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A framework based on a full-folding model of the nucleon optical potential is presented for study-

ing nuclear densities of closed-shell nuclei using intermediate energy nucleon scattering. Using a
density-matrix expansion for the mixed density, a simplified optical potential is obtained that retains
the energy and momentum dependence of the effective interaction prescribed by the full-folding

model. The interplay between the local density, nonlocality of the mixed-density and off-energy-

shell degrees of freedom in the full-folding approach to nucleon scattering is made relatively trans-
parent. The validity of the proposed framework is established for momentum transfers out to -2.5

fm ' in p+' 0 and p+ Ca scattering at energies between 200 and 400 MeV. The sensitivity of the
scattering observables to nuclear densities is investigated.

I. INTRODUCTION

Recent developments' in the theory of the optical
model potential for describing nucleon-nucleus elastic
scattering at intermediate energies have demonstrated the
importance of treating explicty the interplay between the
target ground-state properties and the of-shell behavior
in the nucleon-nucleon (EN) effective interaction.
Indeed, by folding the fully off-shell internucleon force
with the target mixed density, the full-folding model has
provided a substantially improved description of elastic
scattering observables for proton elastic scattering from
closed-shell nuclei ' at beam energies between —150 and
-400 MeV. However, the complexity of the full-folding
approach makes it difficult to distinguish the primary
role of the target density from that of the effective force.
In fact, recent implementations of the full-folding optical
potential make use of single-particle models to represent
the target ground state, thus relying on single-particle
wave functions rather than on more global properties
such as the matter distributions.

In this paper we address the question of how the full-
folding optical potential may provide useful information
about ground-state nucleon densities from intermediate
energy elastic scattering. Since the effective internucleon
force can be assumed to be relatively well defined over
the energy range considered here, we investigate the pos-
sibility of using an approximation to the exact full-folding
calculation in which the target densities are clearly
identified. Our present approach is based on expansions
of the target mixed density ' and leads to a more trans-
parent formulation of the optical potential while retain-
ing the dominant features peculiar to the full-folding
model. Physically, we expect to gain insight as to how
the nonlocality of the mixed density samples the relevant

energies and off-shell components of the effective force.
Furthermore, it becomes possible to connect the nucleon
optical potential to measured rather than model matter
distributions within the range of validity of the approxi-
mate full-folding scheme.

There are alternative approximations to the full-folding
model which make explicit the dependence of the optical
potential on the density. ' ' The best known approxima-
tion leads to the standard tp model which is essentially
based on assumptions about the Fermi motion of the
struck nucleon in the target thus simplifying the off-shell
components of the effective force that enter in the optical
potential calculation. Although attractive in its formal
structure, the tp model is a poor approximation to the
full-folding model below -400 MeV. ' In particular it
fails to explain the scattering observables at these ener-
gies especially at small momentum transfers.

The assumptions involved in the present approach
differ from those in the tp model in the sense that, by ap-
proximating the mixed density, we still account for most
of the relevant aspects of the Fermi motion of the nu-
cleons in the target and therefore need the full off-shell
interaction. The weak sensitivity of the full-folding cal-
culation to the details of this approximation indicates
that nucleon elastic scattering may be used for extracting
direct information about the matter distribution of the
target.

This paper is developed as follows: In Sec. II we derive
a simplified expression for the full-folding optical poten-
tial for intermediate-energy elastic proton scattering
based on the local-density (Slater) and Campi-Bouyssy ap-
proximations to the target mixed density in a
momentum-space representation. In Sec. III we present
our results. %'e discuss the properties of the approximate
mixed density and assess the validity of the full-folding

42 652 1990 The American Physical Society



42 ROLE OF NUCLEAR DENSITIES IN NUCLEON ELASTIC. . . 653

optical potential in this context. We also study the sensi-

tivity of the scattering observables to the matter distribu-
tions by comparing the results obtained from measured
and modeled densities. In Sec. IV we present our con-
clusions.

II. MIXED DENSITIES AND THE
NUCLEON-NUCLEUS OPTICAL POTENTIAL

The microscopic description of nucleon elastic scatter-
ing from nuclei requires the calculation of the nucleon-

I

nucleus optical potential. Since off-energy-shell degrees
of freedom of the internucleon force are most easily
identified in momentum space, we use this representation
to describe the full-folding optical potential and to obtain
an approximation to it.

Following the Watson and Kerman, McManus, and
Thaler theories for nucleon-nucleus elastic scattering, as-
suming a single-particle description for the target ground
state, and neglecting recoil effects and medium correc-
tions, the optical potential is given by

2

U(k', t;E)=x f dQq, (Q —k')(k' —
—,'Q i E+s,— & —,'Q q, (Q —k),

a

where y are the occupied single-particle states of energy
c. , E is the projectile kinetic energy, M is the total mass
of the interacting pair, and Q is their total momentum.
The free NN t matrix t(tu) is calculated from the bare in-
ternucleon potential U by solving the Lippmann-
Schwinger integral equation

proach to investigate the role of different aspects of
p(p', p) in the full-folding model and for studying the sen-
sitivity of the scattering observables to them.

At this point it is convenient to define the following set
of variables:

q=k —k', K=-,'(k+k'), P=Q K=-,'(p+p')

t(tu)=u+u t(tu),
co K +1'g

(2) These definitions lead to the following expression for the
optical potential

where E represents the kinetic energy operator for the
relative motion. We note that for calculating the optical
potential given by Eq. (1) the effective interaction should
be evaluated at energies which depend on each single-
particle energy c. . If the energy variation of the t matrix
is strong enough to make the c variation important, the
full folding has to be performed as indicated in Eq. (1)
and no reference to the target density can be simply ob-
tained. However, as the projectile energy E increases, the
variation of c, becomes relatively unimportant. Indeed,
for nucleon scattering above —100 MeV it should be
reasonable to replace the e by (e), the weighted energy
average of the occupied target single-particle states.
With this replacement and after summing over the
struck-nucleon spin states, Eq. (1) for the optical poten-
tial becomes

U(k', k;E)= f dQp(Q —k', Q —k)

U(k', k;E)= f dP p(P+ ,'q, P ,'—q)t(K—', K—;z),

where we have denoted

K'=
—,'(K —P —q), K= —,'(K —P+q),

( )
(P+K)

2M

For actual calculations, Eq. (7) for the optical potential
separates into proton and neutron contributions in the
form U-pptpp+p fp To simplify the notation, the
symbol p and associated quantities will refer to protons or
neutrons without distinction. The same consideration
holds for the t matrix.

The mixed-density in a momentum representation can
be simply related to its coordinate representation p(r', r)
by a Fourier transformation. In terms of the full-folding
variables this relationship is given by

2

Xt k' ——'Q k ——'Q E+(s)—7

2M

(3}

p(P+ —,'q, P —
—,'q}

(2vr)
dRdre' 'qe "Pp(R+ —'r, R——'r) .1

(9)

with

p(p', p)=gq (p')q (p),

and

(4)

Campi and Bouyssy (CB) have shown that to a very
good approximation, the single-particle mixed density in
coordinate space for protons and neutrons can be cast in
the Slater form

p(R+ —,'r, R —
—,'r }=p(R)F(R;r) .

t(K,K;Z)=(K ~t( )~ZK)~

Thus Eq. (3) is an expression for the full-folding optical
potential in which the target mixed density p appears ex-
plicitly. This is the starting point for developing an ap-

In this approximation, p(R) is the usual nuclear point
density given by the diagonal terms of the general mixed
density and F(R;r ) is a measure of the nonlocality of the
mixed density. In order to ensure that the matter form
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ks (R ) = [3n. p(R ) ]' (12)

while a more accurate expansion for the mixed density
leads to the CB choice,

1/2

kcB(R)= [r(R) —
—,'V p(R)]

3p R
(13a)

with

r(R) =g l~q. (R) I' . (13b)

The subject of investigating alternative forms for F(R;r)
remains open. As we wi11 see, this function is important
in that it determines the extent to which the momentum
dependence of the t matrix is operative in the full-folding
model framework of the optical potential.

Using the approximation for the mixed density given
by Eq. (10), the following result is obtained for its
momentum space representation [Eq. (9)],

p(P+ —,'q, P —
—,'q) =p(q;P),

with

p(q;P)= f dRe' p(R)G(R;P),1

(2m )

where, from Eqs. (9) and (10),

G(R;P)= fdre" F(R;r) .

(14)

(15a)

(15b)

For the functional form of F(R;r) given by Eq. (11), it is
straightforward to show that

G(R;P) = 8[k(R)—P],
R)

(16)

where p(R) is analogous to the local nuclear matter den-
sity and is given by

k(R)
3m2

(17)

factor is correctly reproduced, the condition F(R;0)=1
must be satisfied.

The most appealing feature of the approximate mixed-
density given by Eq. (10) is the absence of any depen-
dence on the angle between R and r. The reliability of
this approximation in the context of nucleon-nucleus
scattering needs to be established through calculations of
scattering observables from fully-folded optical potentials
using the exact and approximate mixed densities. We
shall address this point in the following section, where we
examine the validity of this approximation for a particu-
lar choice of F(R;r).

Following CB, we have assumed for F(R;r) the struc-
ture suggested by nuclear matter, namely

j,(k(R)r)
F(R;r)=3 (11)

k(R)r

where j, is the spherical Bessel function of order 1. The
choice of k(R) depends on the level of approximation we
require for the mixed density. The simplest choice corre-
sponds to the Slater form,

It is clear from Eqs. (12) and (17) that in the infinite nu-
clear matter limit, the Slater form, we have p(R) =p(R ).

The present scheme for calculating the mixed density
has the significant practical advantage that matter (or at
least proton) distributions [p(R ) ] obtained from elastic
scattering rather than from models can be used "direct-
ly." Although the function G(R, P) has been constructed
on the basis of single-particle models, this function may
be parametrized to study effects absent in such a descrip-
tion of the target ground state. For the choice of F(R;r)
suggested by nuclear matter and given by Eq. (11), the
mixed density in momentum space takes the form

p(qP)= 3
4m f R dR jo(qR)

2 ~ 2 p(R) .
(2~) 0 p(R )

X8[k(R)—P] (18)

With the use of Eq. (7) for the nucleon-nucleus optical
potential and Eq. (14) for the mixed density one obtains

U(k', k;E)=fdPp(q;P)t(K', K;z), (19)

with p(q;P) given by Eq. (15). In the Slater and CB ap-
proximations this function vanishes for all values of P
above k,„, the maximum k(R) allowed, thus determin-
ing the admissible values of P and the sampling of off-
shell degrees of freedom [see Eq. (8)]. This feature can be
made explicit when using the Slater approximation.
Indeed, if we assume a continuously decreasing function
for the density p(R) and therefore for ks(R), the mixed
density p(q; P) can be evaluated directly. We obtain

p, (q;P)=,[-', ~R ',„(P)]2

(2m )

XS[qR,„(P)]8(k,„P), —(20)

where R
&

is calculated from kz(R, „)=P for each P
less than k,„and S(x)=3j&(x)/x is the usual Slater
function. Equation (20) has a simple interpretation. The
volume within R,„ is that volume of the nucleus which
supports momenta P [Eq. (6)]; the factor of 2 corresponds
to the assumed spin degeneracy. The Slater function
(which peaks at q =0) determines the relative probability
with which the nucleus can support a given momentum
transfer and the step function restricts the momentum P
to its allowed domain. For P &k,„, R,„ is relatively
small (see Fig. 2) leading to comparable probabilities for
transferring large and small momenta. Conversely, when
P is small, R,„ is relatively large and large momentum
transfers are inhibited. For the CB approximation, an
analytic result cannot be obtained. However, the general
trend indicated by Eq. (20) remains.

Equation (19) has the folding structure of the optical
potential in terms of the nuclear mixed density and the
effective interaction. The prescription for averaging the
effective interaction takes into consideration the local
momentum k(R) and requires explicit off-shell contribu-
tions of the XN effective interaction determined by the
Fermi motion of the struck nucleon. The interplay be-
tween off-shell degrees of freedom and the nonlocality of
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the target ground-state mixed density is explicit. This in-

terplay is characteristic of the full-folding model and is
often neglected in alternative approaches. In fact, if we
assume that the t matrix does not vary significantly in the
range of variation of P, the full-folding optical potential
reduces to the tp structure

U, (k', lr;E)=p(q)t(a', x-, z)~p o, (21)

and no information on the nonlocality of the mixed densi-

ty, the F function, is obtained even though the off-shell t-

matrix enters, albeit over a restricted range in momentum
space. Equation (21) is the "off-shell tp" approximation
introduced in Ref. 10 and applied in Refs. 1, 3, and 7.

III. RESULTS

In this section we examine the validity of the approxi-
mated mixed density in calculations of the full-folding
optical potential for intermediate energy proton elastic
scattering. The NN effective interaction used throughout
is the free r matrix obtained by solving Eq. (2) using the
Paris potential. " No approximations were made to treat
the momentum and energy dependence of the t matrix on
or off the energy-shell.

A. The mixed density

We have calculated the exact mixed density for a
single-particle model generated by a Woods-Saxon (WS)
potential adjusted for each state in order to obtain a good
fit to the single-particle energies, the rms radius, and the
charge form factor. Using the same single-particle wave
functions we have calculated the approximate p(q;P) ex-
pressed in Eqs. (14)—(16) for both Slater and CB prescrip-
tions. In order to gauge the validity of these approxima-
tions, we have considered the Ca nucleus and show in

Fig. 1 plots of the quantity P p(+ —,'q, P —
—,'q) using the

exact [Fig. 1(a)] and approximate expressions, CB [Fig.
1(b)] and Slater [Fig. 1(c)], for the mixed density. In the
case of the exact mixed density we have taken the angle
between q and P to be zero. Alternative choices for the

angle between q and P lead to figures which are indistin-

guishable from Fig. 1(a). This observation is consistent
with the CB approximation, in which the mixed density
does not depend on the angle between r and R. The
overall features of the exact density are similar to those
given by the approximate ones with the exception of the
asymptotic behavior in the P coordinate (the mean
bound-state momentum). The approximate mixed densi-

ty shows clearly the allowed range of integration for the
full-folding calculation as well as where the relative
weight of the density is greater in terms of sampling the
off-shell effects.

The differences in Figs. 1(b) and l(c) reflect different
treatments for the nonlocality of the mixed density. Al-

though the CB and Slater approximations each use form
factors for the nonlocality given by Eq. (11), they differ in
their choice of k(R). In Fig. 2 we have plotted the pro-
ton density for Ca obtained from the WS single-particle
model and the calculated k(R) in the two approximations
considered. It is clear that for R 4 fm both choices of
k(R) yield similar values and that the largest differences
occur near the nuclear surface. Also, both approxima-
tions yield a similar maximum value for k (R ) ( —l. 3
fm ') thus explaining the similar behavior of the mixed
density as a function of P in Fig. 1. Results similar to
those shown in Figs. 1 and 2 have been found for ' O.
We conclude that the Slater and CB approximations
differ mainly in their treatment of the nuclear surface.
This result is reflected in slightly different matter distri-
butions in momentum space as shown in Fig. 1.

The question as to whether we can discriminate be-
tween the Slater and CB approximations from intermedi-
ate energy elastic nucleon scattering, and therefore learn
detailed aspects about the nonlocality of the mixed densi-

ty, will be addressed in the next section.

B. Approximate full-folding optical potential

To test the reliability of the approximate mixed densi-
ties within the full-folding framework we have calculated
optical potentials and the associated elastic scattering ob-
servables using Eqs. (3) and (19). We have studied the

Mixed Density P p(q;P) for Ca

(a) (b)

FIG. 1. Mixed densities for Ca in a momentum space representation: (a) corresponds to a WS model with the angle between q
and P set equal to zero; (b) Campi-Bouyssy approximation, and (c) Slater approximation. The momenta are in fm



656 H. F. ARELLANO, F. A. BRIEVA, AND W. G. LOVE 42

8 .10

~05-

40'

~ 00

1.0

(A p5

200-400 MeV energy range for proton elastic scattering
from ' 0 and Ca where the full-folding model has
proved to be quite successful in reproducing the data. '

In Fig. 3 we present the calculated cross sections
(do ldQ), analyzing powers (A ) and spin rotation pa-
rameters (Q) for p+' 0 elastic scattering at 200 MeV
and p+ Ca elastic scattering at 400 MeV. Solid curves
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FIG. 3. Scattering observables for p+' 0 at 200 MeV and

p+ Ca at 400 MeV from full-folding model calculations using
the exact mixed density (solid curves) and its CB (dashed curves)
and Slater (dotted curves) approximations.

P 0 . & & I I I I J I t J I t L I J ~ t

0 2 4 6

R (fm)

FIG. 2. Proton density for Ca from a WS model and CB
(solid curve) and Slater (dotted curve) approximations for
k(R)—Eqs. (13) and (12), respectively.

represent results obtained using the exact mixed density;
the dashed curves represent results using the CB approxi-
mation and the dotted curves correspond to the Slater ap-
proximation. We observe that the calculated observables
using the exact and approximate mixed densities are re-
markably similar for momentum transfers below -2
fm, a region in which the importance of off-shell effects
has been demonstrated. For q between -2.0 and 2.6
fm the approximate calculations begin to deteriorate,
with the CB approximation following the results based on
the exact mixed density more closely than does the Slater
approximation. For q 2.6 fm neither approximation
is satisfactory for all the observables, especially for the
smaller ' 0 target. Similar results are obtained for pro-
ton scattering on Ca and ' 0 at other energies within
the range considered here.

Although both approximations to the mixed density
are quite good for calculating the full-folding optical po-
tential, the CB approximation is observed to be slightly
superior. This result is consistent with the better treat-
ment of the nuclear surface provided by the CB approxi-
mation. In fact, we have investigated this point and
found that the full-folding results are equally well repro-
duced for momentum transfers in the range 0—2.5 fm ' if
we use a kcz constructed from a harmonic oscillator
model. However, we can still use the Slater approxima-
tion below q=2. 5 fm ' to get a good estimate of the
scattering observables. This has the important practical
advantage of being able to express the optical potential in
terms of conventional nuclear densities and the off-shell t
matrix. No further model is required to obtain ks(R)
other than the trivial nuclear matter relationship [Eq.
(12)] between ks and the nuclear density.

The results in Fig. 3 also indicate that proton scatter-
ing at these intermediate energies is not especially sensi-
tive to the detailed form of the nonlocality in the mixed
density. Indeed, the different mixed densities in Fig. 1

provide very similar samplings of the momentum depen-
dence of the effective force; the differences only slightly
affect the scattering observables shown in Fig. 3, mainly
for q ~ 2. 5 fm

C. Sensitivity to the density

Since it has been shown that a full-folding calculation
can be simplified so as to be expressed in terms of the nu-
clear matter density, k(R), and the off-shell effective
force, we can now test directly the sensitivity' of the op-
tical potential and the corresponding scattering observ-
ables to the densities.

From the results in Fig. 3 we can assume that the ob-
servables calculated from the CB approximation corre-
spond to the exact results, especially for q ~2.5 fm
Therefore, we have performed calculations of full-folding
optical model potentials for p+ Ca scattering at 200
MeV using the CB approximation and three different pro-
ton densities with the same rms radius. One of them was
determined from electron scattering, ' and the other two
were calculated from a WS and a harmonic oscillator
(HO) model, respectively. In all cases the neutron densi-
ties were assumed to be equal to the proton ones. The
nonlocality function kc~ was obtained from the WS
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FIG. 4. (a) Sensitivity of scattering observables to the density in the full-folding framework. The upper frame shows the squared-
Fourier transform of the phenomenological (solid curve), WS model (dashed curve), and HO model (dotted curve) densities. Scatter-
ing observables are calculated using the same kcB for the phenomenological (solid curves), %S {dashed curves) and HO (dotted
curves} densities. (b) Sensitivity of the scattering observables to the density in the local tp approximation. Solid, dashed, and dotted
curves denote results obtained using the phenomenological, %'S, and HO densities, respectively.

single-particle model. In the upper frame of Fig. 4(a) we

show the squared Fourier transform of the point proton
densities. The solid curve represents the density based on
a phenomenological charge density. ' The dashed and
dotted curves are used to represent the point proton den-

sity from WS and HO single-particle models, respective-
ly. In Fig. 4(a) we also plot the scattering observables as
a function of the momentum transfer obtained from full-

folding calculations using the approximate scheme for
the mixed density. Solid curves correspond to the phe-
nomenological local density, and dashed and dotted
curves to the %'S and HO models, respectively. %e ob-
serve that the form factors for the phenomenological den-

sity and WS model differ only in the q =2—3 fm region,
whereas differences of the HO model relative to the phe-
nomenological density occur between —l and —2 fm
In the case of the calculated scattering observables, the
major differences are observed between the phenomeno-

logical and HO densities. These differences are most pro-
nounced in the cross section; the spin observables show
less sensitivity to the densities, except for q 2. 5 fm
Considering that all the calculations were made with the
same nonlocality factor and corresponding kc& in the
mixed density, the differences found in the scattering ob-
servables are a direct measure of the differences in the
densities. In order to illustrate the relative sensitivity of
the scattering observables to the nuclear density within
different frameworks, we show in Fig. 4(b) results of
analogous calculations using the local "tp" approxima-
tion for the optica1 potential. The level of sensitivity of
the calculated results to the nuclear density using the two
models is found to be comparable. However, the present
approximate version of the full-folding model enables one
to treat the energy and momentum dependence of the XX
t matrix in a much more accurate way, which leads to
more confidence in the extracted information on the nu-
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clear density. The point is that where reliable XX poten-
tials are available, only a minimal amount of very weakly
model-dependent information [k(R)] needs to be intro-
duced in order to study the nuclear density within the
present framework. A detailed study of matter densities
from proton scattering data is beyond the scope of the
present work.

IV. CONCLUSIONS

We have presented a framework for studying and inter-
preting the role of target densities in nucleon-nucleus
scattering at intermediate energies. The approach is
based on an approximation to the mixed density in the
full-folding model. The advantage of this approximation
is that it retains the essential features of the exact ap-
proach while providing a simple functional form for the
optical potential in terms of the nuclear matter distribu-
tions and the nonlocality of the mixed density. The valid-

ity of the approximate scheme has been verified by per-
forming calculations of the full-folding optical potential
for p+' 0 and p+ Ca at energies between 200 and 400
MeV and by comparing the elastic scattering observables
with those obtained using exact procedures. The approx-
imate framework is very reliable out to q -2 fm ' and
reasonable out to q -2.6 fm

We have shown that there is little sensitivity in the
scattering observables to small differences in the ~onlo-
cality of the mixed-density. This leads to a mixed density

model for the nucleon optical potential, which is simpler
to calculate, and, more importantly, depends on mea-
sured rather than modeled densities to describe the target
nucleus. Although the best (CB) approximation to the
mixed density is model dependent through the determina-
tion of k, this model dependence is relatively weak, espe-
cially when k is generated from a single-particle model
with a size characteristic of the nucleus being studied.
For q ~2 fm ' the Slater approximation for k is ade-
quate.

The simplicity of the present model enables us to better
understand the overall role of target ground-state densi-
ties in intermediate energy nucleon scattering and
represents a natural extension of earlier techniques based
on a local tp scheme. ' Alternatively, considering the
sensitivity of the full-folding model to the matter density,
nucleon scattering data may be used to complement accu-
rate determinations of proton densities from electron
scattering and to determine properties of neutron densi-
ties.
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