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HESSIAN RIEMANNIAN GRADIENT FLOWS
IN CONVEX PROGRAMMING*

FELIPE ALVAREZ!, JEROME BOLTE!, AND OLIVIER BRAHICS

Abstract. In view of solving theoretically constrained minimization problems, we investigate
the properties of the gradient flows with respect to Hessian Riemannian metrics induced by Legendre
functions. The first result characterizes Hessian Riemannian structures on convex sets as metrics that
have a specific integration property with respect to variational inequalities, giving a new motivation
for the introduction of Bregman-type distances. Then, the general evolution problem is introduced,
and global convergence is established under quasi-convexity conditions, with interesting refinements
in the case of convex minimization. Some explicit examples of these gradient flows are discussed. Dual
trajectories are identified, and sufficient conditions for dual convergence are examined for a convex
program with positivity and equality constraints. Some convergence rate results are established. In
the case of a linear objective function, several optimality characterizations of the orbits are given:
optimal path of viscosity methods, continuous-time model of Bregman-type proximal algorithms,
geodesics for some adequate metrics, and projections of ¢-trajectories of some Lagrange equations
and completely integrable Hamiltonian systems.
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1. Introduction. The aim of this paper is to study the existence, global con-
vergence, and geometric properties of gradient flows with respect to a specific class
of Hessian Riemannian metrics on convex sets. Our work is indeed deeply related to
the constrained minimization problem

(P) min{f(z) |z € C, Az = b},

where C is the closure of a nonempty, open, and convex subset C of R™; A is an m xn
real matrix with m < n; b € R™ and f € C*(R"). A strategy for solving (P) consists
of endowing C with a Riemannian metric g, restricting it to the relative interior of the
feasible set F := C'N{z | Az = b}, and then considering the trajectories generated by
the steepest descent vector field. We focus on those metrics that are induced by the
Hessian H = V?h of a Legendre-type convex function h defined on C (cf. Definition

3.3), that is, g;; = 8328’1% . This leads to the initial value problem

(HSD)  (t)+ V, fi (z(t) =0,  z(0) € F,
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where (H-SD) stands for H-steepest descent.

The use of Riemannian methods in optimization has increased recently. For inte-
rior point methods in linear programming, see Karmarkar [31], Bayer and Lagarias [7],
and Nesterov and Todd [37]; for continuous-time models of proximal-type algorithms
and related topics, see Tusem, Svaiter, and Da Cruz Neto [29], Bolte and Teboulle
[8], and Attouch and Teboulle [3]. For a systematic dynamical system approach to
constrained optimization based on double bracket flows, see Brockett [10, 11], Helmke
and Moore [24], and the references therein. See Smith [41] and Udriste [43] for general
optimization techniques on Riemannian manifolds. On the other hand, the structure
of (H-SD) is also at the heart of some important problems in applied mathematics. For
connections with population dynamics and game theory, see Akin [1] and Hofbauer
and Sygmund [27]. We will see that (H-SD) can be reformulated as the differential
inclusion £Vh(z(t))+Vf(z(t)) € Im AT, z(t) € F, which is formally similar to some
evolution problems in infinite dimensional spaces arising in thermodynamical systems;
see Kenmochi and Pawlow [32] and references therein.

A classical approach in the asymptotic analysis of dynamical systems consists of
exhibiting attractors of the orbits by using Lyapunov functionals. Our choice of Hes-
sian Riemannian metrics is based on this idea. In fact, we consider first the important
case where f is convex, a condition that permits us to reformulate (P) as a variational
inequality problem: find a € F such that (V,, f|-(z),z—a)¥ > 0 for all z in F. In or-
der to identify a suitable Lyapunov functional, this variational problem is met through
the following integration problem: find the metrics (-,-)* for which the vector fields
Ve:F - R" acF, defined by Ve(z) = x — a, are (-,-)7 -gradient vector fields. Our
first result (cf. Theorem 3.1) establishes that such metrics are given by the Hessian
of strictly convex functions, and in that case the vector fields V® appear as gradients
with respect to the second variable of some distance-like functions that are called D-
functions. Indeed, if (-,-)¥ is induced by the Hessian H = V?h of h : F — R, we have
for all @,z in F, V,, Dy(a,.)(x) = x —a, where Dy(a,z) = h(a) —h(z) —dh(x)(a—x).
See Duistermaat [19] for a related characterization of Hessian metrics.

Motivated by the previous result and with the aim of solving (P), we are then
naturally led to consider Hessian Riemannian metrics that cannot be smoothly ex-
tended out of F. Such a requirement is fulfilled by the Hessian of a Legendre (convex)
function h, whose definition is recalled in section 3. We give then a differential inclu-
sion reformulation of (H-SD), which permits us to show that in the case of a linear
objective function f, the flow of —V, f|. stands at the crossroad of many optimiza-
tion methods. In fact, following [29], we prove that viscosity methods and Bregman
proximal algorithms produce their paths or iterates in the orbit of (H-SD). The D-
function of h plays an essential role for this. In section 4.4 we give a systematic
method for constructing Legendre functions based on barrier functions for convex in-
equality problems, which is illustrated with some examples; relations to other works
are discussed.

Section 4 deals with global existence and convergence properties. After having
given a nontrivial well-posedness result (cf. Theorem 4.1), we prove in section 4.2
that f(x(t)) — infzf as t — +oo whenever f is convex. A natural problem that
arises is the trajectory convergence to a critical point. Since one expects the limit to
be a (local) solution to (P), which may belong to the boundary of C, the notion of
critical point must be understood in the sense of the optimality condition for a local
minimizer a of f over F:

(0) Vf(a)+ Nz(a) 0, a€F,
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where N==(a) is the normal cone to F at a, and V f is the Euclidean gradient of f. This
involves an asymptotic singular behavior that is rather unusual in the classical theory
of dynamical systems, where the critical points are typically supposed to be in the
manifold. In section 4.3 we assume that the Legendre-type function h is a Bregman
function with zone C (see [5] and [34] for comprehensive surveys) and prove that, under
a quasi convexity assumption on f, the trajectory converges to some point a satisfying
(O0). When f is convex, the preceding result amounts to the convergence of x(t)
toward a global minimizer of f over F. We also give a variational characterization of
the limit and establish an abstract result on the rate of convergence under uniqueness
of the solution. We consider in section 4.5 the case of linear programming, for which
asymptotic convergence as well as a variational characterization are proved without
the Bregman-type condition. Within this framework, we also give some estimates
on the convergence rate that are valid for the specific Legendre functions commonly
used in practice. In section 4.6, we consider the interesting case of positivity and
equality constraints, introducing a dual trajectory A(t) that, under some appropriate
conditions, converges to a solution to the dual problem of (P) whenever f is convex,
even if primal convergence is not ensured.

Finally, for a linear objective function, and inspired by the seminal work [7], we
define in section 5 a change of coordinates called Legendre transform coordinates,
which permits us to show that the orbits of (H-SD) may be seen as straight lines
in a positive cone. This leads to additional geometric interpretations of the flow of
=V, fi=- On the one hand, the orbits are geodesics with respect to an appropriate
metric and, on the other hand, they may be seen as ¢-trajectories of some Lagrangian,
with consequences in terms of completely integrable Hamiltonians.

Notation. Ker A = {z € R" | Az = 0}. The orthogonal complement of A
is denoted by Aé, and (-,-) is the standard Euclidean scalar product of R™. Let us
denote by S | the cone of real symmetric definite positive matrices. Let & C R™ be an
open set. If f: Q — R is differentiable, then V f stands for the Euclidean gradient of
f. If h: Q — R is twice differentiable, then its Euclidean Hessian at € € is denoted
by V2h(z) and is defined as the endomorphism of R"™ whose matrix in canonical

coordinates is given by [gzlgg . Thus, for all x € Q, d*h(x) = (V2h(x)-,-).

:|i,j€{1,...,n}

2. Preliminaries.

2.1. The minimization problem and optimality conditions. Given a pos-
itive integer m < n, a full rank matrix A € R™*" and b € Im A, let us define

(2.1) A={z€R"| Az = b}.

Set Ag = A— A = Ker A. Of course, A5 = Im AT, where A7 is the transpose of A.
Let C be a nonempty, open, and convex subset of R?, and f : R® — R a C! function.
Consider the constrained minimization problem

(P) inf{f(z) |z € C, Az = b}.

The set of optimal solutions of (P’) is denoted by S(P'). We call f the objective
function of (P'). The feasible set of (P') is given by F = {x € R" |z € C, Az =
b} = C N A, and F stands for the relative interior of F, that is,

(2.2) F=1iF={zeR"|zeC, Az=b}=CnNA.
Throughout this article, we assume that

(2.3) F#0.
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It is well known that a necessary condition for a to be locally minimal for f over F
is (0): =V f(a) € Nx(a), where Nz(z) = {v e R" | Vy € F, (y —x,v) < 0} is the
normal cone to F at x € F (Nz(z) = () when x ¢ F); see, for instance, [40, Theorem
6.12]. By [39, Corollary 23.8.1], Nz(2) = N, 4(z) = Ng(z) + Na(z) = Ng(z) + Ag
for all x € F. Therefore, the necessary optimality condition for a € F is

(2.4) —Vf(a) € Ng(a) + Ay

If f is convex, then this condition is also sufficient for a € F to be in S(P).

2.2. Riemannian gradient flows on the relative interior of the feasible
set. Let M be a smooth manifold. The tangent space to M at x € M is denoted by
T,M. If f: M — Ris a C! function, then df (z) denotes its differential or tangent
map df (x) : T,M — R at 2 € M. A C¥ metric on M, k > 0, is a family of scalar
products (-,-), on each T,M, x € M, such that (-,-), depends in a C¥ way on x.
The couple M, (-,-), is called a C* Riemannian manifold. This structure permits us
to identify T,M with its dual, i.e., the cotangent space T,M*, and thus to define
a notion of gradient vector. Indeed, given f in M, the gradient of f is denoted by
V.., [ and is uniquely determined by the following conditions:

(g1) tangency condition: for all z € M, V | f(z) € T,M* ~ T, M;
(g2) duality condition: for all x € M, v € T, M, df (z)(v) = (V_, f(z),v)s.
We refer the reader to [18, 35] for further details.

Let us return to the minimization problem (P). Since C is open, we can take
M = C with the usual identification T,C ~ R"™ for every = € C. Given a continuous
mapping H : C — S, , the metric defined by

(2.5) Ve € C, Yu,v € R", (u,v) = (H(z)u,v)

endows C' with a C° Riemannian structure. The corresponding Riemannian gradient
vector field of the objective function f restricted to C, which we denote by V, f|, is
given by

Next, take N = F = C' N A, which is a smooth submanifold of C with T,F ~ Ag
for each x € F. Definition (2.5) induces a metric on F for which the gradient of the
restriction f|, is denoted by V,, f|.. Conditions (g1) and (g2) imply that for all z € F

(2.7) V., fir(2)=P.H(z)" 'V f(z),

where, given x € C, P, : R™ — Ay is the (-,-)Z-orthogonal projection onto the linear
subspace Ag. Since A has full rank, it is easy to see that

(2.8) P, =1—H(zx) *AT(AH(z)"* A7) A,
and we conclude that for all z € F
(29) YV, fi(@) = H(@) I - AT(AH(x) A7) AH(2) 'V f ().

Given = € F, the vector =V, f|.(z) can be interpreted as that direction in Ay
such that f decreases the most steeply at x with respect to the metric (-,-)Z. The
steepest descent method for the (local) minimization of f on the Riemannian manifold
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F,(-,)5 consists of finding the solution trajectory x(t) of the vector field =V, f) .
with initial condition z° € F:

{ 'CE—’_val}'(x) =0,
(2.10)

z(0) =2 € F.

3. Legendre gradient flows in constrained optimization.

3.1. Lyapunov functionals, variational inequalities, and Hessian met-
rics. This section is intended to motivate the particular class of Riemannian metrics
that is studied in this paper in view of the asymptotic convergence of the solution to
(2.10).

Let us consider the minimization problem (P) and assume that C' is endowed with
some Riemannian metric (-,-)X as defined in (2.5). Recall that V : F — R is a Lya-
punov functional for the vector field =V f|. if, forallz € F, (=V, fi- (), V,, V()
< 0. If z(¢) is a solution to (2.10), this implies that ¢ — V(x(¢)) is nonincreasing.
Although f|, is indeed a Lyapunov functional for —V g f| ., this does not ensure the
convergence of z(t). (See, for instance, the counterexample of Palis and De Melo [38]
in the Euclidean case.)

Suppose that the objective function f is convex. For simplicity, we also assume
that A = 0 so that F = C. In the framework of convex minimization, the set of
minimizers of f over C, denoted by Argmin & f, is characterized in variational terms
as follows:

(3.1) a€Argming f & Vrzel, (Vf(x),x —a) > 0.

Setting gq(z) = 3|z — a|? for all @ € Argmin &, one observes that Vg,(z) = z — a
and thus, by (3.1), ¢, is a Lyapunov functional for —V f. This key property allows
one to establish the asymptotic convergence as ¢ — +oo of the corresponding steepest
descent trajectories; see [12] for more details in a very general nonsmooth setting. To
use the same kind of arguments in a non-Euclidean context, observe that, by (2.6)
together with the continuity of V f, the following variational Riemannian characteri-
zation holds:

(3.2) a€Argming f & Vrel, (Vuf(x),z —a)l >0.

We are thus naturally led to the problem of finding the Riemannian metrics on C
for which the mappings C 3 x — x —y € R™, y € C, are gradient vector fields. The
next result gives a characterization of such metrics: they are induced by the Hessian
of strictly convex functions.

THEOREM 3.1. Assume that H € C*(C;S%) or, in other words, that (-,-)H is a
Ct metric. The family of vector fields {VY :C 3> x+— x —y € R"}, y € C is a family
of (-,-)H -gradient vector fields iff there exists a strictly convex function h € C3(C)
such that for all x € C, H(z) = V2h(x). Additionally, defining Dy, : C x C — R by

(3-3) Di(y,x) = h(y) — h(z) — (Vh(z),y — ),

we obtain Vg Dy(y,-)(x) =x —y.

Proof. The set of metrics complying with the “gradient” requirement is denoted
by M, that is, (-,-)f € M < H € CY(C;S%,) and for all y € C there exists
o, € CH(C;R), V,,¢y(z) =z —y. Let (z1,...,2,) denote the canonical coordinates
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of R", and write >, . H;;(z)dz;dx; for (-,)H. By (2.6), the mappings = — x — y,
y € O, define a family of (-,-)X gradients iff k, : @ — H(z)(x —y), y € C, is
a family of Euclidean gradients. Setting o¥(z) = (ky(x),-), =,y € C, the prob-
lem amounts to finding necessary (and sufficient) conditions under which the 1-forms
a¥ are all exact. Let y € C. Since C is convex, the Poincaré lemma [35, Theo-
rem V.4.1] states that oV is exact iff it is closed. In canonical coordinates we have
a¥(x) = Y, O, Hik(x) (2, — yx)) dzy, « € C, and therefore o¥ is exact iff for all
1,7 € {1,...,n} we have % Yop Hik(x) (@ — yr) = B%L > x Hjr(x)(x) — yr), which
is equivalent to ), %Hik(a:)(mk —yr)+Hij(x) =3, a%iij(x)(xk — i)+ Hji(z).
Since H;j(x) = Hji(x), this gives the following condition: ~, %Hik(:n)(xk —yr) =
>k %ij(x)(xk —yg), foralli,j € {1,...,n}. If we set V, = (a%jHZ— (),...,
%Hm(:r))T and W, = (%Hjl(x),...,%Hjn(x))T, the latter can be rewritten
(Vo — Wy, x —y) = 0, which must hold for all (z,y) € C x C. Fix x € C. Let ¢, >0
be such that the open ball of center z with radius ¢, is contained in C. For every v
such that |v| = 1, take y = x + €, /2v to obtain that (V, — W,,v) = 0. Consequently,
V, = W, for all z € C. Therefore, (-,-)F € M iff

LEMMA 3.2. If H : C — S is a differentiable mapping satisfying (3.4), then
there exists h € C3(C) such that, for all z € C, H(x) = V2h(z). In particular, h is
strictly conver.

Proof of Lemma 3.2. For all i € {1,...,n}, set B° = >, Hyxdxy,. By (3.4),
3% is closed and therefore exact. Let ¢; : C — R be such that d¢; = 3* on C,
and set w = ), ¢rdxr. We have that %q&i(x) = H;j(z) = Hji(z) = %%(z)
for all z € C. This proves that w is closed, and therefore there exists h € C*(C,R)
such that dh = w. To conclude, we just have to notice that a%ih(a:) = ¢;, and thus

5o h—(w) = Hji(z) forallz € C. O

To finish the proof of Theorem 3.1, we note that taking ¢, = Dj(y,-) with Dy,
being defined by (3.3), we obtain Vi, (z) = V2h(z)(z —y), and therefore Vg, (z) =
x — y in virtue of (2.6). O

Remark 3.1. (a) In the theory of Bregman proximal methods for convex opti-
mization, the distance-like function D}, defined by (3.3) is called the D-function of h.
Theorem 3.1 is a new and surprising motivation for the introduction of Dj, in rela-
tion with variational inequality problems. (b) For a geometrical approach to Hessian
Riemannian structures, the reader is referred to the recent work of Duistermaat [19].

Theorem 3.1 suggests that we endow C with a Riemannian structure associated
with the Hessian H = V2h of a strictly convex function h : C +— R. As we will
see under some additional conditions, the D-function of h is essential to establishing
the asymptotic convergence of the trajectory. On the other hand, if it is possible to
replace h by a sufficiently smooth strictly convex function &’ : C’ — R with C’ DD C
and hic = h, then the gradient flows for h and h’ are the same on C, but the steepest

descent trajectories associated with the latter may leave the feasible set of (P) and
in general they will not converge to a solution of (P). We shall see that to avoid this
drawback it is sufficient to require that |[Vh(2?)| — +oo for all sequences (z?) in C
converging to a boundary point of C. This may be interpreted as a sort of barrier
technique, a classical strategy for enforcing feasibility in optimization theory.
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3.2. Legendre-type functions and the (H-SD) dynamical system. In
what follows, we adopt the standard notation of convex analysis theory; see [39].
Given a closed convex subset S of R", we say that an extended-real-valued function
g: S — RU{+oo} belongs to the class I'y(.S) when g is lower semicontinuous, proper
(9 # +00), and convex. For such a function g € T'y(5), its effective domain is defined
by domg = {z € S| g(z) < +o0}. When g € T'o(R"), its Legendre—Fenchel conjugate
is given by ¢*(y) = sup{(z,y) —g(z) | z € R}, and its subdifferential is the set-valued
mapping dg : R” — P(R"™) given by dg(z) = {y € R" | Vz € R", f(x) + (y,z — ) <
f(2)}. We set dom dg = {z € R™ | dg(z) # 0}.

DEFINITION 3.3 (see [39, Chapter 26]). A function h € To(R™) is called:

(i) essentially smooth if h is differentiable on intdomh, with, moreover, |Vh(x?)| —
+oo for every sequence (z7) C int dom h converging to a boundary point of
dom h as j — +o0;

(ii) of Legendre type if h is essentially smooth and strictly convex on int dom h.

We remark that by [39, Theorem 26.1], h € T'o(R™) is essentially smooth iff
Oh(x) = {Vh(z)} if z € int dom h, and dh(z) = ) otherwise; in particular, dom Oh =
int dom h.

Motivated by the results of section 3.1, we define a Riemannian structure on C
by introducing a function h € I'o(R™) such that

(i)  his of Legendre type with int dom h = C.
(Hyp) (ii) k., € C*(C;R) and Va € C,V?h(z) € ST .
(iii) The mapping C' > x + V2h(z) is locally Lipschitz continuous.

Here and subsequently, we take H = V2h with h satisfying (Hp). The Hessian map-
ping C > x — H(x) endows C' with the (locally Lipschitz continuous) Riemannian
metric

(3.5) Vo € C, Yu,v € R", (u,v)? = (H(z)u,v) = (VZh(z)u,v),

and we say that (-,-)X is the Legendre metric on C induced by the Legendre-type
function h, which also defines a metric on F = C' N A by restriction. In addition to

f € CH(R™), we suppose that the objective function satisfies
(3.6) V[ is locally Lipschitz continuous on R".

The corresponding steepest descent method in the manifold F, (-,-), which we refer
to as (H-SD) for short, is then the following continuous dynamical system:

{ (0 + VS (@) =0, t € (T, Tar),

(H-SD)
z(0) =2 € F,

with H = V2h and where —oo < T},, < 0 < Th; < +0o defines the interval correspond-
ing to the unique maximal solution of (H-SD). Given an initial condition 2° € F, we
shall say that (H-SD) is well posed when its maximal solution satisfies Ty = +oo.
In section 4.1 we will give some sufficient conditions ensuring the well-posedness of
(H-SD).

3.3. Differential inclusion formulation of (H-SD) and some consequences.
It is easily seen that the solution z(t) of (H-SD) satisfies

L Ih((1) + V(1) € A on (T Tar),
e F on (T, Tym),

20 e F.

(3.7)
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This differential inclusion problem makes sense even when x € V[/licl (T, Tar; R™),
the inclusions being satisfied almost everywhere on (7}, Tys). Actually, the following
result establishes that (H-SD) and (3.7) describe the same trajectory.

PROPOSITION 3.4. Let € Wo (T, Tar; R™). Then, x is a solution of (3.7) iff
x is the solution of (H-SD). In particular, (3.7) admits a unique solution of class C*.

Proof. Assume that z is a solution of (3.7), and let I’ be the subset of (T}, Ths)
on which ¢ — (z(t), Vh(x(t)) is derivable. We may assume that z(t) € F and
Ln(z(t)) + Vf(z(t)) € Ag for all t € I'. Since z is absolutely continuous,
(t)+H(z(t) "'V f((z(t) € H(x(t)) 1 Ay and 2(t) € Ap for all t € I’. However, the
orthogonal complement of Ay with respect to the inner product (H(x)-,-) is exactly
H(z) ' Ag when x € F. It follows that & + P, H(x) 'V f(z) = 0 on I'. This implies
that z is the C! solution of (H-SD). O

Suppose that f is convex. On account of Proposition 3.4, (H-SD) can be inter-
preted as a continuous-time model for a well-known class of iterative minimization
algorithms. In fact, an implicit discretization of (3.7) yields the following iterative
scheme: Vh(z*t1) — Vh(zF) + pp Vf(2*+1) € Im AT, Az**! = b, where py, > 0 is a
step-size parameter and 20 € F. This is the optimality condition for

(3.8) 2" € Argmin { f(z) + 1/ Dp(z,2%) | Az = b},
where Dy, is given by
(3.9) Dy (x,y) = h(z) — h(y) — (Vh(y),z — y), z €domh, y € domoh = C.

The above algorithm is accordingly called the Bregman prozimal minimization method;
for an insight into its importance in optimization see, for instance, [5, 14, 15, 28, 34].

Next, assume that f(z) = (¢, x) for some ¢ € R". As already noticed in [6, 23, 36]
for the log-metric and in [29] for a fairly general h, in this case the (H-SD) gradient
trajectory can be viewed as a central optimal path. Indeed, integrating (3.7) over [0, ¢],
we obtain Vh(z(t)) — Vh(2®) + tc € Ag. Since z(t) € A, it follows that

(3.10) z(t) € Argmin {(c,z) + 1/tDy,(z,2°) | Az = b},

which corresponds to the so-called wviscosity method relative to g(x) = Dy, (x,2°); see
[2, 4, 29] and Corollary 4.8. We note now that, for a linear objective function, (3.8)
and (3.10) are essentially the same: the sequence generated by the former belongs to
the optimal path defined by the latter. Indeed, setting to = 0 and tx1 = ti + pui for
all k£ > 0 (o = 0) and integrating (3.7) over [t,tr+1], we obtain that z(¢541) satisfies
the optimality condition for (3.8). The following result summarizes the previous
discussion.

PROPOSITION 3.5. Assume that f is linear and that the corresponding (H-SD)
dynamical system is well posed. Then, the wviscosity optimal path T(e) relative to
g(z) = Dy(z,2°) and the sequence (x*) generated by (3.8) exist and are unique, with
in addition T(e) = x(1/¢) for all e > 0, and z* = x(Zf:ol wy) for all k > 1, where
x(t) is the solution of (H-SD).

Remark 3.2. In order to ensure asymptotic convergence for proximal-type algo-
rithms, it is usually required that the step-size parameters satisfy > ur = +o0o . By
Proposition 3.5, this is necessary for the convergence of (3.8) in the sense that when
(H-SD) is well posed, if ¥ converges to some 2* € S(P), then either z° = 2* or

Zuk = +00.

4. Global existence, asymptotic analysis, and examples.
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4.1. Well-posedness of (H-SD). In this section we establish the well-posedness
of (H-SD) (i.e., Ty = +o0) under three different conditions. In order to avoid any
confusion, we say that a set £ C R™ is bounded when it is so for the usual Euclidean
norm |y| = /{y,y). First, we propose the following condition:

(WPy) The lower level set {y € F | f(y) < f(2°)} is bounded.

Notice that (WP ) is weaker than the classical assumption requiring f to have bounded
lower level sets in the H metric sense. Next, let D} be the D-function of h that is
defined by (3.9) and consider the following condition:
(WP2) B .
(i) domh = C and Va € C, Vy € R, {y € F |Dn(a,y) <~} is bounded.
{ (ii) S(P) # 0 and f is quasi-convex (i.e., the lower level sets of f are convex).

When F is unbounded (WP;) and (WP3) involve some a priori properties on f. This
is actually not necessary for the well-posedness of (H-SD). Consider

(WP3) JK>0,L€R suchthat VeeC,|[H(z) | < Kl|z|+ L.

This property is satisfied by relevant Legendre-type functions; take, for instance,
(4.13).

THEOREM 4.1. Assume that (3.6) and (Hg) hold and additionally that either
(WPy), (WP2), or (WPs3) is satisfied. If inf . f > —oo, then the dynamical system
(H-SD) is well posed. Consequently, the mapping t — f(x(t)) is nonincreasing and
convergent as t — 400.

Proof. When no confusion may occur, we drop the dependence on the time
variable ¢. By definition,

Ty = sup{T > 03! solution z of (H-SD) on [0,T) s.t. z([0,T)) C F}.

We have that Tp;y > 0. The definition (2.8) of P, implies that, for all y € A,
(H(x)"'Vf(z)+ 3,y +2)2 =0 on [0,Ty) and therefore

(4.1) (Vf(z)+ H(z)t,y+2) =0 on [0,Ta).

Letting y = 0 in (4.1) yields

(4.2) % F@) + (H(2)i, &) = 0.

By (Ho)(ii), f(=(t)) is convergent as t — Th;. Moreover,
(4.3) (H(x(:))a(), () € L'(0, Tars R).

Suppose that Thy < +oco. To obtain a contradiction, we begin by proving that x is
bounded. If (WP;) holds, then z is bounded because f(z(t)) is nonincreasing so that
z(t) € {y € F|f(y) < f(2°)} for all t € [0,Ths). Assume now that f and h comply
with (WP3), and let a € F. For each t € [0,Ths) take y = x(t) — a in (4.1) to obtain
(Vf(x)+LVh(z),x—a+i) = 0. By (4.2), this gives (£ Vh(z),z—a)+(V f(z), z—a) =

0, which we rewrite as

(4.4) %Dh(a,x(t)) F (V). z(t) —a) =0  Vte0,Ta).



486 F. ALVAREZ, J. BOLTE, AND O. BRAHIC

Now let a € F be a minimizer of f on F. From the quasi-convexity property of f, it fol-
lows that, for all ¢ € [0,Tar), (Vf(x(t)),z(t) —a) > 0. Therefore, Dy, (a, z(t)) is nonin-
creasing, and (WP32)(ii) implies that z is bounded. Suppose that (WP3) holds and fix
telo, TM) we have |z(t)— 0|<f0 | (s |ds<f0|\\/H 1|||\/H s)|ds <
fo || H (z(s))~"|ds)™?( fo x(s))i(s), <(s))ds)/2. The latter follows from the Cau-
chy—Schwarz inequality, together with the fact that |H (z)||? is the biggest eigenvalue
of H(x). Thus |a(t) — 2°| < 1/2[fy ||H (2(s))"|ds + [y (H (2(s))#(s), &(r))ds]. Com-
bining (WP3) and (4.3), Gronwall’s lemma yields the boundedness of .

Let w(2°) be the set of limit points of z, and set K = x([0,Ths)) Uw(x®). Since
x is bounded, w(z") # 0 and K is compact. If K C C, then the compactness of K
implies that x can be extended beyond Ty, which contradicts the maximality of Ty,.
Let us prove K C C. We argue again by contradiction. Assume that x(t;) — «*, with
t; <Tar,tj — Tar as j — 400, and z* € bdC = C\C. Since h is of Legendre type, we
have |Vh(z(t;))| — 400, and we may assume that Vh(z(¢;))/|Vh(z(t;))] — v € R”
with |v| = 1.

LEMMA 4.2. If (27) C C is such that 27 — x* € bd C' and Vh(z?)/|Vh(z?))| —
v € R", h being a function of Legendre type with C' = int dom h, then v € Ng(x*).

Proof of Lemma 4.2. By convexity of h, (Vh(z?) — Vh(y),2? —y) > 0 for all
y € C. Dividing by |[Vh(z7)| and letting j — +o00, we get (v,y—x*) <0 forally € C,
which holds also for y € C. Hence, v € Nz(z*). a

Therefore, v € Ng(z*). Let 1y = I14,v be the Euclidean orthogonal projection
of v onto Ap, and take y = v in (4.1). Using (4.2), integration gives

(45) (Tha(t)o o) = (Vi / Vel n )

By (Hp) and the boundedness property of z, the right-hand side of (4.5) is bounded
under the assumption Th; < +o00. Hence, to draw a contradiction from (4.5) it suffices
to prove (Vh(z(t;)), vo) — +oo. Since (Vh(z(t;))/|Vh(z(t;))|,v0) — |vo|?, the proof
of the result is complete if we check that vy # 0. This is a direct consequence of the
following claim.

LEMMA 4.3. Let C be a nonempty open convex subset of R™, and A an affine
subspace of R™ such that C N A # 0. If z* € (bd C) N A, then Ng(z*) N Az = {0}
with Ag = A — A.

Proof of Lemma 4.3. Let us argue by contradiction and suppose that we can pick
some v # 0 in A3 N Nz(z*). For yo € C'N A we have (v,2* — yo) = 0. For r > 0,
z € R™, let B(z,r) denote the ball with center z and radius r. There exists € > 0 such
that B(yo,e) C C. Take w in B(0,¢€) such that (v, w) < 0; then yo + w € C, and yet
(v,2* = (yo +w)) = (v,w) < 0. This contradicts the fact that v is in Ng(z*). 0

This completes the proof of the theorem. ]

2. Value convergence for a convex objective function. As a first result
concerning the asymptotic behavior of (H-SD), we have the following.
PROPOSITION 4.4. If (H-SD) is well- posed and f is convex, then for all a €
F, forallt >0, f(z(t)) < f(a) + +Dn(a, ), where Dy, is defined by (3.9); hence
lim; oo f(2(t)) = infx f.
Proof. We begin by noticing that f(z(t)) converges as t — —+o0o (see Theo-
rem 4. 1) Fix a € F. By (4.4), we have that the solution z(¢) of (H-SD) sat-
isfies 4 Dy, (a,z(t)) + (V f(x(t)), x(t) —a) =0, Vt > 0. The convex inequality f(z) +

(Vf(x ), a) < f(a) yields Dp(a, x(t —l—fo —f(a)]ds < Dp(a,x°). Using that
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Dy, > 0 and since f(z(t)) is non-increasing, we get the estimate. Letting ¢t — +o0, it
follows that lim; .y f(z(t)) < f(a). Since a € F was arbitrary chosen, the proof is
complete. 0

4.3. Bregman metrics and trajectory convergence. In this section we es-
tablish the convergence of z(t) under some additional properties on the D-function of
h. Let us begin with a definition.

DEFINITION 4.5. A function h € To(R™) is called a Bregman function with zone
C when the following conditions are satisfied:

(i) domh = C, h is continuous and strictly convex on C and h|, € C*(C;R).

(ii) for all a € C, for all v € R, {y € C|Dy(a,y) < 7} is bounded, where Dy, is
defined by (3.9).

(iii) for all y € C, for all y — y with y/ € C, Dy(y,3’) — 0.

Observe that this notion slightly weakens the usual definition of Bregman function
that was proposed by Censor and Lent in [13]; see also [9]. Actually, a Bregman
function in the sense of Definition 4.5 belongs to the class of B-functions introduced by
Kiwiel (see [33, Definition 2.4]). Recall the following important asymptotic separation
property.

LEMMA 4.6 (see [33, Lemma 2.16]). If h is a Bregman function with zone C,
then for all y € C, for all (y?) C C such that Dy(y,y’) — 0, we have y/ — y.

THEOREM 4.7. Suppose that (Hy) holds, with h being a Bregman function with
zone C. If [ is quasi-conver satisfying (3.6) and S(P) # 0, then (H-SD) is well-
posed, and its solution xz(t) converges as t — +oo to some x* € F with —V f(x*) €
Ng(z*) + Ag. If in addition f is convex then z(t) converges to a solution of (P).

Proof. Notice first that (WP3) is satisfied. By Theorem 4.1, (H-SD) is well-
posed, z(t) is bounded, and for each a € S(P), Dy(a,z(t)) is nonincreasing and hence
convergent. Set fo, = lim;_ 1o f(z(t)) and define L = {y € F | f(y) < fo}. The set
L is nonempty and closed. Since f is supposed to be quasi-convex, L is convex, and
similar arguments as in the proof of Theorem 4.1 under (WP53) show that Dy (a,z(t))
is convergent for all a € L. Let 2* € L denote a cluster point of x(t), and take
t; — oo such that z(¢;) — «*. Then, by Definition 4.5(iii), lim; Dy (z*, 2(t)) =
hmj Dy (z*,z(t;)) = 0. Therefore x( ) — «*, thanks to Lemma 4.6. Let us prove that
x* satisfies the optimality condition —V f(z*) € Nz(z*) + Ag. Fix z € Ay, and for
each t > 0 take y = —#(t) + 2 in (4.1) to obtain (:£Vh(z(t)) + Vf(z(t)), z) = 0. This
gives

(16) 2 | ). s = 0.2
where s(t) = [Vh(z®) — Vh(z ())]/t If x* E F, then Vh(z(t)) — Vh(z*), and
hence (Vf(z*),2) = limyioo + [1(V ,2)ds = limy_4oo(s(t),2z) = 0. Thus

M4, Vf(z*) = 0. However, N= (x*) .AO When x* € F, which proves our clalm
in this case. Assume now that x* ¢ F, which implies that z* € 9C N A. By (4.6), w
have that (s(t), z) converges to (Vf(z*),z) as t — +oo for all z € Ay, and therefore
I, s(t) — M4, Vf(z*) as t — 4o00. On the other hand, by Lemma 4.2, we have
that there exists v € —Ng(z*) with |v| = 1 such that Vh(x(t;))/|Vh(x(t;))| — v for
some t; — +00. Since Nz(x*) is positively homogeneous, we deduce that there exists
a 7 € —Ng(z*) such that 114V f(2*) = II4,7. Thus, —Vf(z*) € —Il4,7 + A3 C
N&(z*) + Ay, which proves the theorem. d

Following [29], we remark that when f is linear, the limit point can be character-
ized as a sort of “Dp-projection” of the initial condition onto the optimal set S(P).
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In fact, we have the following result.

COROLLARY 4.8. Under the assumptions of Theorem 4.7, if f is linear, then the

solution x(t) of (H-SD) converges as t — 400 to the unique optimal solution =* of
. 0
(4.7) xén;(l’llj) Dp(z,z”).

Proof. Let z* € S(P) be such that x(t) — z* as t — +oo. Let T € S(P). Since
x(t) € F, the optimality of Z yields f(x(t)) > f(Z), and it follows from (3.10) that
Dy (z(t),2°) < Dp(z,2°). Letting t — +oo in the last inequality, we deduce that
x* solves (4.7). Noticing that Dy, (-, 2°) is strictly convex due to Definition 4.5(i), we
conclude the result. O

We finish this section with an abstract result concerning the rate of convergence
under uniqueness of the optimal solution. We will apply this result in the next section.
Suppose that f is convex and satisfies (2.3) and (3.6), with in addition S(P) = {a}.
Given a Bregman function h complying with (Hp), consider the following growth
condition:

(GOC) f(x) = fla) > aDy(a,z)? Vz e U,NC,

where U, is a neighborhood of a and with @ > 0, 3 > 1. The next abstract result
gives an estimation of the convergence rate with respect to the D-function of h.

PROPOSITION 4.9. Assume that f and h satisfy the above conditions, and let

x : [0, +00) — F be the solution of (H-SD). Then we have the following estimations:
o if 3 =1, then there exists K > 0 such that Dy (a,z(t)) < Ke~* for all t > 0;
o if B> 1, then there exists K’ > 0 such that Dy (a,z(t)) < K’/tﬁ for all t >

0.

Proof. The assumptions of Theorem 4.7 are satisfied; this yields the well-posedness
of (H-SD) and the convergence of z(t) to a as t — +oo. Additionally, from (4.4) it
follows that for all ¢ > 0, 4 Dy, (a, z(t)) + (V f(z(t)), z(t) —a) = 0. By the convexity of
f, we have 4 Dy (a, (1)) + f(2(t)) — f(a) < 0. Since z(t) — a, there exists ¢y such that
for all t > tg, x(t) € U, N F. Therefore by combining (GC) and the last inequality, it
follows that

(4.8) %Dh(a,x(t)) + aDy(a,z(t))? <0 vt > to.

In order to integrate this differential inequality, let us first observe that we have the
following equivalence: Dj,(a,x(t)) > 0 for all t > 0 iff 2° # a. Indeed, if a € F \ F,
then the equivalence follows from z(t) € F together with Lemma 4.6; if a € F, then
the optimality condition that is satisfied by a is Il 4,V f(a) = 0, and the equivalence is
a consequence of the uniqueness of the solution z(t) of (H-SD). Hence, we can assume
that 20 # a and divide (4.8) by Dy (a,x(t))” for all t > t5. A simple integration
procedure then yields the result. 0

4.4. Examples: Interior point flows in convex programming. This sec-
tion gives a systematic method for constructing explicit Legendre metrics on a quite
general class of convex sets. By so doing, we will also show that many systems stud-
ied earlier by various authors [6, 31, 20, 23, 36] appear as particular cases of (H-SD)
systems.

Let p > 1 be an integer, and set I = {1,...,p}. Let us assume that to each i € T
there corresponds a C? concave function g; : R — R such that

(4.9) 320 € R", s.t. Vi€, gi(2°) > 0.
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Suppose that the open convex set C' is given by
(4.10) C={zeR"|gi(x)>0,i€Tl}.

By (4.9) we have that C' # () and C' = {x € R" | g;(z) > 0,4 € I}. Let us introduce a
class of convex functions of Legendre type 6 € I'g(R) satisfying

(i) (0,00) C dom @ C [0, 00);
(H) (ii) # € C3(0,00) and lim,_,o+ ' (s) = —o0;
! (iii) for all s > 0, 6" (s) > 0;
(iv) either € is nonincreasing or for all ¢ € I, g, is an affine function.

PROPOSITION 4.10. Under (4.9) and (Hy), the function h € To(R™) defined by

(4.11) hz) =) 60(gi(x))

icl

is essentially smooth, with int domh = C and h € C3(C), where C is given by (4.10).
If we assume in addition the nondegeneracy condition

(4.12) VezeC,  span{Vg(z)|ie I} =R",

then H = V?2h is positive definite on C, and consequently h satisfies (Hp).

Proof. Define h; € T'o(R™) by h;(xz) = 0(g;(x)). We have that for all i € I,
C C dom h;. Hence int dom h = (), int dom h; 2 C' # (), and by [39, Theorem 23.8]
we conclude that Oh(x) = 3, ; Ohi(x) for all x € R™. But 0h;(z) = ' (g:(x))Vgi(x)
if g;(z) > 0, and 9h;(z) = 0 if g;(x) < 0; see [26, Theorem IX.3.6.1]. Therefore
Oh(z) =3, 0 (9i(x))Vgi(z) if x € C, and Oh(z) = () otherwise. Since dh is a single-
valued mapping, it follows from [39, Theorem 26.1] that h is essentially smooth and
intdomh = domdh = C. Clearly, h is of class C3 on C. Assume now that (4.12) holds.
For z € C, we have V2h(z) = 3,.,0"(9i(2))Vgi()Vgi ()T + 3,0, 0'(9i(2) V2gi ().
By (Hy)(iv), it follows that for any v € R™, Y., 0'(gi(x))(V?gi(x)v,v) > 0. Let
v € R™ be such that (V2h(z)v,v) = 0, which yields Y., 0" (g:(x))(v, Vg;(2))* = 0.
According to (Hy)(iii), the latter implies that v € span{Vg;(x)|i € I} = {0}. Hence
V2h(z) € S", and the proof is complete. 0

If h is defined by (4.11) with 6 € T'o(R) satisfying (Hy), we say that 6 is the
Legendre kernel of h. Such kernels can be divided into two classes. The first class
corresponds to those kernels 6 for which dom # = (0,00) so that #(0) = 400, and
these kernels are associated with interior barrier methods in optimization such as, for
instance, the log-barrier 6;(s) = —In(s), s > 0, and the inverse barrier 05(s) = 1/s,
s > 0. The kernels 6 belonging to the second class satisfy #(0) < +oo and are
connected with the notion of a Bregman function in proximal algorithm theory. Here
are some examples: the Boltzmann—Shannon entropy 6s(s) = sln(s) — s, s > 0 (with
0In0 = 0); O4(s) = —%37 with vy € (0,1), s > 0 (Kiwiel [33]); 05(s) = (ys—s7)/(1—7)
with v € (0,1), s > 0 (Teboulle [42]); the “zloga” entropy 0s(s) = slns, s > 0. In
relation with Theorem 4.7 given in the previous section, note that the Legendre kernels
0;, i =3,...,6, are all Bregman functions with zone R;. Moreover, it is easily seen
that each corresponding Legendre function h defined by (4.11) is indeed a Bregman
function with zone C.

In order to illustrate the type of dynamical systems given by (H-SD), consider
the case of positivity constraints where p = n and g;(x) = x;, i € I. Thus C = R} |
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and C = R}. Let us assume that there exists 2° € R7 such that Az® = b. Recall
that the corresponding minimization problem is (P), min{f(z) | z > 0, Az = b}, and
take first the kernel 03 from above. The associated Legendre function (4.11) is given
by

(4.13) h(z) = Zmi Inz; —z;, xR},
i=1
and the differential equation in (H-SD) is given by
(4.14) 4+ [I - XAT(AXAT) T AIXV f(z) =0,
where X = diag(z1,...,2,). If f(x) = (¢, z), for some ¢ € R™ and in absence of

linear equality constraints, then (4.14) is & + X¢ = 0. The change of coordinates
y=Vh(z) = (Inzy,...,Inz,) gives § + ¢ = 0. Hence, z(t) = (e, ... xle=cnt)
t € R, where z° = (29,...,2%) € R%,. If ¢ € R?, then infyern (c,2) = 0 and
x(t) converges to a minimizer of f = (c,-) on R%; if ¢;; < 0 for some ig, then
infyern (¢, x) = —oo and w;,(t) — 400 as t — +o0. Next, take A = (1,...,1) € RIxn
and b = 1 so that the feasible set of (P) is given by F = A,_; = {z € R" |
x>0, Y x; = 1}, that is, the (n — 1)-dimensional simplex. In this case, (4.14)
corresponds to @ + [X — 22T |V f(x) = 0, or componentwise

(4.15) &+ x af—z of =0, i=1,...,n.

o 2
J

€T; Z;

i =" oa,

For suitable choices of f, this is a Lotka—Volterra-type equation that naturally arises
in population dynamics theory and, in that context, the structure (-,-)? with h as in
(4.13) is usually referred to as the Shahshahani metric; see [1, 27] and the references
therein.

Karmarkar studied (4.15) in [31] for a quadratic objective function as a continuous
model of the interior point algorithm introduced by him in [30]. Equation (4.14) is
studied by Faybusovich in [20, 21, 22] when (P) is a linear program, establishing con-
nections with completely integrable Hamiltonian systems and exponential convergence
rate, and by Herzel, Recchini, and Zirilli in [25], who prove quadratic convergence for
an explicit discretization.

Take now the log barrier kernel §; and h(z) = — Y"1 | Inx;. Since V?h(z) = X 2
with X defined as above, the associated differential equation is

(4.16) i+ [I— X2AT(AX?ATY T AIX2V f(x) = 0.

This equation was considered by Bayer and Lagarias in [6] for a linear program. In the
particular case f(z) = (¢,z) and without linear equality constraints, (4.16) amounts
tod+X%c=0,0ory+c=0fory=Vh(zr) = —X"le, withe = (1,...,1) € R",
which gives z(t) = (1/(1/29 4 c1t),...,1/(1/a + cnt)), Trn < t < Ty, with T, =
max{—1/2%¢; | ¢; > 0} and Ty = min{—1/2%; | ¢; < 0} (see [6, p. 515]). A similar
system was considered in [23, 36] as a continuous log-barrier method for nonlinear
inequality constraints and with Ay = R".

New systems may be derived by choosing other kernels. For instance, taking
h(z)=—1/y> " ] withy € (0,1), A=(1,...,1) € R'*" and b = 1, we obtain

_ 2—
(4.17) &+ £ of _ - L@if
. 3 n 2—
L=y \ Oz i Yoo " 0%

=0, i=1,...,n.
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4.5. Convergence results for linear programming. Let us consider the spe-
cific case of a linear program

(LP) m]iRn{<c, x) | Bx > d, Ax = b},

reR™
where A and b are as in section 2.1, ¢ € R™, B is a p X n full rank real matrix with
p > n, and d € RP. We assume that the optimal set satisfies

(4.18) S(LP) is nonempty and bounded

and that there exists a Slater point z° € R", Bz? > d, and Az® = b. Take the
Legendre function

(4.19) h(z) = Z 0(gi(x)), gi(x) = (Bi,x) — di,

where B; € R" is the ith row of B and the Legendre kernel 6 satisfies (H;). By (4.18),
(WPy) holds, and therefore (H-SD) is well posed due to Theorem 4.1. Moreover,
x(t) is bounded and all its cluster points belong to S(LP) by Proposition 4.4. The
variational property (3.10) ensures the convergence of z(t) and gives a variational
characterization of the limit as well. Indeed, we have the following result.
PROPOSITION 4.11. Let h be given by (4.19) with 0 satisfying (Hy). Under (4.18),
(H-SD) is well posed and z(t) converges ast — 400 to the unique solution x* of

: 0
(4.20) Juin >_ Dolgi(@), g: ("),
i¢ Iy
where In ={i € I | g;(x) =0 for all x € S(LP)}.

Proof. Assume that S(LP) is not a singleton; otherwise there is nothing to prove.
The relative interior ri S(LP) is nonempty, and moreover ri S(LP) = {z € R" |
gi(x) = 0 for i € Iy, gi(x) > 0 for i & Iy, Az = b}. By compactness of S(LP) and
strict convexity of 6 o g;, there exists a unique solution z* of (4.20). Indeed, it is easy
to see that z* € ri (LP). Let £ € S(LP) and t; — 400 be such that z(¢;) — Z.
It suffices to prove that £ = z*. When 6(0) < 400, the latter follows by the same
arguments as in Corollary 4.8. When 6(0) = +o0, the proof of [4, Theorem 3.1] can
be adapted to our setting (see also [29, Theorem 2]). Set x*(t) = x(t) — Z + «*. Since
Az*(t) = b and Dp(z,2°) = Y1" | Do(gi(x), g;(z°)), equation (3.10) gives

m

1 m . 1 .
(4.21) (e, x(t) +5 > Dolgi(x(t)), g:(2%)) < (e, (t)>+;ZDa(gi(3«“ (1)), 9i(z))-
i=1 i=1

However, (c,z(t)) = {(c,z*(t)) and for all i € Iy, g;(x*(t)) = g;(z(¢)) > 0. Since
xz* € ri S(LP), for all i ¢ Iy and j large enough, g;(z*(¢;)) > 0. Thus, the right-
hand side of (4.21) is finite at ¢;, and it follows that }7,.; Dg(gi(2), gi(2°)) <
Di¢to Do(gi(z*), g:(z%)). Hence, z = z*. O

Rate of convergence. We turn now to the case where there is no equality
constraint so that the linear program is

(4.22) m]iRn{<c, z) | Bx > d}.
zeR™
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We assume that (4.22) admits a unique solution a, and we study the rate of conver-
gence when 6 is a Bregman function with zone R. To apply Proposition 4.9, we need
the following result.

LEMMA 4.12. Set C = {z € R"|Bz > d}. If (4.22) admits a unique solution
a € R™, then there exists ko > 0, s.t. for ally € C, {c,y — a) > koN(y — a), where
N(z) =3,c; (Bi,x)| is a norm on R™.

Proof. Set In = {i € I | (B;,a) = d;}. The optimality conditions for a imply
the existence of a multiplier vector A € RE such that X\;[d; — (B;,a)] = 0, for all
i€l and c =%, \Bi. Let y € C. We deduce that (c,y —a) = N(y — a), where
N(x) = > e, Ail(Bi, z)|. By uniqueness of the optimal solution, it is easy to see that
span{B; | i € Iy} = R"; hence N is a norm on R". Since N(z) = >, [(Bi, )| is
also a norm on R™ (recall that B is a full rank matrix), we deduce that there exists
ko such that N(x) > koN(z). O

The following lemma is a sharper version of Proposition 4.9 in the linear context.

LEMMA 4.13. Under the assumptions of Proposition 4.11, assume in addition
that 0 is a Bregman function with zone R_ and that there exist « > 0, 8 > 1, and
€ > 0 such that

(4.23) Vs € (0,¢), aDy(0,5)" < s.

Then there exist positive constants K, L, M such that for all t > 0 the trajectory of
(H-SD) satisfies Dy (a,z(t)) < Ke *t if 3 =1, and Dy(a,z(t)) < M/t7=1 if 3 > 1.
Proof. By Lemma 4.12, there exists kg such that for all ¢ > 0,

(4.24) (c,x(t) —a) = kol(Bi,x(t)) — (Bi,a)l.

icl
Now, if we prove that there exists A > 0 such that
(4.25) [(Bi, (1)) — (Bi,a)| = ADg((Bs, a) — di, (B, x(t)) — d;)

for all ¢ € I and for ¢ large enough, then from (4.24) it follows that f(-) = (c, -) satisfies
the assumptions of Proposition 4.9, and the conclusion follows easily. Since z(t) — a,
to prove (4.25) it suffices to show that for all 7o > 0 there exist 1, u > 0 such that for
all s, [s—rg| < n, uDg(ro,5)? < |ro—s|. The case where ry = 0 is a direct consequence
of (4.23). Let ro > 0. An easy computation yields %Da(’l‘o, 5)|s=ro, = 0" (10), and by
Taylor’s expansion formula,

0//(7,0)
2

with 6”(rg) > 0 due to (Hyp)(ili). Let n be such that for all s, |s — 9| < 71, s > 0,
Dg(r0,5) < 0"(r0)(s —10)2, and Dg(rg,s) < 1; since 3 > 1, Dy(ro, s)? < Dy(ro,s) <
0" (ro)|s — rol. |

To obtain Euclidean estimates, the functions s — Dy(ro, s), 7o € R4, have to be
locally compared to s +— |rg — s|. By (4.26) and the fact that 6" > 0, for each 9 > 0
there exist K,n > 0 such that |rg — s| < K+/Dy(r9,s), for all s, |ro —s| < n. This
shows that, in practice, the Euclidean estimate depends only on a property of the
type (4.23). Examples:

e The Boltzmann—-Shannon entropies 03(s) = sln(s) — s and g(s) = sln s satisfy
Dy, (0,8) = 5, 5 > 0; hence for some K, L > 0, |z(t) —a| < Ke~ L, for all t > 0.

o With either 04(s) = —s7/v or 05(s) = (ys — s7)/(1 —7), v € (0,1), we have
Dg, (0,5) = (1+1/7)s7, s > 0; hence |z(t) — a| < K/t for all t > 0.

(4.26) Dy(ro,s) = (s —10)? 4+ o(s —1rg)?
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4.6. Dual convergence. In this section we focus on the case C' =R ,, so that
the minimization problem is

(P) min{f(z) | z >0, Az = b}.
We assume
(4.27) f is convex and S(P) # 0,

together with the Slater condition
(4.28) 3z° e R", 2° >0, Az° = 0.

In convex optimization theory, it is usual to associate with (P) the dual problem given
by

(D) min{p(A) [ A > 0},

where p(A) = sup{{\,z) — f(z) | Az = b}. For many applications, dual solutions
are as important as primal ones. In the particular case of a linear program where
f(x) = (c,z) for some ¢ € R™, writing A = ¢ + ATy with y € R™, the linear dual
problem may equivalently be expressed as min{(b,y) | ATy + ¢ > 0}. Thus, X is
interpreted as a vector of slack variables for the dual inequality constraints. In the
general case, S(D) is nonempty and bounded under (4.27) and (4.28), and moreover
SM)={AeR"|A>0, A € Vf(z*)+Im AT, (\,z*) = 0}, where z* is any solution
of (P); see, for instance, [26, Theorems VII.2.3.2 and VIL.4.5.1].
Let us introduce a Legendre kernel 6 satisfying (H;) and define

n

(4.29) h(z) = 0(x;).

=1

Suppose that (H-SD) is well posed. Integrating the differential inclusion (3.7), we
obtain

(4.30) A(t) € ¢(t) + ImAT,

where c(t) = 1 fot Vf(x(r))dr and \(t) is the dual trajectory defined by

(4.31) () = %[Vh(xo)  Vhz®)].

Assume that z(t) is bounded. From (4.27), it follows that Vf is constant on S(P),
and then it is easy to see that Vf(x(t)) — Vf(z*) as t — +oo for any z* €
S(P). Consequently, c(t) — Vf(z*). By (4.31) together with [39, Theorem 26.5],
we have z(t) = Vh*(Vh(2®) — tA(t)), where the Fenchel conjugate h* is given by
h*(A) = >, 0*(\;). Take any solution Z of AT = b. Since Az(t) = b, we have
T — Vh*(Vh(z?) — tA(t)) € Ker A. On account of (4.30), A(t) is the unique optimal
solution of

(4.32)  A(t) € Argmin {@, A) + % znje*(e’(a:?) —t\) | A€ ct) + ImAT} .

By (H;)(iii), 0" is increasing in Ryy. Set n = lims 400 6'(5)

€ (—o0,+0o0]. Since
0* is a Legendre-type function, int dom #* = dom 06* = Im 90 =

(—o0,m). From
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(0*) = (¢")7, it follows that lim,—,_o(0*) (v) = 0 and lim,_,,- (6*)'(u) = +oo.
Consequently, (4.32) can be interpreted as a penalty approzimation scheme of the
dual problem (D), where the dual positivity constraints are penalized by a separable
strictly convex function. Similar schemes have been treated in [4, 16, 17, 28]. Consider
the additional condition

(4.33) Either 6(0) < oo, or S(P) is bounded, or f is linear.

As a direct consequence of [28, Propositions 10 and 11], we obtain that under (4.27),
(4.28), (4.33) and (Hy), {A(t) | t — +oo} is bounded and its cluster points belong
to S(D). The convergence of A(t) is more difficult to establish. In fact, under some
additional conditions on 6* (see [16, Conditions (Hg)—(H;)] or [28, Conditions (AT)
and (A8)]) it is possible to show that A(t) converges to a particular element of the dual
optimal set (the “f*-center” in the sense of [16, Definition 5.1] or the Dy, (-, 2°)-center
as defined in [28, p. 616]), which is characterized as the unique solution of a nested
hierarchy of optimization problems on the dual optimal set. We will not develop this
point here. Let us only mention that for all the examples of section 4.4, 87 satisfies
such additional conditions and consequently we have the following result.

PROPOSITION 4.14. Under (4.27), (4.28), and (4.33), for each of the explicit
Legendre kernels given in section 4.4, A(t) given by (4.31) converges to a particular
dual solution.

5. Legendre transform coordinates.

5.1. Legendre functions on affine subspaces. The first objective of this
section is to slightly generalize the notion of a Legendre-type function to the case
of functions whose domains are contained in an affine subspace of R™. We begin by
noticing that the Legendre-type property does not depend on canonical coordinates.

LEMMA 5.1. Let g € To(R"), r > 1, and T : R™ — R" an affine invertible
mapping. Then g is of a Legendre type iff g o T is of Legendre type.

Proof. The proof is elementary and is left to the reader. 0

From now on, A is the affine subspace defined by (2.1), whose dimension is r =
n—m.

DEFINITION 5.2. A function g € T'g(A) is said to be of Legendre type if there
exists an affine invertible mapping T : A — R such that go T is a Legendre-type
function in To(R").

By Lemma 5.1, the previous definition is consistent.

PROPOSITION 5.3. Let h € To(R™) be a function of Legendre type with C =
int dom h. If F = C'NA# 0, then the restriction h, of h to A is of Legendre type,
and moreover int gqdom h|, = F (where int 4B stands for the interior of B in A as a
topological subspace of R™ ).

Proof. From the inclusions 7 C dom k|, C F =CnN A and since 11 F = F, we
conclude that int qdom b, = F # (). Let T : R” — A be an invertible transformation
with Tz = Lz + 20 for all z € R”, where 2° € A and L : R” — A is a nonsingular
linear mapping. Define & = h|, o T. Clearly, & € I'o(R"). Let us prove that & is
essentially smooth. We have dom k = T~ 'dom h|, and therefore int dom k = T-'F.
Since h is differentiable on C, we conclude that k is differentiable on int dom k. Now,
let (27) € int dom k be a sequence that converges to a boundary point z € bd dom k.
Then, T2’ € int4dom hy . and Tz — Tz € bdydom hi, C bd dom h. Since h
is essentially smooth, |Vh(T27)| — +o0o. Thus, to prove that |Vk(27)] — 400, it
suffices to show that there exists A > 0 such that |Vk(z7)] > A|[Vh(T27)| for all j
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large enough. Note that Vk(z?) = V([h|, o T)(27) = L*Vh (T27) = L*I1 4, Vh(T%),
where L* : Ag — R” is defined by (z, L*z) = (Lz,z) for all (z,2) € R" x Ay. Of
course, L* is linear with Ker L* = {0}. Therefore % = L*HAO%. Let
w denote the nonempty and compact set of cluster points of the normalized sequence
Vh(Tz7)/|IVh(T27)|, j € N. By Lemma 4.2, we have that w C {v € Ng(Tz)||v| = 1},
and consequently Lemma 4.3 yields II4,w N {0} = 0. By the compactness of w, we
obtain liminf; oo [ILa, VA(T27)|/|VR(T27)| > 0, which proves our claim. Finally,
the strict convexity of & on dom 9k = int dom k = T~ F is a direct consequence of
the strict convexity of h in F. 0

5.2. Legendre transform coordinates. The prominent fact of Legendre func-
tions theory is that h € T'o(R"™) is of Legendre type iff its Fenchel conjugate h* is of
Legendre type [39, Theorem 26.5], and Vh : int dom h — int dom h* is onto with
(Vh)~! = Vh*. In the case of Legendre functions on affine subspaces, we have the
following generalization.

PROPOSITION 5.4. If g € Tg(A) is of Legendre type in the sense of Definition
5.2, then Vg(int 4dom g) is a nonempty, open, and convex subset of Ag. In addition,
Vg is a one-to-one continuous mapping from int g4dom g onto its image.

Proof. Let Tx = Lx + zg, with L : Ay — R" being a linear invertible map-
ping and z9 € RP. Set k = go T~! € I'x(R"), which is of Legendre type. We have
dom k = T'dom g. Define L* : R" — Ay by (L*z,x) = (z, Lz) for all (z,z) € R” x Ay.
We have that Vg(x) = V]k o T)(z) = L*VEk(Tx) for all 2 € intydom g. There-
fore Vg(int g4dom g) = L*VE(Tint gdom g) = L*Vk(intgrdom k) = L*intgrdom k*.
Since intgrdom k* is a nonempty, open, and convex subset of R” and L* is an in-
vertible linear mapping, then L*intg-dom k* is an open and nonempty subset of
Ag. Moreover, by [39, Theorem 6.6], we have L*intgrdom k* = ri L*dom k*. Con-
sequently, Vg(int4dom g) = ri L*dom k* = int4,L*dom k* # . Finally, since
VEk : intgrdom k — intg-dom k* is one-to-one and continuous, the same result holds
for Vg =L*oVkoT on int ydom g. 0

In what follows, we assume that h satisfies the basic condition (Hy) and F =
CNA#0D. The Legendre transform coordinates mapping on F associated with h is
defined by

(5.1) i B B S

v = ¢p(r) =V(h,) =14, Vh(z).
This definition retrieves the Legendre transform coordinates introduced by Bayer and
Lagarias in [6] for the particular case of the log-barrier on a polyhedral set.

THEOREM 5.5. Under the above definitions and assumptions, F* is a convez,
(relatively) open, and nonempty subset of Ag; ¢, is a Ct diffeomorphism from F to F*;
and for allx € F, dop(x) = U, H(x) and dép ()~ = \/H(x)—lﬂmAO\/H(a:)—l,
where H(x) = V2h(z).

Proof. By Propositions 5.3 and 5.4, F* is a convex, open, and nonempty subset
of Ay and ¢y, is a continuous bijection. By (Hp)(ii), ¢ is of class C! on F, and we
have, for all z € F, dép(z) = U4, V?h(z) = U, H(z). Let v € A be such that
don(z)v = 0. Tt follows that H(z)v € Ag and, in particular, (H(x)v,v) = 0. Hence,
v = 0, thanks to (Hg)(iii). The implicit function theorem implies then that ¢, is a C*
diffeomorphism. Finally, the formula concerning d¢y,(x) ! is a direct consequence of
the next lemma, which is analogous to [7, p. 545], and whose proof is omitted.

LEMMA 5.6. Define the linear operators L; : R™ — R™ by Ly = Il 4, H(z) and
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Ly =+/H(z)" I H(x)AO\/H(x)—l. Then LoLiv = v for all v € Ayg. O

Similarly to the classical Legendre-type functions theory, the inverse of ¢, can be
expressed in terms of Fenchel conjugates. For that purpose, we notice that inverting
¢p, is a minimization problem. Indeed, given y € Ay, the problem of finding x € F
such that y = II4,Vh(z) is equivalent to x = Argmin{h(z) — (y,2)|z € A}, or
equivalently

(5.2) x = Argmin{(h +64)(z) — (y,2)},

where 6 4 is the indicator of A, i.e., 64(z) = 01if z € A and 400 otherwise. Let us recall
the definition of epigraphical sum of two functions g1, g2 € I'o(R™), which is given by
(¢1092) (y) = inf{g1(u) + g2(v)|u + v = y} for all y € R™. We have g10gs € T'o(R"™),
and if g1 and g5 satisfy ri dom gy Nridom go # 0, then (g1 + g2)* = g70gs (see [39]).

PROPOSITION 5.7. We have that ¢, ' : F* — F is given by ¢;, *(y) = V[h*D((SAOL—i—
(,2)](y) for any T € A, and moreover F* =11 4,int dom h*.

Proof. The optimality condition for (5.2) yields y € d(h + 64)(z). Thus, z €
d(h + 864)*(y). From F # (), we conclude that the function g € T'o(R") defined by
g = (h+64)" satisfies g = h*006% = h*D(6 42 + (-, 7)) with T € A. Moreover, by
[39, Corollary 26.3.2], g is essentially smooth and we deduce that indeed = = Vg(y).
Since g is essentially smooth, domdg = intdom g. By the definition of an epigraphical
sum, g(y) = inf{h*(u) + 642 (v) + (v, Z)|u + v = y}, and consequently we have that
y € domg iff y € domh* + Ag. Hence, int dom g = int dom h* + Az (see, for instance,
[39, Corollary 6.6.2]). Recalling that F* is a relatively open subset of Ay, we deduce
that F* = Il 4,dom O0g = II 4,int dom A*. O

5.3. Linear problems in Legendre transform coordinates.

5.3.1. Polyhedral sets in Legendre transform coordinates. One of the
first applications of Legendre transform coordinates is to transform linear constraints
into positive cones.

PROPOSITION 5.8. Assume that C = {x € R"|Bx > d}, where B is a p x n full
rank matriz, with p > n. Suppose also that h is of the form (4.19) with 6 satisfying
(Hy), and let n = lim,_ 4o 0'(s) € (—o00, +00]. If n < 400, then dom h* = {y € R™ |
y+ BTA =0, \; > —n}, and dom h* = R™ when n = +o0.

Proof. By [40, Theorem 11.5], dom h* = {y € R" | (y,d) < h*(d)Vd € R"},
where h° is the recession function, also known as horizon function, of h. The recession
function is defined by h*°(d) = limy_, o 1 [R(Z+td)—h(Z)], d € R", where Z € domh;
this limit does not depend of Z and eventually h*°(d) = 400 (see also [39]). In this
case, it is easy to verify that h>°(d) = >°F_, 6°°((B;, d)). Clearly, §>°(—1) = 400 and
0°°(1) = lims—, 100 0'(s) = 1. In particular, if n = 400, then domh* = R™. If n < 400,
then y € dom h* iff for all d € R™ such that Bd > 0, (y,d) < h>(d) = >_Y_, n(B;,d),
that is (y —nBTe,d) <0 with e = (1,...,1). Thus, by the Farkas lemma, y € dom h*
iff there exists u >0, y — nBTe + BTy = 0. 0

As a direct consequence of Propositions 5.7 and 5.8, we have the following.

COROLLARY 5.9. Under the assumptions of Proposition 5.8, if n = 0, then F* is
a positive convex cone, and if n = +oo, then F* = Aj.

5.3.2. (H-SD)-trajectories as geodesic curves. In what follows, we assume
that f(z) = (c,x) for some ¢ € R™. As another striking application of Legendre
transform coordinates, we prove that the trajectories of (H-SD) may be seen as straight
lines in F* = ¢, (F) and also as geodesic curves in F with respect to some appropriate
metric, extending to the general case a result of [7] for the log-metric.
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PROPOSITION 5.10. For every y € F* we have [(¢n)«V, fi-] (y) = la,c, where
(6r)«Vy fi- is the push forward vector field of V, f|, by ¢n.

Proof. Lety € F*. By definition, [(¢n).V,, fi](y) = don(é, " ()Y, fi- (0 (1))-
Setting = = ¢;, " (y), by Theorem 5.5 we get [(¢).V,, fi,] () = don(z)V, fi. () =
U H(z)H(z) I — AT(AH () 'AT) " AH (2) e = U g c — U4, AT 2, where z =
[(AH(z)"*AT)=tAH (z)"Yec. Since Im AT = A, the conclusion follows. 0

It follows directly from Proposition 5.10 that ®,(z(t)) = ®,(2°) + tI 4,c with
x(t) being a solution to (H-SD). Endow F* with the Euclidean metric, which allows
us to define on F the metric

(5.3) ()™ = (o) (),

that is, (u,v)f2 = (dop(z)u, dpp(x)v) = (ILa.H(x)u, 4, H(x)v) for all (z,u,v) €
F x R™ x R™. For each initial condition z° € F, and for every ¢ € R", we set

(5.4) v = dop(2°) I 4c = H(20) ML e 4, VH (@0) g e,

THEOREM 5.11. Let (2°,¢) € FxR", set f(z) = (¢, ), for all x € C, and define
v as in (5.4). If F is endowed with the metric (-, ~)H2 given by (5.3), then the solution
x(t) of (H-SD) is the unique geodesic passing through x° with velocity v.

Proof. Since F, (-,-)H2 is isometric to the Euclidean manifold F*, (- -), the
geodesic joining two points of F exists and is unique. Let us denote by v: J C R +— F
the geodesic passing through x° with velocity v. By definition of (-, -)Hz, on(7y) is a
geodesic in F*, whence ¢, (7(t)) = ¢n(2°) + tddn(2°)v, t € J. In view of (5.4), this
can be rewritten as ¢y,((t)) = ¢n(2°) + tIl 4 c. By Proposition 5.10, v = ¢, ' (¢n(7))
solves (H-SD). O

5.3.3. Lagrange equations. Following the ideas of [7], we describe the orbits
of (H-SD) as orthogonal projections on A of ¢-trajectories of a specific Lagrangian
system. Recall that, given a real-valued mapping £(gq, ), called the Lagrangian, where
qg=(q1,...,qn) and ¢ = (g1, - .., ¢n), the associated Lagrange equations of motion are
the following:

doc oL d
dt@qz 78%" dtqliq“

(5.5) Vi=1,...,n.

Their solutions are C'l-piecewise paths vy : t — (q(t),(t)), defined for t € J C R,
that satisfy (5.5) and appear as extremals of the functional L(v) = [, L(q(t),4(t))dt.
Notice that, in general, the solutions are not unique, in the sense that they do not only

depend on the initial condition v(0). Let us introduce the Lagrangian £ : R” x C' — R
defined by

(56> ‘C(qa q) = <H.Aoc7 q> - h(HAq)>

where II 4 is the orthogonal projection onto A, i.e., II4z = T 4+ 4, (x — Z) for any
e A

THEOREM 5.12. For any solution v(t) = (q(t),4(t)) of the Lagrangian dynamical
system (5.5) with Lagrangian given by (5.6), the projection x(t) = I 4q4(t) is the
solution of (H-SD) with initial condition x° = 1 44(0).

Proof. 1t is easy to verify that V(hoIl 4)(z) = 14, VA(II 4z) for any z € R™. Given
a solution v(t) = (q(t), ¢(t)) of (5.6) defined on J, we set p(t) = (p1(¢),...,pn(t)) =
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(55 (Y1), Fi=(v(1))). We have p(t) = V(h o TLa)(§(t)) = TLa, Vh(ILag(t))
¢n(I144(t)). Equations of motion become £p(t) = Il c, that is, 2, (ILad(t))
II4,c. Since ¢p, : F — F* is a diffeomorphism, the latter means, according to
Proposition 5.10, that I14¢(t) is a trajectory for the vector field Vp f.. Notice that,
C being convex, as soon as ¢(0) € C, I14¢(0) € CNA = F, and what precedes forces
IT44(¢) to stay in F for any ¢ € J. d

5.3.4. Completely integrable Hamiltonian systems. In the following, all
mappings are supposed to be at least of class C2. Let us first recall the notion of a
Hamiltonian system. Given an integer r > 1 and a real-valued mapping H(q,p) on
R?" with coordinates (¢,p) = (q1,---,r, D1, - -, Pr), the Hamiltonian vector field X
associated with H is defined by X5 = >\, g;f 6?11 — gz;a%i. The trajectories of the
dynamical system induced by X4, are the solutions to

pz(t) = —%H(q(t),p(t)), i = 17"-7T7

4i(t) = %H(Q(t),p(t))7 i=1,...,m

(5.7)

Following a standard procedure, Lagrangian functions £(q,q) are associated with
Hamiltonian systems by means of the so-called Legendre transform

(I){ R27‘ SN RQT,
(¢:4) — (2 %5(9,9))-

In fact, when @ is a diffeomorphism, the Hamiltonian function H associated with the
Lagrangian £ is defined on ®(R?") by H(p,q) = >_i_, pidi — L(q,4) = (p, " (g, p)) —
L(q,v"(q,p)), where (¢, 1(q,p)) := ® '(g,p). With these definitions, ® sends
the trajectories of the corresponding Lagrangian system on the trajectories of the
Hamiltonian system (5.7).

In general, the Lagrangian (5.6) does not lead to an invertible ® on R?". However,
we are interested only in the projections II 44 of the trajectories, which, according to
Theorem 5.12, take their values in F. Moreover, notice that for any differentiable
path t — ¢+ (t) lying in Ag, t — (q(t),4(t)) is a solution of (5.5) iff t — (q(t) +
gt (t),4(t) +¢*(t)) is. This legitimates the idea of restricting £ to Ag x IT4,F. Hence
and from now on, £ denotes the function

A()XHA()]: — R,
(¢:9) — L(q,9)

(5.8) L {

Taking (q1,-..,¢r), with r = n—m, a linear system of coordinates induced by an Eu-
clidean orthonormal basis for 4g, we easily see that this “new” Lagrangian has trajec-
tories (¢q(t), ¢(t)) lying in Ag xII 4, F, whose projections IT 4¢(¢) are exactly the (H-SD)
trajectories. Moreover, an easy computation yields %S(q, G) = Ty, Vh(4,4) =
[@r 0 TT4](¢), which is a diffeomorphism by Proposition 5.5. The Legendre transform
is then given by

q),{ Ao x gy F  — Ay x F*,
' (¢,0)  — (g [onoTL4](),

and therefore, £ is converted into the Hamiltonian system associated with

Ao x F* — R,

(5.9 H: { (@:p)  +— (0 [én oLl (p)) — L(q, [¢n o L4l (p)).
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Let us now introduce the concept of a completely integrable Hamiltonian system.
The Poisson bracket of two real-valued functions fi, f on R?" is given by {fi, f2} =
Dy gQ g’;’j — %%' Notice that, from the definitions, we have {fi, fa} = Xy, (f2)
and Xyr sy = [Xy,, Xp,], where [-,-] is the standard bracket product of vector fields
[35]. Now, the system (5.7) is called completely integrable if there exist r functions
fi,-. ., fr with f1 = H, satisfying

{fi7fj} =0 Vl,j = 1,...77'7

dfi(x),...,df.(z) are linearly independent at any z € R?".

As a motivation for completely integrable systems, we will just point out the follow-
ing: the functions f; are called integrals of motions because Xy (f;) = {h, fi} =
0, which means that any trajectory of Xy lies on the level sets of each f; (the
same holds for all Xy ). Also, the trajectory passing through (qo,po) lies in the
set Ni_y . fi "({fi(do,p0)}). Additionally, [X,, Xf,] = 0 implies that we can find,

.....

at least locally, coordinates (z1,...,2,) on this set such that Xy = 621 Xy, =
%, Xy = 89: ; that is, in these coordinates, the trajectories of Xy, are straight
lines

THEOREM 5.13. Suppose Ila,c # 0. The Lagrangian system on Ag x Il 4, F
associated with (5.6), (5.8) gives rise, by the Legendre transform, to a completely
integrable Hamiltonian system on Ag x F* with Hamiltonian given by (5.9).

Proof. There remains only to prove the complete integrability of the system.
To this end, we adapt the proof of [6, Theorem II.12.2] to our abstract framework.
Take the integrals of motion to be f1 = H, fi(q,p) = (vi,p), i = 2,...,r, where
r=mn—m and {Il4,c, vs,...,v,} is chosen to be an orthonormal basis of Ay. For
any ¢,j € {2,...,r}, {fi, f;j} is zero since f; and f; depend only on p. Let ¢;ﬁ%(q,p)
(resp., (IT4,¢);) stand for the Ith component of (b,:l(q,p) (resp., the Ith component of
I 4,c), and take some k € {1,...,r}. Since

oH (Zl 1pl¢h[) 3(£o<l)_1)
o ——(a,p) = 9 (¢:p) i (¢:p)
- 3¢> 8
= En gt~ g (a0i Z o) )
= _(HAO )k7
we deduce that for alli € {2,...,7}, {H, fi} = >, _gxf;i 3771 = (Il4,¢,v;) = 0. The
second condition for complete integrability is satisfied too, as the r x 2r matrix
I 4,ct *
(i v Tt ) I I
a7 q Opy O] )y, 0o ..
vy

is full rank. 0
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