], we have

σ(BK) ⊂ σ∞ = lim
ε→0

σ(Sε).

From Rellich’s theorem, the strong convergence of the spectral family associated with
BK

ε to that of BK is also easily deduced (see Theorem 3.2.5 in [3]). This gives some
(partial) information on the convergence of eigenvectors that we shall not use below.

In view of Theorem 2.11,

BK = (B′)−1DKB′ with DK = diag(DK
j′ )0≤j′≤K−1,

where each DK
j′ is a self-adjoint continuous operator in L2(Σ; `21). Since B′ is an

isometry, we have

σ(BK) =
⋃

0≤j′≤K−1

σ(DK
j′ ).

By the very definition of DK
j′ , the macroscopic variable x′ ∈ Σ plays the role of a

parameter. Therefore, for any fixed value of x′, DK
j′ can be identified with an operator

d j′
K

acting in `21 which does not depend on x′. Introducing the Bloch parameter

θ′ = j′

K ∈ [0, 1]N−1, this new operator dθ′ is defined by

dθ′ : `21 −→ `21,

(~sq)q≥1 7→
(∫

Γq

uθ′ · ~nds

)
q≥1

,(37)

where uθ′(y) is the unique solution of
−∆uθ′ = 0 in G∗,
∂uθ′
∂n = ~sq · ~n on Γq, q ≥ 1,

uθ′ = 0 if yN = 0,

y′ 7→ e−2πıθ′·y′
uθ′(y′, yN ) Y ′-periodic.

In (37) the positive integer q is nothing but the index jN introduced in Definition 2.8.
Clearly, we have

σ(DK
j′ ) = σ(d j′

K

).

As is well known, the spectrum of a self-adjoint operator can be decomposed in its
discrete part, made of, at most, a countable number of isolated eigenvalues of finite
multiplicities, and its essential part, for which the Weyl criterion applies (see, e.g.,
[25], [33], [34]). The next proposition characterizes the spectrum of dθ′ .

Proposition 2.17. For all θ′ ∈ [0, 1]N−1, dθ′ is a self-adjoint continuous but
noncompact operator in `21. Labeling the eigenvalues of the discrete spectrum σdisc(dθ′)
by decreasing order, each discrete eigenvalue is piecewise continuous in θ′. The es-
sential spectrum is given by

σess(dθ′) =
⋃

θN ∈[0,1]

σ(A(θ′, θN )),
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 365

where A(θ′, θN ) is the Bloch homogenized matrix, defined by (12), which is continuous
in θ ∈]0, 1[N but discontinuous at θ = 0. Moreover, the entire spectrum σ(dθ′),
considered as a subset of R+, depends continuously on θ′, except at θ′ = 0.

Because we use the usual convenient labeling of the discrete eigenvalues by de-
creasing order, we can merely prove that they are piecewise continuous. This is due
to the fact that, when θ′ varies, an analytical branch (if any) of discrete eigenvalues
may merge into the essential spectrum: this yields a “jump” in the labeling of dis-
crete eigenvalues. Therefore, one cannot hope to prove a global continuity of these
eigenvalues with such an ordering.

Let us postpone for a moment the proof of Proposition 2.17 and define the so-
called boundary layer spectrum associated with the surface Σ:

σΣ
def=

⋃
θ′∈]0,1[N−1

σ(dθ′) ∪ σ(d0).(38)

By virtue of Proposition 2.17, we have

σBloch ⊂ σΣ.(39)

Therefore σΣ also has a band structure since it includes the Bloch spectrum, but
it may include new bands of eigenvalues of σdisc(dθ′). It also contains the isolated
eigenvalues of σdisc(d0). Therefore σΣ can contain elements which are not included in
the previous limit spectrum σ(S) ∪ σBloch (see section 1.2). The continuity of σ(dθ′)
with respect to θ′ ensures that σΣ is the closure of the union of all spectra σ(dθ′) with
θ′ rational. ⋃

K≥1

⋃
0≤j′≤K−1

σ(d j′
K

) = σΣ.

We summarize our results in the following theorem.
Theorem 2.18. The boundary layer spectrum associated to Σ is included in the

limit spectrum

σΣ ⊂ σ∞.

Remark 2.19. Of course σΣ is not the complete boundary layer spectrum since
it is concerned only with that part of the spectrum concentrating near Σ. A completely
similar analysis has to be done for all the (N − 1)-dimensional surfaces and all other
lower dimensional manifolds (edges, corners, etc.) of which the boundary of Ω is made
up. Then, we shall prove in the next section that the union of all these contributions,
the so-called boundary layer spectrum, plus the usual homogenized spectrum and the
Bloch spectrum, is equal to σ∞, at least when Ω is made up only of entire cells εY .

Proof of Proposition 2.17. Let us first prove that the essential spectrum of dθ′ is
included in the Bloch spectrum, and, more precisely,

σess(dθ′) =
⋃

0≤θN ≤1

σ(A(θ′, θN )),

where A(θ) is the usual Bloch homogenized matrix defined in (12). In particular, this
proves that σess(dθ′) 6= {0}, so dθ′ is not compact.
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366 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Let λ(θ) be an eigenvalue of A(θ) and u(θ) be the associated potential solution of
−∆yu(θ) = 0 in Y ∗,
∂u(θ)

∂n = λ−1(θ)
∫
Γ

u(θ)~nds on Γ,

y 7→ e−2πıθ·yu(θ, y) Y -periodic.

We construct a Weyl sequence un associated with the spectral value λ(θ) by

un =
u(θ)ψn

‖u(θ)ψn‖L2(G∗)
,

where ψn(yN ) is a cut-off function defined by
ψn(yN ) = yN when 0 ≤ yN ≤ 1,
ψn(yN ) = 1 when 1 ≤ yN ≤ n,
ψn(yN ) = n + 1 − yN when n ≤ yN ≤ n + 1,
ψn(yN ) = 0 when yN ≥ n + 1.

By definition, ‖un‖L2(G∗) = 1 and limn→+∞ ‖u(θ)ψn‖L2(G∗) = +∞. Then, it is easily
checked that, for any ϕ ∈ D1

0#(G) (the Deny–Lions-type space defined in (21)),∫
G∗

∇un · ∇ϕdy =
1

λ(θ)

∑
q≥1

( ∫
Γq

un~nds
)

·
( ∫

Γq

ϕ~nds
)

+ 〈rn, ϕ〉 ,

where rn is a negligible remainder term in the sense that

lim
n→+∞

〈rn, ϕ〉
‖∇ϕ‖L2(G∗)N

= 0.

Furthermore, ~sn = (
∫
Γq

un~nds)q≥1 converges weakly to 0 in `21 since

lim
n→+∞

‖u(θ)ψn‖L2(G∗) = +∞.

Therefore, ~sn is a Weyl sequence associated with λ(θ) for the operator dθ′ . This
proves that λ(θ) ∈ σess(dθ′). To prove the converse inclusion,

σess(dθ′) ⊂
⋃

0≤θN ≤1

σ(A(θ′, θN )),

we consider a Weyl sequence ~sn for a spectral value λ ∈ σess(dθ′). Let un be the
associated potential solution, i.e.,

−∆un = 0 in G∗,
∂un

∂n = (~sn)q · ~n on Γq, q ≥ 0,
un = 0 if yN = 0,

y′ 7→ e−2πıθ′·y′
un(y′, yN ) Y ′-periodic.

(40)

Since ‖~sn‖`21
= 1 and ~sn ⇀ 0 in `21 weakly, it is easily seen that un converges to 0

weakly in H1(G∗). Furthermore, since the weak convergence to 0 of ~sn implies that
its components (~sn)q go to 0 for fixed q, it is not difficult to check that, for any
compact set K of G∗, un converges strongly to 0 in H1(K) (multiply equation (40)

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 367

by φun where φ is equal to 1 in K and is compactly supported away from infinity).
Introducing a sequence

vn =
ψun

‖ψun‖L2(G∗)
,

where ψ(yN ) is a cut-off function defined by ψ(yN ) = 0 for yN ≤ 0,
ψ(yN ) = yN for 0 ≤ yN ≤ 1,
ψ(yN ) = 1 for yN ≥ 1,

it is straightforward to prove that∫
B∗

∇vn · ∇ϕdx =
1
λ

∑
q∈Z

( ∫
Γq

vn~nds
)

·
( ∫

Γq

ϕ~nds
)

+ 〈rn, ϕ〉

for any ϕ ∈ D1
#(B∗), where B∗ is the infinite band Y ′×] − ∞; +∞[ perforated by the

periodic arrangement of tubes (Tq)q∈Z, and rn is another negligible remainder term
such that

lim
n→+∞

〈rn, ϕ〉
‖∇ϕ‖L2(B∗)N

= 0.

Therefore,

~tn =

(∫
Γq

vn~nds

)
q∈Z

is a Weyl sequence for an operator similar to dθ′ but defined in the whole infinite
band B∗ instead of the semi-infinite band G∗. A standard Bloch decomposition with
respect to the variable yN yields that λ belongs to

⋃
0≤θN ≤1 σ(A(θ′, θN )).

To conclude the proof of Proposition 2.17, it remains to prove that the isolated
eigenvalues of finite multiplicity λ(θ′) ∈ σdisc(dθ′) are piecewise continuous with re-
spect to θ′. Let θ′

n be a sequence converging to θ′ in ]0, 1[N−1. Obviously, the sequence
of continuous operators dθ′

n
uniformly converges to dθ′ in `21. Now, let us invoke a

classical theorem (see, e.g., Theorem 3.1., Chapter I.3 in [20]) which states that for
any closed curve γ in the complex plane, which encloses a finite number of eigen-
values of σdisc(dθ′) and does not intersect σ(dθ′), there exists n0 such that for any
n ≥ n0, the curve γ contains the same number of eigenvalues (including multiplicities)
of σdisc(dθ′

n
) and does not intersect σ(dθ′

n
). This is nothing but the local continuity of

the eigenvalues of σdisc(dθ′) (enumerated, for example, in decreasing order). Remark
that the continuity of the pth eigenvalue of σdisc(dθ′) breaks down only when one of
the previous eigenvalues (with label between 1 and p−1) meets the essential spectrum
σess(dθ′) as θ′ varies. In any case, since σess(dθ′) depends continuously on θ′ 6= 0, this
proves that the entire spectrum σ(dθ′) depends also continuously on θ′ 6= 0. The lack
of continuity for σ(dθ′) at θ′ = 0 is a phenomenon already explained in our previous
work (see Proposition 3.3.4 in [3]).

Remark 2.20. When the tube T is symmetric in Y (in other words, by reflexion
with respect to the hyperplane [yN = 0], G∗ yields the infinite periodic array of tubes
B∗), it can readily be checked that there is no isolated eigenvalue of finite multiplicity
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368 GRÉGOIRE ALLAIRE AND CARLOS CONCA

for dθ′ ; i.e., σdisc(dθ′) = ∅ for all θ′ ∈ [0, 1]N−1. If this were not the case, by
symmetry an eigenvalue of σdisc(dθ′) would also be an eigenvalue of finite multiplicity
for a similar operator in the infinite band B∗, which is impossible since by translation
there exists an infinite number of eigenvectors.

We conclude this section by proving that the eigenvectors corresponding to iso-
lated eigenvalues of finite multiplicity of dθ′ are localized in the vicinity of the bound-
ary [yN = 0] since they decay exponentially at infinity.

Proposition 2.21. Let λ be an eigenvalue in σdisc(dθ′) and let (~sq)q≥1 be a
corresponding eigenvector. There exists a positive constant α > 0 such that (eαp~sq)q≥1
belongs to `21.

Proof. The argument is by contradiction of the Weyl property for eigenvalues
in the essential spectrum. For λ ∈ σdisc(dθ′), let ~s = (~sq)q≥1 be a corresponding
normalized eigenvector and u(y) the corresponding potential, solution of

−∆u = 0 in G∗,
∂u
∂n = ~sq · ~n on Γq, q ≥ 1,
u = 0 if yN = 0,

y′ 7→ e−2πıθ′·y′
u(y′, yN ) Y ′-periodic.

(41)

By definition, for all q ≥ 1, it satisfies∫
Γq

u · ~nds = λ~sq.

Let us define a sequence (~sn)n≥0 in `21 by

~sn = (~sn
q )q≥1 with ~sn

q =

{
0 if q < n,

~sq√∑ ∞
p=n |~sp|2 if q ≥ n.

It is easily seen that ~sn converges weakly to 0 in `21 with ‖~sn‖`21
= 1. However, since

λ does not belong to the essential spectrum of dθ′ , any subsequence of ~sn cannot be
a Weyl sequence for λ. This implies the existence of a positive constant C and an
integer n0 such that, for any n ≥ n0,

‖dθ′~sn − λ~sn‖`21
≥ C > 0.(42)

As usual un(y) is the potential associated with ~sn through an equation similar to
(41). We introduce a smooth cut-off function ψn(yN ) such that ψn = 0 on all tubes
Tq for q < n, and ψn = 1 on all tubes Tq for q ≥ n. Let us denote by ωn the bounded
support of ∇ψn which lies between Tn−1 and Tn. Introducing an approximation vn

of the potential un, defined by

vn(y) =
ψn(yN ) (u(y) − cn)√∑∞

p=n |~sp|2
with cn =

1
|ωn|

∫
ωn

u(y)dy,

we write

dθ′~sn = λ~sn +

(∫
Γq

(un − vn) · ~nds

)
q≥1

.
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 369

From (42) we deduce

‖∇(un − vn)‖L2(G∗)N ≥ C > 0 for n ≥ n0.

Using the equations for u and un, a simple computation yields∫
G∗

|∇(un − vn)|2dy =
∫

G∗
∇ψn · (un − vn)∇u − (u − cn)∇(un − vn)√∑∞

p=n |~sp|2
.(43)

Remark that the integral in the right-hand side reduces to ωn since ∇ψn has bounded
support in ωn. Applying the Poincaré–Wirtinger inequality in ωn to (u−cn) and (un−
vn) (this last term has not zero average in ωn, but (43) is invariant by substraction
of a constant to (un − vn)), we obtain from (43)

‖∇(un − vn)‖L2(G∗)N ≤ C
‖∇u‖L2(ωn)N√∑∞

p=n |~sp|2
,

which implies

∞∑
p=n

|~sp|2 ≤ C‖∇u‖2
L2(ωn)N .(44)

On the other hand, multiplying equation (41) by ψn(u − cn) and integrating by parts
gives ∫

G∗
ψn|∇u|2dy +

∫
G∗

(u − cn)∇u · ∇ψndy = λ
∞∑

p=n

|~sp|2.

Applying again the Poincaré–Wirtinger inequality in ωn to (u − cn) yields∫
G∗

ψn|∇u|2dy ≤ λ
∞∑

p=n

|~sp|2 + C‖∇u‖2
L2(ωn)N .(45)

Let us denote by Gn the subset of G∗ defined by Gn = {y ∈ G∗|yN > n}. From (44)
and (45) we deduce

‖∇u‖2
L2(Gn+1)N ≤ C‖∇u‖2

L2(ωn)N ≤ C
(
‖∇u‖2

L2(Gn)N − ‖∇u‖2
L2(Gn+1)N

)
,

which implies, for n ≥ n0,

‖∇u‖2
L2(Gn)N ≤

(
C

1 + C

)n−n0

‖∇u‖2
L2(Gn0 )N .(46)

It is easily seen that (46) implies the desired result.

3. Completeness of the boundary layer spectrum. In this section we as-
sume that Ω is a rectangle with integer dimensions, i.e.,

Ω =
N∏

i=1

]0;Li[ and Li ∈ N∗.(47)
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370 GRÉGOIRE ALLAIRE AND CARLOS CONCA

The sequence of small parameters ε is also assumed to be

εn =
1
n

, n ∈ N∗.(48)

Remark that all the previous results in this paper hold for any type of sequence ε going
to zero. From now on, we restrict ourselves to the sequence εn since, for any n ≥ 1,
the domain Ω is the union of a finite number of entire periodic cells Y εn

p . However, to
simplify the notation, we shall not indicate the dependence on n and simply denote
by ε the particular sequence defined in (48).

Remark that the assumption on the geometry of Ω can be slightly relaxed. Any
polygonal domain with faces parallel to the axis (i.e., the normal is everywhere one
of the basis vectors) and having vertex with integer coordinates could equally be
considered.

3.1. Presentation of the main result. This section is devoted to the so-called
completeness of the limit spectrum. Recall that in our previous work [3] we proved
that

σ∞ = σ(S) ∪ σBloch ∪ σboundary,(49)

where σboundary is defined in (15). In section 2, we proved that

σ∞ ⊃ σΣ,

where σΣ is the boundary layer spectrum associated with the surface Σ, defined by
(38). Remark that, due to our hypotheses on the domain Ω and on the sequence ε,
the surface Σ can be any of the faces of Ω defined by

N∏
j=1
j 6=i

]0;Lj [×{0} or
N∏

j=1
j 6=i

]0;Lj [×{Li} for 1 ≤ i ≤ N.

Of course, the analysis of section 2 can be repeated for any other lower dimensional
manifolds (edges, corners, etc.) which compose the boundary of Ω. For 0 ≤ m ≤ N−1,
let us define the m-dimensional parts of ∂Ω as

Σm,τ =
m∏

j=1

]0;Lτ(j)[×
N∏

j=m+1

{xτ(j) = 0 or Lτ(j)},

where τ is any permutation of the numbers {1, 2, . . . , N}. There are 2N−mCN−m
N

m-dimensional manifolds of the type Σm,τ . A simple adaptation of the two-scale
convergence in the sense of boundary layers for such manifolds allows us to prove
that, for any m and τ ,

σ∞ ⊃ σΣm,τ ,

where σΣm,τ
is the spectrum of a family of limit problems posed, not in a semi-

infinite band as in section 2, but rather in a periodic domain bounded in the variables
xτ(1), . . . , xτ(m) and unbounded with respect to the other variables (see section 3.3
for the case of corners in two space dimension). Eventually, defining the union of all
these spectra

σ∂Ω =
⋃
m,τ

σΣm,τ
,(50)

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 371

we deduce from Theorem 2.18 and from the geometric assumptions (47), (48) that

σ∞ ⊃ σ∂Ω.(51)

Comparing our results (49) and (51), a completeness result amounts to link the two
definitions of the boundary layer spectrum σ∂Ω and σboundary.

Theorem 3.1. For the sequence εn defined by (48), the boundary layer spectrum
satisfies

σboundary ⊂ σ∂Ω.

Therefore, the limit spectrum of the sequence Sεn is precisely made of three parts; the
homogenized, the Bloch, and the boundary layer spectrum

lim
εn→0

σ(Sεn
) = σ(S) ∪ σBloch ∪ σ∂Ω,

where the boundary layer spectrum σ∂Ω is explicitly defined by (50).
Remark 3.2. Remark that Theorem 3.1 does not state that σboundary, defined by

(15), and σ∂Ω coincide. Indeed, we have shown in (39) that σ∂Ω contains the Bloch
spectrum. It is not clear whether σboundary contains the Bloch spectrum too. The
comparison of σ∂Ω and σboundary is definitely a very difficult question. We suspect
that if the definition of σboundary is modified in such a way that it contains only limit
eigenvalues corresponding to sequences of eigenvectors which decay exponentially fast
away from the boundary, then it may coincide with that part of σ∂Ω made of discrete
eigenvalues (which also have exponentially decreasing corresponding eigenvectors).

To prove this completeness result, we need an intermediate result in the spirit of
section 2.

Theorem 3.3. As in section 2, let Ω be a domain defined by

Ω = Σ×]0;L[,

with Σ a bounded open set in RN−1 and L > 0. Recall that S1
ε is the extension of Sε

to L2(Ω)N . Consider a sequence of eigenvalues λε and eigenvectors ~sε such that

S1
ε~s

ε = λε~s
ε with ‖~sε‖L2(Ω)N = 1 and lim

ε→0
λε = λ.

Assume that for all subset ω such that ω ⊂ Ω, we have

lim
ε→0

‖~sε‖L2(ω)N = 0.(52)

Assume further that there exists an (N − 1)-dimensional open set σ, with σ ⊂ Σ, a
positive number l, with 0 < l < L, and a positive constant c such that

lim
ε→0

‖~sε‖L2(σ×]0,l[)N ≥ c > 0.(53)

Then, λ belongs to the boundary layer spectrum associated with the surface Σ

λ ∈ σΣ,

where σΣ is defined by (38).
The proof of Theorem 3.3 is the focus of the next section. If we admit it for the

moment, as well as its generalizations concerning all other manifolds Σm,τ making up
the boundary ∂Ω, we are in a position to complete the following proof.
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372 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Proof of Theorem 3.1. Let λ ∈ σboundary. By definition there exists a subsequence
(still denoted by ε), eigenvalues λε, and eigenvectors ~sε of S1

ε such that

S1
ε~s

ε = λε~s
ε with ‖~sε‖L2(Ω)N = 1 and lim

ε→0
λε = λ,

and, for all subset ω satisfying ω ⊂ Ω,

lim
ε→0

‖~sε‖L2(ω)N = 0.

If there exists an (N − 1)-dimensional open subset σi, compactly embedded in∏N
j=1
j 6=i

]0;Lj [, a positive length 0 < li < Li, a positive constant c, and another subse-
quence (still denoted by ε) such that

lim
ε→0

‖~sε‖L2(σi×]0,li[)N ≥ c > 0 or lim
ε→0

‖~sε‖L2(σi×]li,Li[)N ≥ c > 0,(54)

then, by application of Theorem 3.3, the limit eigenvalue belongs to σ∂Ω as desired.
If (54) does not hold true for any such σi, li, c, and subsequence ε, it implies that

the L2-norm of ~sε concentrates near the lower dimensional edges of the rectangle Ω.
In this case, we repeat the above argument with an (N − 2)-dimensional open set
included in one of the set ΣN−2,τ , and so on up to the 0-dimensional set made of one
of the vertices of Ω. A tedious but simple induction argument on the dimension m
shows that there exists at least a dimension 0 ≤ m ≤ N −1, a permutation τ , positive
lengths (lτ(j))m+1≤j≤N , a positive constant c, and a subsequence ε such that

lim
ε→0

‖~sε‖L2(ω)N ≥ c > 0,

with ω ⊂ Ω of the type

ω = σ ×
N∏

j=m+1

(
]0, lτ(j)[ or ]lτ(j), Lτ(j)[

)
and σ ⊂

m∏
j=1

]0;Lτ(j)[.

Then, applying an adequate generalization of Theorem 3.3, this proves that the limit
eigenvalue belongs to σ∂Ω.

3.2. Proof of the completeness. This section is devoted to the proof of Theo-
rem 3.3 which is divided in several lemmas and propositions. Let us begin by recalling
the definition of the associated potential uε, solution of

−∆uε = 0 in Ωε,
∂uε

∂n = ~sε
p · ~n on Γε

p, 1 ≤ p ≤ n(ε),
uε = 0 on ∂Ω.

(55)

The spectral equation S̃ε~s
ε = λε~s

ε implies that(∫
Γε

p

uε~n

)
1≤p≤n(ε)

= λε~s
ε
p.(56)

By assumption (52), for all subsets ω such that ω ⊂ Ω, we have

lim
ε→0

‖~sε‖L2(ω)N = 0.
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 373

In other words, all the energy of the eigenvectors ~sε concentrates near the boun-
dary ∂Ω. This concentration effect has important consequences on the associated
potential uε.

Lemma 3.4. The sequence uε defined in (55) converges to 0 in H1
0 (Ω) weakly and

strongly in L2(Ω). Furthermore, uε converges strongly to 0 in H1
loc(Ω).

Proof. Multiplying equation (55) by a test function v ∈ H1
0 (Ω) yields

∫
Ωε

∇uε · ∇vdx =
n(ε)∑
p=1

~sp
ε ·

( ∫
Γε

p

v~nds
)

=
∫

Ω
~sε(x) · ~zε(x)dx,

where

~zε(x) = −
n(ε)∑
p=1

1
εN

( ∫
T ε

p

∇v(x)dx
)
χ

Y ε
p

(x).

It is easily seen that ~zε converges strongly to − |T |
|Y |∇v(x) in L2(Ω)N . Since ~sε converges

weakly to 0 in L2(Ω)N by virtue of (52), we deduce that uε converges to 0 weakly in
H1

0 (Ω) and, by the Rellich theorem, strongly in L2(Ω). Finally, for any open set ω
such that ω ⊂ Ω, let ϕ be a smooth function with compact support in Ω and equal
to 1 on ω. Multiplying (55) by ϕ2uε and integrating by parts leads to

∫
Ωε

ϕ2|∇uε|2dx = −2
∫

Ωε

ϕuε∇ϕ · ∇uεdx +
n(ε)∑
p=1

~sε
p ·

( ∫
Γε

p

ϕ2uε~nds
)
.(57)

Since uε converges weakly to 0 in H1
0 (Ω), the first term in the right-hand side of (57)

goes to 0 with ε. In view of (56), the second term is bounded by

‖ϕ‖2
L∞(Ω)‖~sε‖2

L2(supp(ϕ)),

which goes to 0 by virtue of the assumption (52). Therefore, we deduce from (57)
that ∇uε converges strongly to 0 in L2(ω)N . This concludes the proof of Lemma 3.4.

By assumption (53), there exists an (N − 1)-dimensional open set σ, with σ ⊂ Σ,
such that the sequence of eigenvectors concentrates partly near σ. By translation, one
can always assume that the origin lies inside σ. The strategy of the proof is to rescale
the domain Ω by the change of variables y = x

ε and then to transform the sequence
of eigenvectors ~sε in a Weyl sequence for a limit operator. The limit domain will be
RN

+ = {y ∈ RN |yN > 0} since we have carefully choose the origin to belong to σ. The
limit fluid domain is denoted by G∗∞, which is defined by

G∗∞ = RN
+ \

⋃
j∈ZN

+

Tj ,

where Tj denotes the tube j placed in the subcell Yj (centered at the point j = (j′, jN )
with j′ ∈ ZN−1 and jN ∈ Z+). In this limit domain we define a limit operator B∞,
which acts from `∞

2 in itself, by

B∞~s =

(∫
Γj

u~nds

)
j∈ZN

+

∀~s ∈ `∞
2 ,
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374 GRÉGOIRE ALLAIRE AND CARLOS CONCA

where u(y) is the unique solution in D1
0(G

∗∞) of
−∆u = 0 in G∗∞,
∂u
∂n = ~sj · ~n on Γj , j ∈ ZN

+ ,
u = 0 on RN−1 × {0}.

(58)

Recall that elements in D1
0(G

∗∞) are restrictions to G∗∞ of functions wnin D1
0(RN

+ )
which, in its turn, is the closure, with respect to the L2-norm of the gradient, of
smooth functions with compact support in RN

+ .
Remark 3.5. The limit domain G∗∞ is nothing but the limit as K goes to infinity

of the domain G∗K defined in section 2.2. By the same token, the Hilbert space `∞
2 is

the limit of `K
2 (it is also equal to `2(ZN

+ ; CN )). In some sense the limit operator B∞

is also the limit of the operator BK defined in Theorem 2.11.
Let ϕ be a smooth function, equal to 1 in ω = σ×]0, L[, with compact support

in Σ×] − L;L[ (i.e., ϕ vanishes on all faces of Ω except on that defined by xN = 0).
We use ϕ to localize the sequence of eigenvectors ~sε in a vicinity of ω. Let us define
a sequence ~tε by

~tε = E1
ε P 1

ε (ϕ(x)~sε(x)),

where E1
ε P 1

ε is the projection operator in L2(Ω)N on piecewise constant functions (cf.
their definitions (27) and (28)).

Remark that, by assumption (53), the sequence ~tε satisfies

lim
ε→0

‖~tε‖L2(ω)N ≥ c > 0.

Let us define G∗∞
ε as G∗∞ rescaled to size ε. Let vε be the potential in G∗∞

ε associated
with ~tε, defined by 

−∆vε = 0 in G∗∞
ε ,

∂vε

∂n = ~tεp · ~n on Γε
p, p ∈ ZN

+ ,
vε = 0 on RN−1 × {0}.

(59)

Lemma 3.6. The sequence vε defined by (59) converges to zero in D1
0(RN

+ ) weakly
and in H1

loc(RN
+ ) strongly.

Proof. The argument is similar to that of Lemma 3.4, except that the Rellich
theorem applies only for compact sets in RN

+ .
Lemma 3.7. The difference wε = vε −ϕuε converges strongly to zero in D1

0(RN
+ ).

Proof. A simple calculation provides the following key identity:∫
RN

+

|∇wε|2 =
∫

RN
+

∇vε · ∇wε −
∫

RN
+

∇uε · ∇(ϕwε) −
∫

RN
+

∇ϕ · (uε∇wε −wε∇uε).(60)

By virtue of Lemmas 3.4 and 3.6, uε and wε converge to zero strongly in L2 of the
support of ϕ. Therefore, the last term in (60) goes to zero with ε. On the other hand,
an integration by parts yields

∫
G∗

ε∞

∇vε · ∇wε −
∫

Ωε

∇uε · ∇(ϕwε) =
n(ε)∑
p=1

[
~tεp ·

( ∫
Γε

p

wε~n
)

− ~sε
p ·

( ∫
Γε

p

ϕwε~n
)]

.
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 375

Since ~tεp = 1
εN

∫
Y ε

p
ϕ~sε

pdx and |ϕ(x) − ϕ(xε
p)| ≤ ε‖∇ϕ‖L∞ , where xε

p is the center of
the cube Y ε

p which contains x, we obtain∣∣∣∣∣
∫

G∗
ε∞

∇vε · ∇wε −
∫

Ωε

∇uε · ∇(ϕwε)

∣∣∣∣∣ ≤ ε‖∇ϕ‖L∞‖~sε‖L2(Ω)N ‖∇wε‖L2(R+
N )N ,

which gives the desired result.
Lemma 3.8. From Lemma 3.7 we deduce the following approximation result for

the displacement vector ~tε:

lim
ε→0

∑
p∈ZN

+

εN

∣∣∣∣∣ 1
εN

∫
Γε

p

vε~nds − λε~t
ε
p

∣∣∣∣∣
2

= 0.

Proof. We have

εN
∑

p∈ZN
+

∣∣∣ 1
εN

∫
Γε

p
(vε − ϕuε)~nds

∣∣∣2 ≤
∑

p∈ZN
+

‖∇(vε − ϕuε)‖2
L2(T ε

p )N

≤ ‖∇(vε − ϕuε)‖2
L2(RN

+ )N ,
(61)

which goes to zero as ε → 0 by virtue of Lemma 3.7. Furthermore,

εN
∑

p∈ZN
+

∣∣∣∣∣ 1
εN

∫
Γε

p

ϕuε~nds − λε~t
ε
p

∣∣∣∣∣
2

≤ ε‖∇ϕ‖L∞‖∇uε‖L2(Ω)N

since, ~sε being constant in each cell Y ε
p ,

1
εN

∫
Γε

p

ϕuε~nds =
1

εN

∫
Γε

p

(
ϕ(s) − 1

εN

∫
Y ε

p

ϕ(t)dt
)
uε~nds + λε(P 1

ε ϕ~sε)p.

Summing these two estimates yields the desired result.
Now, let us define a sequence ~τ ε in `∞

2 by

~τ ε = εN/2(~tεp)p∈ZN
+

,

which plays the role of a Weyl sequence for the limit operator B∞.
Proposition 3.9. The sequence ~τ ε satisfies

lim
ε→0

‖~τ ε‖`∞
2

≥ c > 0,

and

B∞~τ ε = λ~τ ε + ~rε,(62)

where ~rε is a remainder term which goes to zero strongly in `∞
2 .

Proof. A simple rescaling in (59) shows that ṽε(y) = ε
N
2 −1vε(εy) is the unique

solution in D1
0(G

∗∞) of 
−∆ṽε = 0 in G∗∞,
∂ṽε

∂n = ~τ ε
p · ~n on Γp, p ∈ ZN

+ ,
ṽε = 0 on RN−1 × {0}.

(63)
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376 GRÉGOIRE ALLAIRE AND CARLOS CONCA

Furthermore, ‖∇y ṽε‖L2(G∗∞)N = ‖∇xvε‖L2(G∗∞
ε )N . By definition,

B∞~τ ε =

(∫
Γp

ṽε~nds

)
p∈ZN

+

= ε− N
2

(∫
Γε

p

vε~nds

)
p∈ZN

+

.

Defining ~rε = (~rε
p)p∈ZN

+
by

~rε
p = ε

N
2

(
1
εN

∫
Γε

p

vε~nds − λε~t
ε
p

)
,

we get

B∞~τ ε = λε~τ
ε + ~rε,

which, by virtue of Lemma 3.8, is the desired result.
To conclude the proof of Theorem 3.3, we remark that either ~τ ε converges weakly

in `∞
2 to a nonzero limit ~τ (up to a subsequence) or ~τ ε converges weakly to ~0 in `∞

2 . In
the first case, passing to the limit as ε goes to 0, we obtain that ~τ 6= ~0 is an eigenvector
of B∞ for λ (the limit of the sequence λε). In the latter case, this proves that ~τ ε is
a Weyl sequence for the spectral value λ which belongs to the essential spectrum of
B∞. Now, it is a standard matter (see, e.g., [15], [16]) to show, by a Bloch wave
decomposition analogous to that of section 2.3, that the spectrum of B∞ is nothing
but limK→+∞ σ(BK), i.e., the boundary layer spectrum associated with the face Σ of
Ω.

Remark 3.10. Let us remark that Theorem 3.3 is valid for any choice of the
sequence ε and not only for the particular sequence εn defined in (48). The interested
reader will not fail to notice that the present proof of the completeness result is different
from that of our previous work [3]. In this paper, we used the concept of Bloch measures
in order to prove a similar completeness result by means of an energetic method. Here,
we propose a new proof (in a slightly different context), based on a rescaling argument,
which is simpler, although less precise, and which could equally be applied in [3].

3.3. Analysis of the corner spectrum. In section 3.1 the boundary layer
spectrum σ∂Ω was defined as the union of all spectra of the type σΣ, where Σ is any
lower dimensional manifold composing the boundary ∂Ω. When Σ is an (N − 1)-
dimensional hyperplane, a complete derivation of σΣ has been given in section 2.
However, for lower dimensional manifold we have been a little cavalier in saying that
the analysis of section 2 can be easily generalized to the case of edges, corners, and so
on. The purpose of this section is to briefly indicate some details of this generalization
when analyzing the corner spectrum. Since the physical problem of interest is truly
two-dimensional, we restrict ourselves to the case of corners of the plane square domain
Ω (this has the advantage of simplifying the exposition).

Therefore, our domain Ω is now a rectangle with integer dimensions, i.e.,

Ω = ]0; L1[×]0;L2[.

We describe the limit spectrum associated with the corner located at the origin. We
introduce the space `2+ of displacements defined by

`2+ =

(~sj)j=(j1,j2) j1≥1,j2≥1

∣∣∣ ~sj ∈ R2,
+∞∑

j1,j2=1

|~sj1,j2 |2 < +∞

 .
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BOUNDARY LAYERS IN SPECTRAL HOMOGENIZATION 377

Remark that this definition of `2+ implies a decay of the displacement ~sj as j1 or j2
goes to +∞.

We extend the operator Sε to the larger space `2+ by the following formula:

Cε = EεSεPε,

where Pε and Eε are, respectively, projection and extension operators between RNn(ε)

and `2+. Their definition is very simple. Recall that a tube T ε
j in Ω is located in a cell

Y ε
j whose origin is εj. We denote the range of all indices j such that T ε

j is included
in Ω by 1 ≤ j ≤ n(ε). The projection is defined by

Pε : `2+ −→ RNn(ε),
(~sj)j=(j1,j2) j1≥1,j2≥1 7→ (~sj)1≤j≤n(ε) ,

and the extension by

Eε : RNn(ε) −→ `2+,

(~sj)1≤j≤n(ε) 7→ (~tj)j=(j1,j2) j1≥1,j2≥1,

with ~tj = ~sj if 1 ≤ j ≤ n(ε) and ~tj = 0 otherwise.
One can easily check that Pε and Eε are adjoint operators and that the product

PεEε is equal to the identity in RNn(ε). Therefore, the spectrum of Cε consists of that
of Sε and zero as an eigenvalue of infinite multiplicity.

The convergence analysis of Cε is much simpler than that in section 2 because `2+
is not a space of periodically oscillating displacements. There is no need to introduce
any notion of two-scale convergence for corner boundary layers. A simple rescaling
argument is enough. More precisely, denoting by Q+ the first quadrant in the plane

Q+ = ]0; +∞[×]0; +∞[,

we replace the two-scale convergence by the weak convergence in L2(Q+): with each
bounded sequence uε(x) in L2(Ω), we associate the rescaled sequence vε(y) defined by

vε(y) =
{

ε2uε(εy) if εy ∈ Ω,
0 otherwise,

which is also bounded in L2(Q+).
Then, a similar analysis to that of section 2 shows that the sequence of operators

Cε converges strongly in L(`2+) to a limit operator C∞ defined by

C∞ : `2+ −→ `2+(64)

(~sj)j=(j1,j2) j1≥1,j2≥1 7→
(∫

Γj

u~nds

)
j=(j1,j2) j1≥1,j2≥1

,(65)

where u(y) is the unique solution of
−∆u = 0 in Q∗

+ = Q+ \
⋃
j

Tj ,

∂u
∂n = ~sj · ~n on Γj , j1 ≥ 1, j2 ≥ 1,
u = 0 on ∂Q+,

lim
|y|→+∞

u(y) = 0.

Clearly, C∞ is a self-adjoint noncompact operator acting in `2+. As in Proposition
2.17, one can prove that the essential spectrum of C∞ is precisely the Bloch spectrum.
However, the discrete spectrum of C∞ may contain new eigenvalues which correspond
to eigenvectors localized in the corner of Q+.

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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