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Abstract
We study the following inverse problem: an inaccessible rigid body D is
immersed in a viscous fluid, in such a way that D plays the role of an obstacle
around which the fluid is flowing in a greater bounded domain �, and we wish
to determine D (i.e., its form and location) via boundary measurement on the
boundary ∂�. Both for the stationary and the evolution problem, we show that
under reasonable smoothness assumptions on � and D, one can identify D via
the measurement of the velocity of the fluid and the Cauchy forces on some
part of the boundary ∂�. We also show that the dependence of the Cauchy
forces on deformations of D is analytic, and give some stability results for the
inverse problem.

1. Introduction

Let � be a smooth bounded open set in R
N , filled with an incompressible fluid, and let

D ⊂⊂ � be an unknown rigid body immersed in it. Let ϕ ∈ C1([0, T ];H 3/2(∂�)N) be non-
homogeneous Dirichlet boundary data satisfying the standard flux compatibility condition∫

∂�

ϕ · n ds = 0, (1.1)

and let (v, p) ∈ L2(0, T ;H 1(�\D)N) × L2(0, T ;L2(�\D)) be the unique solution of the
Stokes (when ε∗ = 0) or Navier–Stokes (when ε∗ = 1) system of equations,
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Figure 1.



∂v

∂t
− div(σ (v, p)) + ε∗div(v ⊗ v) = 0 in (�\D) × (0, T )

div(v) = 0 in (�\D) × (0, T )

v(0) = 0 in �\D
v = ϕ on ∂� × (0, T )

v = 0 on ∂D × (0, T ),

(1.2)

with σ being the stress tensor defined as follows,

σ(v, p) = −pI + 2νe(v), (1.3)

where I is the identity matrix, ν > 0 is a given constant representing the kinematic viscosity
of the liquid and e(v) is the linear strain tensor defined by

e(v) = 1
2 (∇v + t∇v). (1.4)

The typical situation is illustrated in figure 1.
The problem we study is to obtain some information on the domain D (shape and location)

through the observation of the Cauchy force σ(v, p)n on some part of the boundary (here n is
the external unit normal to ∂�). Indeed the stationary version of the problem, that is,

−div(σ (v, p)) + ε∗ div(v ⊗ v) = 0 in �\D
div(v) = 0 in �\D
v = ϕ on ∂�

v = 0 on ∂D,

(1.5)

can also be considered and treated in the same way.
Such problems have been studied for a long time since the publication of the paper

by Calderón [4] in 1980, in particular for the identification of the scalar coefficient a in
operators of the form u �→ −div(a∇u). In this case u represents an electric potential
and one assumes that the Poincaré–Steklov (also called the Dirichlet-to-Neumann) operator
�a : H 1/2(∂�) −→ H−1/2(∂�) is known (�a is defined by �a(ϕ) := a∂u/∂n where
div(a∇u) = 0 in � and u = ϕ on ∂�). The study of such problems can also be adapted in
order to identify particular subdomains of �, or cracks and inhomogeneities included in the
domain. The interested reader is referred to the review by Uhlmann [15] for key historical
remarks on this matter and to the pioneering works by Kohn and Vogelius [10] and Sylvester
and Uhlmann [12] for early results on this theory.

In the problem we investigate, we will look for the unknown domain D in the following
class of admissible geometries

Dad := {D ⊂⊂ � : D is open, Lipschitz and �\D is connected}. (1.6)

The corresponding Poincaré–Steklov operator �D is defined by

�D(ϕ) := σ(v, p)n on � × (0, T ), (1.7)
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which maps ϕ ∈ C1([0, T ];H 3/2(∂�)N) (with
∫
∂�

ϕ · n ds = 0) into the Cauchy forces
σ(v, p)n ∈ L2(0, T ;H−1/2(�)N), where (v, p) is the unique solution of the Stokes system
(1.2) and � is a relatively open subset of the boundary ∂�. In the case of the stationary version
of the problem, the operator �D has to be considered as acting between the spaces H 1/2(∂�)

into H−1/2(�), and in this case (v, p) is a solution of (1.5).
Our first result concerns the identifiability of D: it states that given fixed non-homogeneous

Dirichlet boundary data ϕ, two different admissible geometries D0 �= D1 ∈ Dad, yield two
different Steklov–Poincaré operators �D0 �= �D1 .

Theorem 1.1. Let T > 0 and � ⊆ R
N,N = 2 or N = 3, be a bounded C1,1 domain, and �

be a non-empty open subset of ∂�. Let D0,D1 ∈ Dad and ϕ ∈ C1([0, T ];H 3/2(∂�)N) with
ϕ �≡ 0, satisfying the flux condition (1.1). For ε∗ = 0 or ε∗ = 1, let (vj , pj ) for j = 0, 1, be
a solution of

∂vj

∂t
− div(σ (vj , pj )) + ε∗ div(vj ⊗ vj ) = 0 in (�\Dj) × (0, T )

div(vj ) = 0 in (�\Dj) × (0, T )

vj (x, 0) = 0 for x ∈ �\Dj

vj (s, t) = ϕ(s, t) for (s, t) ∈ ∂� × (0, T )

vj (s, t) = 0 for (s, t) ∈ ∂Dj × (0, T ).

(1.8)

Assume that (vj , pj ) are such that

σ(v0, p0)n = σ(v1, p1)n on � × (0, T ).

Then D0 ≡ D1.

The same identification result holds for the stationary problem:

Theorem 1.2. Let � ⊆ R
N , N = 2 or N = 3, be a bounded Lipschitz domain, and � a

non-empty open subset of ∂�. Let D0,D1 ∈ Dad and ϕ ∈ H 3/2(∂�)N with ϕ �≡ 0, satisfying
the flux condition (1.1). For ε∗ = 0 or ε∗ = 1, let (vj , pj ) for j = 0, 1, be a solution of

−div(σ (vj , pj )) + ε∗ div(v ⊗ v) = 0 in �\Dj

div(vj ) = 0 in �\Dj

vj (s) = ϕ(s) for s ∈ ∂�

vj (s) = 0 for s ∈ ∂Dj .

(1.9)

Assume that (vj , pj ) are such that

σ(v0, p0)n = σ(v1, p1)n on �.

Then D0 ≡ D1.

The identifiability of a sufficiently smooth inclusion within a given domain � ⊂ R
N has

been well studied for scalar elliptic and parabolic equations. The interested reader is referred
to the papers by Beretta and Vessella [3], Canuto and Kavian [7], Canuto and Vessella [6],
Canuto [5] for more details. We refer also to the paper by Alessandrini et al [1, 2] for estimates
on the volume of the subdomain D immersed in a perfect fluid filling �; note that in this case,
it is assumed that the dynamics of the fluid is governed by a velocity potential which satisfies
a scalar Laplace equation. The proof by Beretta and Vessella [3] of injectivity and stability of
the corresponding boundary map is mainly based on some structural properties of the Laplace
equation like the maximum principle and Harnack’s inequality. Since these properties are not
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valid anymore in our case, we were led to a different proof, namely we obtain our identifiability
result by a suitable application of the unique continuation property for the Stokes equations
due to Fabre and Lebeau [8].

Studying the stability of the identifiability is reduced to studying the continuity properties
of the inverse of the boundary map. Given a background admissible configuration �0 :=
�\D0, let us consider a smooth perturbation of D0, called D1, and a bijective Lipschitz
mapping 	 : � → �, such that 	−1 is also Lipschitz and 	 = I in a neighbourhood of the
boundary ∂�, with

	(D0) = D1 and 	(�0) = �1 = �\D1.

Clearly we need �1 to be also admissible, that is, D1 ∈ Dad such that the new rigid body D1,
as well as D0, is both Lipschitz and included in a fixed open set O satisfying

D0 ∪ D1 ⊂⊂ O ⊂⊂ �.

In this setting, studying the stability of the inverse problem can be viewed as
studying continuity properties for the mapping 	 �→ �−1

	(D0)
. In practice, it suffices to

prove continuity at 	 = I , where I is the identity map, that is to say, for any given
ϕ ∈ C1(0, T ;H 3/2(�)N) (respectively ϕ ∈ H 3/2(∂�) for the stationary problem), when∥∥�D0(ϕ)−�	(D0)(ϕ)

∥∥
L2(0,T ,H−1/2(�)N )

(respectively
∥∥�D0(ϕ)−�	(D0)(ϕ)

∥∥
H−1/2(�)N

) is small,
then the norm ‖I − 	‖W 1,∞(�0;RN ) is small.

Actually, our result concerning stability is weaker than the above desired continuity
property: we are able to prove only a sort of directional continuity, or hemicontinuity of the
mapping 	 �→ �−1

	(D0)
. More precisely, we will consider admissible deformations of the type

	τ = I + τ	1, where τ is a small real parameter, and for some integer m � 1 and a positive
constant C > 0, both depending on 	1 �≡ 0, provided 	τ(D0) �= D0, we prove that∥∥�D0(ϕ) − �	τ (D0)(ϕ)

∥∥ � C|τ |m. (1.10)

To be more specific, let us consider the linear stationary case (whose understanding is
in fact the main point for all other cases). For each change of variables 	 : �0 −→ �τ :=
	τ(�0), let(vτ , pτ ) ∈ H 1(�τ )

N × L2(�τ ) denote the unique solution of the Stokes system
in the deformed domain, that is,

−div(σ (vτ , pτ )) + ε∗ div(v ⊗ v) = 0 in �τ

div(vτ ) = 0 in �τ

vτ (s) = ϕ(s) for s ∈ ∂�

vτ (s) = 0 for s ∈ ∂Dτ .

(1.11)

(For τ = 0 note that 	0 = I and �τ = �0.) We will show that, under suitable assumptions
on the function 	1, the mapping

	τ �→ σ(vτ , pτ )n =: �	τ (�0)

is analytic in the open set of W 1,∞-‘diffeomorphisms’ (by an abuse of language we shall say
that 	 is a W 1,∞-diffeomorphism when both 	 and 	−1 are in W 1,∞(RN, R

N), and restricted
respectively to the domains �\D0 and 	(�\D0)). In particular, it can be differentiated
with respect to 	; as a matter of fact, the corresponding derivative is the so-called shape
differentiation of the solution of (1.11) with respect to the geometry.

The following stability (directional continuity) result is proven in section 4.

Theorem 1.3. Let D0 ∈ Dad, 	0 := I and 	1 ∈ W 1,∞(RN, R
N) such that 	1 ≡ 0 in a

neighbourhood of the boundary ∂� and 	1 �≡ 0 on D0. Denote by 	τ = I + τ	1 and
(vτ , pτ ) the solution of (1.11) (including for τ = 0), and by τ1 > 0 a positive number such
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that τ �→ σ(vτ , pτ )n is analytic on (−τ1, τ1). Assume that for some τ∗ ∈ (−τ1, τ1) one has
	τ∗(D0) �= D0. Then there exist a strictly positive constant C = C(	1,�,D0, ϕ) and a
positive integer m = m(	1,�,D0, ϕ) such that for some τ0 > 0 and all τ ∈ [−τ0, τ0], we
have ∥∥�D0(ϕ) − �	τ (D0)(ϕ)

∥∥
H−1/2(�)N

� C|τ |m.

where �	τ (D0)(ϕ) := σ(vτ , pτ )n on �.

The main ingredient of the proof is to write the equation satisfied by (vτ , pτ ) in the fixed
domain, using a change of variables, and then to observe that the operators involved and their
inverses depend in a smooth manner on 	.

The same stability result can be established for the linear or nonlinear evolution problem.
To conclude this section, here is how this paper is organized. In section 2 we recall a few

results on unique continuation properties for the Stokes or Navier–Stokes systems which are
crucial in the proof of the identifiability result. In section 3 we prove the identifiability results
for the evolution problem as well as the stationary one. Section 4 is devoted to establishing
the analyticity of the mapping 	 �→ �	(D0), for the linear stationary Stokes system, and
there we prove the stability result mentioned above. We determine also the first derivative of
this mapping, which is necessary in order to apply an optimization algorithm studied in an
optimal control approach. In section 5 we present analyticity results for the linear or nonlinear
evolution problems and the corresponding stability results.

2. Preliminary results

In this section, we gather some preliminary results about unique continuation properties, which
are essential in the proof of the identifiability result. First we mention a unique continuation
result for the Stokes equation due to Fabre and Lebeau [8, p 576].

Proposition 2.1. Let �0 ⊆ R
N,N � 2, be a bounded domain and ω0 an open subset of �0.

If a ∈ L∞
loc(�0)

N and (v, p) ∈ H 1
loc(�0)

N × L2
loc(�0) is a solution of{−�v + (a · ∇)v + ∇p = 0, in �0

∇ · v = 0, in �0,
(2.1)

with v = 0 in ω0, then v = 0 in �0 and p is constant in �0.

A direct consequence of the above result is the following unique continuation property.

Corollary 2.2. Let �0 ⊆ R
N,N � 2, be a Lipschitz domain. If (v, p) ∈ H 1(�0)

N × L2(�0)

is a solution of 
−div σ(v, p) = 0 in �0

div v = 0 in �0

v = 0 on ∂�0

(2.2)

satisfying σ(v, p)n = 0 on �0, where �0 ⊂ ∂�0 is a relatively open non-empty subset, then
v = 0 and p is constant in �0.

Analogously to the stationary case we recall the following unique continuation result due
to Fabre and Lebeau [8, p 574], for the non-steady Stokes problem. Let �0 ⊂ R

N be an open
connected set, N � 2 and T > 0. We consider an open non-empty subset O of �0 × (0, T ).
Let us define the horizontal component of O as

C(O) = {(x, t) ∈ �0 × (0, T ) : ∃x0 ∈ �0, (x0, t) ∈ O}.
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Theorem 2.3. Let �0 ⊂ R
N be a connected open set, N � 2 and T > 0. Let

a ∈ L∞
loc(�0 × (0, T ))N and c ∈ C([0, T ];Lr

loc(�0,MN×N)) be a matrix-valued function
with r > N . If (v, p) ∈ L2(0, T ;H 1

loc(�0))
N × L2

loc(�0 × (0, T )) is a solution of
∂v

∂t
− �v + (a · ∇)v + cv + ∇p = 0 in �0 × (0, T )

div(v) = 0 in �0 × (0, T ),
(2.3)

with v = 0 in O, then v ≡ 0 in C(O).

The following result is also a consequence of the above theorem:

Corollary 2.4. Let �0 ⊂ R
N be a Lipschitz domain, N � 2. For ε∗ = 0 or ε∗ = 1, if

(v, p) ∈ L2(T1, T2;H 1(�0)
N) × L2(�0 × (T1, T2)) (with 0 � T1 < T2) is a solution of

∂v

∂t
− div(σ (v, p)) + ε∗ div(v ⊗ v) = 0 in �0 × (T1, T2)

div(v) = 0 in �0 × (T1, T2)

v = 0 on �0 × (0, T ),

(2.4)

satisfying σ(v, p)n = 0 on �0 × (0, T ), where �0 ⊂ ∂�0 is a relatively open non-empty
subset, then v = 0 in �0 × (0, T ).

Remark. Fabre and Lebeau prove the above results in the case c ≡ 0, using appropriate local
Carleman inequalities. As a matter of fact, a careful examination of their arguments shows
that if c ∈ Lr

loc(�0,MN×N) is a matrix-valued function with r > N , then assuming that
(v, p) ∈ H 1

loc(�0) × L2
loc(�0) satisfies

∂v

∂t
− �v + (a · ∇)v + cv + ∇p = 0 in �0

∇ · v = 0 in �0,
(2.5)

and v = 0 in ω0 (an open subdomain of �0) then v ≡ 0 in �0 and p is constant. In particular,
if �0 is smooth enough and if (v, p) satisfies (2.5) and v = 0 on ∂�0 and if σ(v, p)n = 0 on
an open subset � ⊂ ∂�0, then v = 0 in �0 and p is constant (see also Fernández-Cara [9]).

3. The proof of identifiability results

We begin with the proof of the identifiability result for the non-steady case, that is, the proof
of theorem 1.1.

Consider first the linear case, that is, ε∗ = 0. Let v0, v1 be solutions of system (1.8) for
j = 0, 1, verifying

σ(v0, p0)n = σ(v1, p1)n on � × (0, T ),

and define

v = v0 − v1, p = p0 − p1 and D = D0 ∪ D1

(see figure 2).
It is straightforward to see that (v, p) is a solution of

∂v

∂t
− div σ(v, p) = 0 in (�\D) × (0, T )

div(v) = 0 in (�\D) × (0, T )

v(0) = 0 in �\D
v = 0 on ∂� × (0, T )

v = 0 on ∂D × (0, T ).

(3.1)
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Figure 2. Proof of identifiability results.

Therefore, from the unique continuation property for the Stokes equation (corollary 2.4), we
have that v = 0 in �\D × (0, T ) and then v0 = v1 in �\D × (0, T ).

Now, let us suppose that D0\D1 is an open non-empty subset of �, then we have that

∂v1

∂t
− div(σ (v1, p1)) = 0 in D0\D1 × (0, T ).

Multiplying this equation by v1 and integrating by parts in D0\D1, noting that on ∂D0 we
have v1 = v0 = 0, while on ∂D1 by assumption we know that v1 = 0, we obtain that

d

dt

∫
D0\D1

|v1(x, t)|2 dx = −
∫

D0\D1

|e(v1)(x, t)|2 dx, (3.2)

which implies that the function

t �→ E(t) =
∫

D0\D1

|v1(x, t)|2 dx

is a decreasing non-negative function but, since the initial data v1(0) = 0, we conclude that
v1|D0\D1

= 0 for all t ∈ (0, T ). Thus, from theorem 2.3 we get that

v1 = 0 in (�\D1) × (0, T ), (3.3)

which is impossible because v1 = ϕ and ϕ �= 0 on � × (0, T ). Therefore we have that
D0\D1 = ∅. Analogously one proves that D1\D0 = ∅. Thus we have that D0 = D1. This
completes the proof in the simpler linear case ε∗ = 0.

Consider now the nonlinear case ε∗ = 1. Then (v, p) := (v0 − v1, p0 − p1) solves

∂v

∂t
− div σ(v, p) + (v0 · ∇)v + (v · ∇)v1 = 0 in (�\D) × (0, T )

div(v) = 0 in (�\D) × (0, T )

v(0) = 0 in �\D
v = 0 on ∂� × (0, T )

v = 0 on ∂D × (0, T ).

(3.4)

Since ϕ ∈ C1([0, T ];H 3/2(∂�)), classical existence results for the Navier–Stokes equation
(see, for instance, [13] or [14]) show that there exists T∗ ∈ (0, T ) such that a unique
solution (vj , pj ) to equation (1.8) exists on the interval [0, T∗] in such a way that
vj ∈ C([0, T∗],H 2(�)). Therefore, upon setting ck := ∂v1,k , for 1 � k, ,N , we have
ck ∈ C([0, T∗];H 1(�)) and by Sobolev imbedding theorems the matrix-valued function
c := (ck)1�k,�N satisfies the assumption of corollary 2.4, and since σ(v, p)n = 0 on
� × [0, T∗] we conclude that v ≡ 0 in �\D × (0, T∗), that is, v0 = v1 in �\D × (0, T∗).
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If D0\D1 were non-empty, then we would have

∂v1

∂t
− div(σ (v1, p1)) + (v1 · ∇)v1 = 0 in D0\D1 × (0, T∗).

Proceeding as above, multiplying this equation by v1 and integrating by parts in D0\D1, noting
that on ∂D0 we have v1 = v0 = 0, while on ∂D1 by assumption we know that v1 = 0, and
noting that ∫

D0\D1

[(v1(x, t) · ∇)v1(x, t)] · v1(x, t) dx = 0

we obtain that for 0 < t < T∗ we have

d

dt

∫
D0\D1

|v1(x, t)|2 dx = −
∫

D0\D1

|e(v1)(x, t)|2 dx, (3.5)

which implies that the function

t �→ E(t) =
∫

D0\D1

|v1(x, t)|2 dx

is a decreasing non-negative function on [0, T∗]. At this point the reader is easily convinced
that the remainder of the argument follows exactly the lines of the proof of the linear case
seen above, and that finally this implies D0\D1 = ∅. In the same manner one shows that
D1\D0 = ∅ and thus D0 = D1.

Next we present the identifiability result for the stationary case, that is,

Theorem 3.1. Let � ⊆ R
N , with N � 2, be a bounded Lipschitz domain and � be a

non-empty open subset of ∂�. Let ϕ ∈ H 1/2(∂�)N be a given non-homogeneous Dirichlet
boundary condition. Assume that for j = 0, 1,Dj ∈ Dad are open sets in � and (vj , pj ) are
the solutions of

−div(σ (vj , pj )) = 0 in (�\Dj)

div(vj ) = 0 in (�\Dj)

vj = ϕ on ∂�

vj = 0 on ∂D0

(3.6)

such that

σ(v0, p0)n = σ(v1, p1)n on �.

Then D0 ≡ D1.

Proof of theorem 3.1. Let us define

v := v0 − v1, p = p0 − p1 and D = D0 ∪ D1.

One sees that (v, p) satisfies
−div σ(v, p) = 0 in �\D
div v = 0 in �\D
v = 0 on �

σ(v, p)n = 0 on �,

(3.7)

thus, in view of corollary 2.2, we have v = 0 in �\D, and therefore v0 = v1 in �\D.
Let us suppose that D0\D1 is an open non-empty subset of �. We know that

−div(σ (v1, p1)) = 0 in D0\D1,
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Figure 3. Admissible geometries.

hence, multiplying this equation by v1 and integrating by parts in D0\D1, we obtain∫
D0\D1

|e(v1)|2 dx +
∫

∂(D0\D1)

(σ (v1, p1)n) · v1 ds = 0.

Now, since v0 = v1 = 0 on ∂D0\(∂D1 ∩ D0), we have that∫
∂(D0\D1)

(σ (v1, p1)n) · v1 ds = 0,

therefore we get∫
D0\D1

|e(v1)|2 dx = 0.

It follows immediately from Korn’s inequality (see, for instance, [13] or [11, p 50]) that v1 ≡ 0
in D0\D1, then, by proposition 2.1, v1 ≡ 0 in �\D1, which is impossible because v1 = ϕ

and ϕ �≡ 0 on ∂�. This proves that D0\D1 = ∅. Analogously we prove that D1\D0 = ∅.

Therefore D0 = D1. This completes the proof. �

4. Smooth dependence of Cauchy forces with respect to the deformation
of the domain: the linear case

In this section, we consider the linear stationary Stokes equations and we prove that the
velocity and the pressure depend smoothly on the deformations of the domain. For the sake
of simplicity we set the viscosity to be ν = 1. The proof of the result concerning the
non-stationary case is essentially based on the results of this section and will be presented
later on.

Let � and O be open connected sets in R
N and D0,D1 ∈ Dad (see figure 3) such that

D0 ∪ D1 ⊂⊂ O ⊂⊂ �,

and set

�0 = �\D0 and �1 = �\D1.

For the sake of clarity, we introduce some basic notation and definitions. Let 	 =
(	1, . . . , 	N) ∈ W 1,∞(�)N , then we write

	 ′ :=
(

∂	i

∂xj

)N

i,j=1

, Jac(	) := |det(	 ′)|,
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the Jacobian matrix and the Jacobian determinant of 	 (actually 	 is going to be a smooth
bijective map �0 → �1). If A ∈ W 1,∞(�;MN×N) is a matrix-valued function, then we
define the vector div(A) as being

div(A) :=
 N∑

j=1

∂Aij

∂xj

N

i=1

. (4.1)

For each function f ∈ H 1(�1) and 	 ∈ W 1,∞(�0;�1) we may set g(x) := f (	(x)),
in such a way that we have g ∈ H 1(�0). Furthermore, when 	 is bijective and
	 ′, (	 ′)−1 ∈ L∞(�0,MN×N), the mapping f �→ g induces an isomorphism between the
spaces H 1

0 (�1)
N and H 1

0 (�0)
N on the one hand, and between L2(�1) and L2(�0) on the other

hand. We shall denote this isomorphism by 	̃:

	̃ : H 1
0 (�1)

N −→ H 1
0 (�0)

N , 	̃(f ) := g with g(x) := f (	(x)).

If y denotes the variable in �1 and that in �0 is denoted by x, using the change of variables
y := 	(x) and setting g(x) := f (	(x)) we have

∂f

∂yi

(y) = ∂f

∂yi

(	(x)) =
N∑

j=1

∂g

∂xj

(x)
∂xj

∂yi

.

Let 	 ∈ W 1,∞(�0,�1) be a diffeomorphism. We shall denote by M ∈ L∞(�0,Mn×n) the
matrix

M :=
(

∂xj

∂yi

)
i,j=1,N

=
((

∂	i

∂xj

)−1

i,j=1,N

)∗
= ((	 ′)∗)−1,

where A∗ denotes the transpose matrix of the matrix A. Note that if 	 is a small perturbation
of the identity in the norm of W 1,∞, then the matrix M is invertible, and D1 is in some sense a
‘small perturbation’ of D0. Note that with the above notation y := 	(x) and g(x) := f (	(x)),
we have ∇f (y) = M(x)∇g(x).

Also if A and B are N × N matrices, we denote their scalar product by

A : B :=
N∑

i,j=1

AijBij ,

and |A|2 := ∑N
i,j=1 |Aij |2.

Instead of writing equations (3.6) using the stress tensor (1.3), we use the following
equivalent form (4.2) (since for ν = 1 and v such that div(v) = 0 one has div(σ (v, p)) =
�v − ∇p); here for a matrix A we denote by Tr(A) its trace):

−�vj + ∇pj = 0 in �j

div(vj ) = Tr(∇vj ) = 0 in �j

vj = ϕ on ∂�

vj = 0 on ∂Dj .

(4.2)

Our aim is to show that σ(v1, p1)n and σ(v0, p0)n are close when 	 is close to the identity
map, but since the equations are set in different domains we will change (v1, p1) to a pair
of functions (u0, q0) defined in �0 which satisfy certain elliptic equations with variable L∞

coefficients, and then we show that the dependence of (u0, q0), and thus that of σ(u0, q0)n,
on these coefficients is analytic.

Since both subdomains D0 and D1 have to be admissible, we will consider only those
deformations 	 which respect this requirement (see figure 4):
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Figure 4. Admissible deformation.

Definition 4.1. Let � be a bounded domain of R
N . A mapping 	 ∈ W 1,∞(RN, R

N) is called
an admissible deformation of D0 ⊂ �, if 	 is bijective, 	−1 ∈ W 1,∞(RN, R

N),	(�) = �

and there exists a Lipschitz domain O ⊂⊂ � such that

D0 ∪ 	(D0) ⊂⊂ O
and for some δ > 0 one has 	 = I on �\Oδ , where

Oδ := {x ∈ O; dist(x,Oc) > δ}.

Put in other terms, the class of admissible deformations 	 we consider can be written in the
form 	 = I + 	1 with 	1 having a compact support contained in O, or 	1 ∈ W

1,∞
0 (O, R

N)

(when O is Lipschitz, we may set 	̃1 := 	 in O and 	̃1 = 0 in R
N\O: this yields a function

	̃1 with compact support contained in �).
When ϕ satisfies the compatibility condition∫

∂�

ϕ(s) · n(s) ds = 0, (4.3)

one can find ϕ̃1 ∈ H 1(�)N such that

div(̃ϕ1) = 0 in �, ϕ̃1 = 0 in O, ϕ̃1 = ϕ on ∂�, (4.4)

and then, upon writing

v1 =: ϕ̃1 + ṽ1, with ṽ1 ∈ H 1
0 (�1)

N ,

solving equation (4.2) with j = 1 is equivalent to solving
−�ṽ1 + ∇p1 = �ϕ̃1, in �1

div(̃v1) = Tr(∇ṽ1) = 0, in �1

ṽ1 = 0 on ∂�1.

(4.5)

In the following, we shall denote by L2
0(�1) the space L2(�1)/R, that is,

L2
0(�1) :=

{
q ∈ L2(�1);m(q) := 1

|�1|
∫

�1

q(y) dy = 0

}
.

Then equation (4.5) is equivalent to stating that (̃v1, p1) ∈ H 1
0 (�1)

N × L2
0(�1) and for all

(w, p) ∈ H 1
0 (�1)

N × L2
0(�1)∫

�1

∇ṽ1 : ∇w dy −
∫

�1

p1 Tr(∇w) dy +
∫

�1

Tr(∇ṽ1)p dy = −
∫

�1

∇ϕ̃1 : ∇w dy. (4.6)

Next, 	 being admissible as in definition 4.1, we define (u0, q0) by setting
y := 	(x),

u0(x) := ṽ1(	(x)),

q0(x) := p1(	(x)),

ϕ0(x) := ϕ̃1(	(x)).

(4.7)
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Note that since ϕ̃1 = 0 in O and 	 = I in �\Oδ , we have ϕ0(x) = ϕ̃1(x) for all x ∈ �,
meaning that ϕ̃1 is invariant under the isomorphism 	̃.

With the above notation (in particular M(x) := (	 ′(x)−1)∗), one checks easily that
solving the variational problem (4.6) is equivalent to finding (u0, q0) ∈ H 1(�0) × L2(�0)

satisfying for all (z, q) ∈ H 1
0 (�0)

N × L2(�0)∫
�0

M∇u0 : M∇z Jac(	) dx −
∫

�0

q0 Tr(M∇z) Jac(	) dx

+
∫

�0

Tr(M∇u0)q Jac(	) dx = −
∫

�0

M∇ϕ0 : M∇z Jac(	) dx. (4.8)

This variational problem means that (u0, q0) satisfies the following equation in �0:
−div(Jac(	)M∗M∇u0) + div(q0 Jac(	)M∗) = div(Jac(	)M∗M∇ϕ0) in �0

Tr(M∇u0) = 0 in �0

u0 = 0 on ∂�0.

(4.9)

Now our aim is to prove that the solution (u0, q0) depends smoothly on 	, in the natural W 1,∞

norm.
Define the space L2

	(�0) as being the space L2(�0) endowed with the scalar product

(p|q)	 :=
∫

�0

p(x)q(x) Jac(	)(x) dx,

(this can be viewed as the image of the usual scalar product of L2(�1) under the isomorphism
	̃) and the elliptic operator

Au := − 1

Jac(	)
div(Jac(	)M∗M∇u) (4.10)

on H 1
0 (�0)

N , which is self-adjoint with respect to the scalar product of L2
	(�0), i.e., it is such

that

(Au|v)	 = (u|Av)	.

Define also the operator B by

Bz := −Tr(M∇z), B : H 1
0 (�0)

N −→ L2
0,	(�0), (4.11)

where L2
0,	(�0) is the subspace of functions p in L2

	(�0) such that∫
�0

p(x) Jac(	)(x) dx = 0.

(Note that the fact that for z ∈ H 1
0 (�0)

N one has Bz ∈ L2
0,	(�0) is a consequence of the fact

that for ∈ H 1
0 (�1)

N one has Tr(∇w) ∈ L2
0(�1)). We prove first the following lemma:

Lemma 4.2. The range R(B) of B is closed and the adjoint B∗ of B is given by

B∗q = 1

Jac(	)
div(q Jac(	)M∗).

Moreover, the kernel N(B∗) is precisely given by the functions which are constant on �0,
while R(B) = N(B∗)⊥ = L2

0,	(�0).

Proof. We prove first that R(B), the range of B, is closed. Indeed, it is a classical result that
the range of the mapping w �→ div(w) = Tr(∇w) from H 1

0 (�1)
N into L2(�1) is closed (see,

for instance, [13] or [14]). Let 	̃ be the mapping w �→ z := w ◦ 	 := 	̃(w), which is an
isomorphism between the Hilbert spaces H 1

0 (�1)
N and H 1

0 (�0)
N on the one hand, and L2(�1)
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and L2
	(�0) on the other hand, as recalled above. Now, since Bz = −	̃(Tr(∇	̃−1(z))), one

sees that B has a closed range.
Next we determine the adjoint of B with respect to the scalar product (·|·)	 . If q ∈ C∞

c (�0)

and z ∈ C∞
c (�0)

N , we have (using, in the last step of the following, the definition of the
divergence, div, of a matrix, see (4.1)

〈B∗q, z〉 = 〈q, Bz〉 = −
∫

�0

q(x) Tr(M(x)∇z(x)) Jac(	)(x) dx

= −
N∑

i=1

N∑
j=1

∫
�0

Mij (x)q(x)
∂zj (x)

∂xi

Jac(	)(x) dx

=
N∑

i=1

N∑
j=1

∫
�0

∂

∂xi

[Jac(	)(x)Mij (x)q(x)]zj (x) dx

=
∫

�0

div(q(x) Jac(	)(x)M∗(x)) · z(x) dx. (4.12)

From this, and the density of smooth functions in L2(�0) and H 1
0 (�0)

N , we conclude that

B∗q = 1

Jac(	)
div(q Jac(	)(x)M∗).

To finish the proof of the lemma, assume that q ∈ L2(�0) is such that B∗q = 0. Then
q ∈ R(B)⊥, that is, for all z ∈ H 1

0 (�0)
N we have (upon setting p(y) := q(	−1(y)) and

w(y) := z(	−1(y)))

0 = 〈B∗q, z〉 = −
∫

�0

q(x) Tr(M(x)∇z(x)), Jac(	)(x) dx

0 = −
∫

�1

p(y) Tr(∇w(y)) dy,

for all w ∈ H 1
0 (�1)

N . This implies that p is constant in �1, and thus q is constant in �0. �

Now one can see that equation (4.9) can be written in the form
Au0 + B∗q0 = f in �0

Bu0 = 0 in �0

u0 = 0 on ∂�0

(4.13)

in which we denote

f := 1

Jac(	)
div(Jac(	)M∗M∇ϕ0),

and where q0 is determined uniquely up to the addition of an element in N(B∗), that is, up to
the addition of a constant.

We are finally in a position to state and show the analytic dependence of (u0, q0) on 	.

Theorem 4.3. Let O ⊂⊂ � be a Lipschitz domain, and 	1 ∈ W 1,∞(O, R
N) be such

that 	 := I + 	1 is an admissible deformation according to definition 4.1. The mapping
	1 �→ (u0, q0) from W

1,∞
0 (O, R

N) into H 1
0 (�0)

N × L2(�0) is analytic in a neighbourhood
of the origin.

Proof. We begin by pointing out that, due to the assumptions on 	, the function f defined
above is actually independent of 	, since where 	 �= I we have ϕ0 ≡ 0. It is elementary
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to verify that the operator : H 1
0 (�0)

N −→ H−1(�0)
N is an isomorphism. Then the first

equation of (4.13) implies that

u0 + A−1B∗q0 = A−1f, (4.14)

and upon applying B to both sides of this, and using the fact that Bu0 = 0, we find that q0 is
given by the equation

BA−1B∗q0 = BA−1f. (4.15)

However, due to the fact that A−1 is coercive, that is, for some α0 > 0 one has

〈g,A−1g〉 � α0‖g‖2
H−1 ,

one checks that the operator BA−1B∗ is continuous and one-to-one in N(B∗)⊥. Therefore, up
to the addition of a constant, q0 is uniquely determined by

q0 = (BA−1B∗)−1BA−1f. (4.16)

Note that q0 ∈ L2
0,	(�0), that is,∫
�0

q0(x) Jac(	)(x) dx = 0.

However, since N(B∗) is the one-dimensional subset of constant functions on �0, and thus
independent of 	, we may normalize q0 by adding a constant so that∫

�0

q0(x) dx = 0.

From (4.16) and (4.14) one concludes that u0 is given by

u0 = (I − A−1B∗(BA−1B∗)−1B)A−1f. (4.17)

It is clear that the mappings 	1 �→ A and 	1 �→ B∗, in a neighbourhood of the origin,
are analytic from W

1,∞
0 (O, R

N) into L
(
H 1

0 (�0)
N ;H−1(�0)

N
)

and L(L2(�0),H
−1(�0)

N)

respectively, and since so is the inversion of continuous operators, the formulae (4.16) and
(4.17) show that the mapping 	1 �→ (u0, q0) is analytic in a neighbourhood of the origin in
W

1,∞
0 (O, R

N). �

Remark. As a matter of fact, denoting by A0 and B0 the corresponding operators when
	1 = 0, that is, A0u := −�u and B0u := −div(u), using (4.17) one can write u0 as a series.
Indeed A = A0 + A1 and B = B0 + B1 where ‖A1‖ and ‖B1‖ are small. So we may write

BA−1B∗ =: B0A
−1
0 B∗

0 (I − L), A−1 =
∑

k�0

(−A−1
0 A1

)k

 A−1
0

where ‖L‖ is small. Therefore

(BA−1B∗)−1 =
∑

k�0

Lk

 (
B0A

−1
0 B∗

0

)−1
.

From these expressions one sees that for a sequence of operators, say (Lk)k , continuous from
H−1(�0)

N into H 1
0 (�0)

N , one has

u0 =
∑
k�0

Lkf,

but, since we will not use this expression, we do not insist on determining the sequence (Lk)k
in terms of 	1.
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Remark. We should point out that even though the above analysis shows that the mapping
	1 �→ (u1, q1) is analytic we cannot say anything about the analyticity of the mapping
	1 �→ (v1, p1): indeed the only thing we can infer is that the mapping

	1 �→ σ(v1, p1)n = σ(u1, q1)n

is analytic.

The following corollary is of interest in the next section, where we show that the smooth
dependence of σ(v1, p1)n on 	 extends to the linear or nonlinear evolution equations.

Corollary 4.4. Let λ > 0 be a fixed parameter, let the assumptions of theorem 4.3 be satisfied,
and for a given f ∈ H−1(�)N , let (u0,λ, q0,λ) be the solution to the equation

u0,λ + λAu0,λ + B∗q0,λ = f in �0

Bu0,λ = 0 in �0

u0,λ = 0 on ∂�0.

(4.18)

Then we can write u0,λ = Rλf where the resolvent Rλ is defined by

Rλ := (I + λA)−1 − (I + λA)−1B∗(B(I + λA)−1B∗)−1B(I + λA)−1.

One has ‖Rλf ‖L2(�0) � ‖f ‖L2(�0), and the mapping 	1 �→ (u0,λ, q0,λ) from W
1,∞
0 (O, R

N)

into H 1
0 (�0)

N × L2(�0) is analytic in a neighbourhood of the origin.

Proof. Proceeding as in the proof of theorem 4.3, one sees that up to a constant q0,λ is given
by

q0,λ = (B(I + λA)−1B∗)−1B(I + λA)−1f,

while u0 is given by

u0,λ = (I + λA)−1f − (I + λA)−1B∗(B(I + λA)−1B∗)−1B(I + λA)−1f.

From this it is easily seen that the analytic dependence of (u0,λ, q0,λ) on 	1 holds. �

Remark. As a matter of fact, the mapping (λ,	1) �→ Rλ can be extended into an analytic
function defined on [Re(z) > 0] × B(0, ρ) −→ L(H−1(�)N,H 1

0 (�)N), where B(0, ρ) is the
ball of W

1,∞
0 (O, R

N) centred at the origin with a radius ρ sufficiently small.

Our next result, a corollary of what we have proved in theorem 4.3 and the identifiability
result of section 3, is the fact if 	 := 	τ = I + τ	1 for a fixed 	1 �≡ 0, and if for |τ |
small enough we have D0 ∈ Dad and Dτ := 	τ(D0) ∈ Dad then we have a lower bound for∥∥�D0(ϕ) − �Dτ

(ϕ)
∥∥

H−1 in terms of τ , that is, we have a certain directional stability:

Corollary 4.5. Let 	1 ∈ W
1,∞
0 (O, R

N) such that 	1 �≡ 0 on D0. Denote 	τ := I + τ	1

for τ ∈ R, and Dτ := 	τ(D0) and �τ := 	τ(�0). Let τ1 > 0 be a positive number such
that τ �→ (vτ , pτ ) is analytic on (−τ1, τ1) and assume that for some τ∗ ∈ (−τ1, τ1) one has
	τ∗(D0) �= D0. Then there exist τ0 > 0, an integer m � 1 and a positive constant C, all
depending on 	1, ϕ, �,�0, such that for all τ ∈ [−τ0, τ0] one has∥∥�D0(ϕ) − �Dτ

(ϕ)
∥∥

H−1/2(�)N
� C|τ |m (4.19)

Proof. It is clear that for |τ | smaller than some τ1 > 0 the set Dτ belongs to the class of
admissible subdomains Dad. Now for such τ , let (vτ , pτ ) be a solution of the Stokes system

−div(σ (vτ , pτ )) = 0 in �\Dτ

div(vτ ) = 0 in �\Dτ

vτ = 0 on ∂Dτ

vτ = ϕ on ∂�.

(4.20)
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According to the analyticity result proved above, τ �→ σ(vτ , pτ )n is analytic in a
neighbourhood of the origin, and therefore so is the mapping

τ �→ �Dτ
(ϕ) − �D0(ϕ)

from [−τ1, τ1] into H−1/2(�)N . Since for a sequence of (Fk)k in H−1/2(�)N we have

�Dτ
(ϕ) − �D0(ϕ) =

∞∑
k=1

τ kFk,

and since, for some τ∗ �= 0, thanks to the identifiability result of section 3 we know that
�Dτ∗ (ϕ) − �D0(ϕ) �= 0, because D0 �= Dτ∗ , all the Fk cannot be zero, and so there exists a
least integer m � 1 such that Fm �= 0. Upon choosing 0 < τ0 < τ1 so that∥∥∥∥∥

∞∑
k=m+1

τ k−m
0 Fk

∥∥∥∥∥
H−1/2(�)N

� 1

2
‖Fm‖H−1/2(�)N ,

it follows that for |τ | � τ0 we have∥∥�Dτ
(ϕ) − �D0(ϕ)

∥∥
H−1/2(�)N

� 1
2‖Fm‖H−1/2(�)N τm,

and thus the result is proved. �

In the remainder of this section, we show that the Gâteaux derivative of the mapping
	 �→ σ(u0, q0)n can be obtained quite easily. To be more specific, for τ ∈ R and
	1 ∈ W

1,∞
0 (O, R

N) consider a perturbation of I of the form

	 := 	τ := I + τ	1.

Let us denote, for |τ | small enough, by Mτ the corresponding matrices M defined at the
beginning of this section, namely

M0 := I, Mτ := ((	 ′
τ )

∗)−1

and by Aτ and Bτ the corresponding operators A and B defined in (4.10) and (4.11). Also
we shall denote by (u0, q0) and (uτ , qτ ) the solutions of the corresponding equations (4.13)
where A and B are replaced with A0, B0 and Aτ , Bτ respectively. (Note that as a matter of
fact, A0 = −� and B0 = −div, that is, the corresponding equations for u0, q0 are just the
classical Stokes system).

Since we know that 	τ �→ (uτ , qτ ) is analytic for |τ | small enough, this means that the
mapping τ �→ (uτ , qτ ) is analytic and that we may write

uτ = u0 + τu∗
1 + O(τ 2), qτ = q0 + τq∗

1 + O(τ 2) (4.21)

where the notation O(τ 2) refers to the norm of H 1
0 (�0) in the case of uτ and that of L2(�0)

for qτ . We may now state the proposition concerning the first derivative of the mapping
	τ �→ (uτ , qτ ).

Proposition 4.6. With the above notation, the first derivative of the mapping which maps 	

into the solution of equation (4.13) is given by

∂

∂τ
(uτ , qτ )|τ=0 = (u∗

1, q
∗
1 )

where (uτ , qτ ) satisfies the equation
−�u∗

1 + ∇q∗
1 = F0 in �0 := �\D0

div(u∗
1) = G0 in �0

u∗
1 = 0 on ∂�0.

(4.22)
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where

F0 := −div([	 ′
1 + (	 ′

1)
∗ − Tr(	 ′

1)I ]∇u0) + ∇(q0 Tr(	 ′
1)) − div(q0	

′
1)

and

G0 := Tr((	 ′
1)

∗∇u0).

Proof. Indeed on the one hand we have Mτ = ((	 ′
τ )

∗)−1 = (I + τ(	 ′
1)

∗)−1, and therefore

Mτ = I − τ(	 ′
1)

∗ + O(τ 2). (4.23)

On the other hand Jac(	τ ) = det(I + τ	 ′
1), and so one has

Jac(	τ ) = 1 + τ Tr(	 ′
1) + O(τ 2). (4.24)

Now recall that (uτ , qτ ) is characterized by the fact that (uτ , qτ ) ∈ H 1(�0) × L2(�0)

and for all (z, q) ∈ H 1
0 (�0)

N × L2(�0) one has∫
�0

Mτ∇uτ : Mτ∇z Jac(	τ ) dx −
∫

�0

qτ Tr(Mτ∇z) Jac(	τ ) dx +
∫

�0

Tr(Mτ∇uτ )q Jac(	τ ) dx

= −
∫

�0

Mτ∇ϕ0 : Mτ∇z Jac(	τ ) dx. (4.25)

Using expansions (4.23) and (4.24) on the one hand and the fact that

(uτ , qτ ) = (u0, q0) + τ(u∗
1, q

∗
1 ) + O(τ 2),

on the other hand, one finds that the three integrals on the left-hand side of (4.25) have the
following expansions: the first one is∫

�0

Mτ∇uτ : Mτ∇z Jac(	τ ) dx =
∫

�0

∇u0 : ∇z dx + τ

∫
�0

∇u∗
1 : ∇z dx

+ τ

∫
�0

[Tr(	 ′
1)I − 	 ′

1 − (	 ′
1)

∗]∇u0 : ∇z dx + O(τ 2), (4.26)

while the second one is∫
�0

qτ Tr(Mτ∇z) Jac(	τ ) dx =
∫

�0

q0 Tr(∇z) dx + τ

∫
�0

q∗
1 Tr(∇z) dx

+ τ

∫
�0

[Tr(	 ′
1)q0 Tr(∇z) − q0 Tr((	 ′

1)
∗∇z] dx + O(τ 2), (4.27)

and finally the third one is∫
�0

Tr(Mτ∇uτ )q Jac(	τ ) dx =
∫

�0

Tr(∇u0)q dx + τ

∫
�0

Tr(∇u∗
1)q dx

− τ

∫
�0

Tr((	 ′
1)

∗∇u0)q dx + O(τ 2). (4.28)

Analogously, the integral on the right-hand side of (4.25) can be expanded into∫
�0

Mτ∇ϕ0 : Mτ∇z Jac(	τ ) dx =
∫

�0

∇ϕ0 : ∇z dx

+ τ

∫
�0

[Tr(	 ′
1)I − 	 ′

1 − (	 ′
1)

∗]∇ϕ0 : ∇z dx + O(τ 2)

=
∫

�0

∇ϕ0 : ∇z dx + O(τ 2), (4.29)

since we have [Tr(	 ′
1)I − 	 ′

1 − (	 ′
1)

∗]∇ϕ0 ≡ 0 in �0.
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At this point recall that (u0, q0) is the solution of a variational problem corresponding to∫
�0

∇u0 : ∇z dx −
∫

�0

q0 Tr(∇z) dx +
∫

�0

Tr(∇u0)q dx =
∫

�0

∇ϕ0 : ∇z dx,

that is, −�u0 + ∇q0 = �ϕ0 and div(u0) = Tr(∇u0) = 0. Therefore, after reporting the
expressions in (4.26)–(4.29) into the variational equation (4.25), using the equation satisfied
by (u0, q0), dividing by τ and letting τ → 0, one finds that (u∗

1, q
∗
1 ) ∈ H 1

0 (�0)
N × L2(�0) is

characterized by the fact that for all (z, q) ∈ H 1
0 (�0)

N × L2(�0)∫
�0

∇u∗
1 : ∇z dx −

∫
�0

q∗
1 Tr(∇z) dx +

∫
�0

Tr(∇u∗
1)q dx = 〈F0, z〉 +

∫
�0

Tr((	 ′
1)

∗∇u0)q dx,

where F0 ∈ H−1(�0)
N is given by

F0 := −div([	 ′
1 + (	 ′

1)
∗ − Tr(	 ′

1)I ]∇u0) + ∇(q0 Tr(	 ′
1)) − div(q0	

′
1). (4.30)

This implies that (u∗
1, q

∗
1 ) ∈ H 1

0 (�0) × L2(�0) satisfies the equation −�u∗
1 + ∇q∗

1 = F0 in
�0, and that div(u∗

1) = Tr(	 ′
1∇u0) in �0, and the proof is over. �

5. Smooth dependence of Cauchy forces with respect to the deformation
of the domain: the evolution case

In this section, we shall consider the nonlinear Navier–Stokes equation and prove that the
Cauchy forces depend smoothly on the deformation of the obstacle D0. We begin by
considering the linear evolution equations

∂vj

∂t
− �vj + ∇pj = 0 in �j × (0, T )

div(vj ) = Tr(∇vj ) = 0 in �j × (0, T )

vj (s, t) = ϕ(s, t) on ∂� × (0, T )

vj (s, t) = 0 on ∂Dj × (0, T )

vj (x, 0) = 0 in �j

(5.1)

and we show that when D0 and D1 are close, then the Cauchy forces σ(v0, p0)n and σ(v1, p1)n
are close, and that there is a smooth dependence in the sense explained in the previous section,
from which we use the notation.

First, observe that we may find ϕ̃1 ∈ C1([0, T ], (H 1(�))N) such that
ϕ̃1(x, 0) = 0 in �

div(̃ϕ1) = 0 in � × (0, T )

ϕ̃1 = 0 in O × (0, T )

ϕ̃1 = ϕ on ∂� × (0, T ).

(5.2)

Then we define ṽ1 by setting

ṽ1 := v1 − ϕ̃1

so that ṽ1 is a solution to
∂ṽ1

∂t
− �ṽ1 + ∇p1 = ∂ϕ̃1

∂t
− �ϕ̃1 in �1 × (0, T )

div(̃v1) = Tr(∇ṽ1) = 0 in �1 × (0, T )

ṽ1(s, t) = 0 on ∂�1 × (0, T )

ṽ1(y, 0) = 0 in �1.

(5.3)

If 	 is an admissible deformation as in definition 4.1, the operators A and B as in (4.10)
and (4.11), and proceeding as we did in the previous section, after writing the variational
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formulation of equation (5.3) (and some lengthy but straightforward elementary calculations)
one checks that

u0(x, t) := ṽ1(	(x), t), q0(x, t) := p1(	(x), t) (5.4)

satisfy the equation
∂u0

∂t
+ Au0 + B∗q0 = f in �0 × (0, T )

Bu0 = 0 in �0 × (0, T )

u0 = 0 on ∂�0 × (0, T )

u0(x, 0) = 0 in �0,

(5.5)

where

f (x, t) := − 1

Jac(	)

[
∂ϕ0

∂t
− div(Jac(	)M∗M∇ϕ0)

]
, (5.6)

and

ϕ0(x, t) := ϕ̃1(	(x), t).

We can now establish the analytic dependence of (u0, q0) on 	.

Theorem 5.1. Let O ⊂⊂ � be a Lipschitz domain, and 	1 ∈ W 1,∞(O, R
N) be such that

	 := I + 	1 is an admissible deformation according to definition 4.1. If ϕ ∈ C1([0, T ],
H 1/2(∂�)N) and

∫
∂�

ϕ(s, t) · n(s) ds = 0 for all t ∈ [0, T ], then by mapping there exists a

neighbourhood B(0, ρ) of the origin in W
1,∞
0 (O, R

N) such that the mapping 	1 �→ (u0, q0)

is analytic from B(0, ρ) into C([0, T ],H 1
0 (�0)

N × L2(�0)).

Proof. Note that since where 	 �= I we have ϕ0 ≡ 0, the function f defined above is actually
independent of 	 (note also that f ∈ C([0, T ],H−1(�))N ).

Now, for a given uinit ∈ H 1
0 (�0)

N with Buinit = 0, it is known that there exists a unique
u ∈ C((0,∞);H 1

0 (�0)
N) solution to the evolution equation

∂u

∂t
+ Au + B∗q = 0

Bu = 0
u(x, 0) = uinit(x),

(5.7)

and that this solution may be defined via the semi-group S(t) generated by A on N(B). More
precisely, with the notation of corollary 4.4, it is a classical result of the theory of semi-groups
(see, for instance, [16], chapter IX) that for any t > 0 we have

S(t)uinit := u(t) = lim
n→∞(Rt/n)

nuinit,

where the convergence takes place actually in the topology of C([0, T ], L2(�0)
N). As a

matter of fact S(t) is a holomorphic semi-group and one can represent S(t) via the resolvent
Rλ as a path integral in the following way (see, for instance, [16], chapter IX, section 10). For
θ0 ∈ (π/2, π) fixed, let γ be the path in the complex plane C defined as

γ := {s e−iθ0; s � 1} ∪ {eiθ ;−θ0 � θ � θ0} ∪ {s eiθ0; s � 1},
in which we assume that γ is oriented as a path coming from the direction s eiθ0 with s ranging
from s = −∞ to s = 1. Then we have

S(t)uinit = 1

2iπ

∫
γ

eλtR1/λuinit
dλ

λ
= 1

2iπ

∫
γ

eλt (λI + A)−1uinit dλ,
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where the integral converges uniformly for t ∈ [t0, T ] for any 0 < t0 < T , and actually one
may define S(t) for t ∈ C with |arg(t)| < (2θ0 − π)/2. According to corollary 4.4, in a fixed
neighbourhood B(0, ρ) of the origin in W 1,∞(O, R

N), for any f ∈ H−1(�0)
N the mapping

	1 �→ Rλf is analytic from B(0, ρ) into H 1
0 (�0)

N . In particular, if uinit has its support in Oδ ,
then Buinit = 0 means that div(uinit) = 0, and thus for any 	1 ∈ B(0, ρ) given, S(t)uinit is
well defined and one can see from the above integral representation of S(t) that 	1 �→ S(t)uinit

is also analytic from B(0, ρ) into L2(�0)
N . However, since the semi-group S(t) is analytic,

for any t > 0 and uinit ∈ L2(�0)
N with div(uinit) = 0 we have actually S(t)uinit ∈ H 1

0 (�0)
N

(with an estimate of the form ‖S(t)uinit‖H 1
0

� ct−1/2‖uinit‖L2 ), we can infer that 	1 �→ S(t)uinit

is analytic from B(0, ρ) into C([t0, T ],H 1
0 (�0)

N). In fact when uinit ∈ H 1
0 (�0)

N ∩ D(A),
one has (with u(t) := S(t)uinit)

u ∈ C([0, T ],H 1
0 (�0)

N) ∩ C1([0, T ], L2(�0)
N)

and one can conclude that the mapping 	1 �→ S(t)uinit from

B(0, ρ) −→ C([0, T ],H 1
0 (�0)

N) ∩ C1([0, T ], L2(�0)
N)

is analytic.
Now f being as in (5.6), if we denote by f0 the projection of f in the space of divergence-

free functions, then for any 	1 ∈ B(0, ρ), we also have f0 ∈ N(B), and the solution u0 of
(5.5) can be written as

u0(t) =
∫ t

0
S(t − τ)f0(τ ) dτ. (5.8)

This shows that 	1 �→ u0 is analytic from B(0, ρ) into C([0, T ],H 1
0 (�0)

N) ∩
C1([0, T ], L2(�0)

N). Using the equation satisfied by (u0, q0) one sees that

u0 + A−1B∗q0 = A−1f − A−1 ∂u0

∂t

and hence (because Bu0 = 0)

BA−1B∗q0 = BA−1f − BA−1 ∂u0

∂t
.

From this it is straightforward to see that q0 is determined up to a constant (in the spatial
variable) which may be chosen so that

∫
�0

q0(x, t) dx = 0, and that 	1 �→ q0, as a mapping
from B(0, ρ) into C([0, T ], L2(�0)), is also analytic. �

Using the same procedures, the nonlinear Navier–Stokes equation written in �1 can be
transformed into a nonlinear equation written in �0. Namely, if (v1, p1) is the solution of
equation (1.8) with ε∗ = 1 and j = 1, one defines first (̃v1, p1) with ṽ1 := v1 − ϕ̃1 and then
one applies the change of variables 	 by setting

u0(x, t) := ṽ1(	(x), t), q0(x, t) := p1(	(x), t).

After some cumbersome calculations, which we may omit, one checks that (u0, q0) satisfies
the following equation,

∂u0

∂t
+ Au0 + B∗q0 + F(u0) = f in �0 × (0, T )

Bu0 = 0 in �0 × (0, T )

u0 = 0 on ∂�0 × (0, T )

u0(x, 0) = 0 in �0,

(5.9)
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where the nonlinearity F is defined by (for 1 � i � N and u ∈ H 1
0 (�0)

N )

(F (u))i :=
N∑

j=1

ujMjk∂kui +
N∑

j=1

ϕ0,jMjk∂kui +
N∑

j=1

ujMjk∂kϕ0,i

and the right-hand side

(f (x, t))i := − 1

Jac(	)

[
∂ϕ0

∂t
− div(Jac(	)M∗M∇ϕ0)

]
i

−
N∑

j=1

ϕ0,jMjk∂kϕ0,i , (5.10)

and

ϕ0(x, t) := ϕ̃1(	(x), t).

At this point, we know that the semi-group S(t) depends in a smooth manner on
	1 ∈ B(0, ρ), and that the solution of equation (5.9) can be obtained as a fixed point for
the mild version of that equation, that is,

u0(t) =
∫ t

0
S(t − τ)f0(τ ) dτ −

∫ t

0
S(t − τ)F0(u0(τ )) dτ,

where by f0 and F0(u) we denote the projection of f and F(u) on N(B). It is known
that, for some T∗ > 0 small enough, the above equation admits a unique solution in
C

(
[0, T∗],H 1

0 (�0)
N
)
. As a matter of fact, this solution is obtained as a fixed point of the

mapping

�̃(u)(t) :=
∫ t

0
S(t − τ)f0(τ ) dτ −

∫ t

0
S(t − τ)F0(u(τ )) dτ

in the space C
(
[0, T∗],H 1

0 (�0)
N
)
, and the fact that 	1 �→ �̃ is analytic implies that the

mapping 	1 �→ u0 is also analytic as a mapping from B(0, ρ) into C
(
[0, T∗],H 1

0 (�0)
N
)
. In

turn, this implies that 	1 �→ q0 is analytic, and finally we can state these observations in the
following:

Corollary 5.2. Let O ⊂⊂ � be a Lipschitz domain, and 	1 ∈ W 1,∞(O, R
N) be such

that 	 := I + 	1 is an admissible deformation according to definition 4.1. Using the above
notation, if ϕ ∈ C1([0, T ],H 1/2(∂�)N) and

∫
∂�

ϕ(s, t) · n(s) ds = 0 for all t ∈ [0, T ], then
there exist T∗ > 0 and ρ > 0 such that for all 	1 ∈ B(0, ρ) equation (5.9) has a unique
solution (u0, q0) ∈ C([0, T∗],H 1

0 (�0)
N × L2(�0)) (with

∫
�0

q0(x, t) dx = 0). Moreover, the

mapping 	1 �→ (u0, q0) from B(0, ρ) ⊂ W
1,∞
0 (O, R

N) into C
(
[0, T∗],H 1

0 (�0)
N × L2(�0)

)
is analytic.

As we observed in corollary 4.5, the analyticity result together with the identification
result established above, allows us to state the following stability result concerning the linear
or nonlinear evolution problem. Let (vτ , pτ ) be the solution of

∂vτ

∂t
− div(σ (vτ , pτ )) + ε∗ div(vτ ⊗ vτ ) = 0 in (�\Dτ) × (0, T∗)

div(vτ ) = 0 in (�\Dτ) × (0, T )

vτ (x, 0) = 0 for x ∈ �\Dτ

vτ (s, t) = ϕ(s, t) for (s, t) ∈ ∂� × (0, T∗)

vτ (s, t) = 0 for (s, t) ∈ ∂Dτ × (0, T∗),

(5.11)

where for τ = 0 the domain D0 is supposed to be the unperturbed obstacle, and Dτ denotes
the perturbation of D0 according to the convention we have used in the above studies, and T∗
is the minimum time of existence for the solutions (vτ , pτ ).
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Corollary 5.3. Let 	1 ∈ W
1,∞
0 (O, R

N) be such that 	1 �≡ 0 on D0. Denote 	τ := I + τ	1

for τ ∈ R, and Dτ := 	τ(D0) and �τ := 	τ(�0), and let (vτ , pτ ) be the solution of
equation (5.11), for some ϕ ∈ C1([0, T ],H 1/2(∂�)) satisfying

∫
∂�

ϕ(s, t) · n(s) ds = 0 for
t ∈ [0, T ]. Let τ1 > 0 be a positive number such that τ �→ (vτ , pτ ) is analytic on (−τ1, τ1)

and assume that for some τ∗ ∈ (−τ1, τ1) one has 	τ∗(D0) �= D0. Then there exist τ0 > 0,
an integer m � 1 and a positive constant C, all depending on 	1, ϕ, �,�0, such that for all
τ ∈ [−τ0, τ0] one has∥∥�D0(ϕ) − �Dτ

(ϕ)
∥∥

C([0,T∗],H−1/2(�)N )
� C|τ |m. (5.12)
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[5] Canuto B 2002 Unique localization of unknown boundaries in a conducting medium from boundary
measurements ESAIM Control Optim. Calc. Var. 7 1–22 (electronic)

[6] Canuto B, Rosset E and Vessella S 2002 A stability result in the localization of cavities in a thermic conducting
medium ESAIM Control Optim. Calc. Var. 7 521–65 (electronic)

[7] Canuto B and Kavian O 2001 Determining coefficients in a class of heat equations via boundary measurements
SIAM J. Math. Anal. 32 963–86

[8] Fabre C and Lebeau G 1996 Prolongement unique des solutions de l’équation de Stokes Commun. Part. Diff.
Eqns 21 573–96

[9] Fernández-Cara E 1996 Some controllability problems for the Stokes and Navier–Stokes systems Control
of Partial Differential Equations and Applications (Laredo, 1994) (Lecture Notes in Pure and Applied
Mathematics vol 174) (New York: Dekker) pp 77–88

[10] Kohn R and Vogelius M 1984 Determining conductivity by boundary measurements Commun. Pure Appl. Math.
37 289–98
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