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Abstract

Low level di�culties in the development of dis�

tributed systems that are due to non�standard com�

munication protocols and incompatible components or

platforms have largely been solved through standardiza�

tion and commoditization of protocols and platforms�

Distributed systems are being designed at higher levels

of sophistication these days� and having an expressive

yet usable speci�cation language is a valuable tool�

IOA is a formal language for specifying the seman�

tics of distributed systems� I� is a speci�cation frame�

work for architectural de�nition of distributed systems�

also intended as a basis for con�guration management�

I
� has �ve levels that specify mainly the structural

characteristics at di�erent levels of abstraction� but I�

does not address the semantics or dynamics of dis�

tributed systems interactions� We explore the integra�

tion of IOA and I
� to create combined speci�cations

that enjoy the bene�ts of both speci�cation languages�

the �ve di�erent levels of abstraction of I� with their

structural speci�cation capabilities are enhanced by a

semantic speci�cation written in IOA� We show an ex�

ample of a speci�cation developed using IOA and I� in

an integrated way� We consider general approaches to

such integrated speci�cations and discuss the possibili�

ties and limitations of integrating IOA and I�� as well

as our future work towards the complete integration�

Keywords� software engineering� software architec�
ture� formal speci�cations� distributed systems� dis�
tributed software engineering�

�� Introduction

Distributed systems are ubiquitous� Computers are
connected� and software components running on dif�
ferent computers work together interacting to achieve
common goals� Low level technical problems like com�
munication protocols have long been solved� New so�
phisticated and powerful distributed systems are being
developed� and new challenges include the need to de�
sign systems at a higher level of abstraction�

Software architecture has become important within
the software engineering community� There has
been a big e�ort in developing architectural pat�
terns �	
 and several architectural de�nition languages
�ADLs�� Examples of these ADLs are Rapide ��
� Ae�
sop ��
� MetaH ��
� UniCon ��
� Wright �
� C� ��
�
SADL �	
� and ACME ��
� All these languages pro�
vide formality to architectural speci�cations� some�
thing lacking from box and line diagrams that are still
common in professional practice� Distributed systems
are the most typical application for ADLs since they
are naturally thought of as a set of interacting com�
ponents� ADLs are precise for specifying distributed
systems� but even the simplest systems require a very
verbose and detailed speci�cation�
I
� is a framework for specifying the architecture of

distributed systems� I� can be considered an ADL� It
is fully formalized ��
� and it also has many interesting
features� it has �ve integrated levels of abstraction�
it includes software and hardware features� and it has
a graphical and textual notation� All these features
make I� a powerful speci�cation framework� providing



the designer with a graphical high level language and
a textual detailed speci�cation language� I� provides
a high abstraction level speci�cation framework� but
it does not have any means for specifying semantics or
dynamics of the communication of distributed systems�

Input�output automata is a formal language de�
signed by Lynch and Tuttle ��
 at MIT for specifying
the semantics of distributed systems� IOA is a pre�
cise language for describing Input�Output Automata
and for stating their properties ��
� IOA models dis�
tributed systems as a set of automata that have an
internal state and may execute input� output and in�
ternal transitions� IOA has been successfully used for
specifying distributed algorithms �
�

IOA is used to specify semantics of distributed sys�
tems at a level of abstraction that does not include the
ability to specify system deployment� I

� is a frame�
work for specifying the architecture of distributed sys�
tems but includes no semantics� Our objective is to
investigate the integration of the two languages and
produce a powerful speci�cation framework taking ad�
vantage of the abstraction levels and structure of I�

and the expressiveness for specifying distributed sys�
tems� semantics and dynamics of IOA�

In Section � we present an overview of I� and IOA
by developing a common example in both speci�cation
languages� In Section � we show how the two speci�
�cations can be integrated into a unique more power�
ful speci�cation of the same example� We analyze the
bene�ts of the integrated speci�cation� We draw some
conclusions in Section 	 and discuss the possibility of
a complete integration�

�� I� and IOA

We introduce input�output automata and I� by de�
veloping an example� The GUESS�GENERATOR example
has three types of interacting components� one that
chooses a number� another one that generates numbers
and tries to guess the chosen number� and a third one
that counts the number of times the number generator
guesses the number� This simple example highlights
some structural and dynamics features that become ap�
parent when speci�ed either with IOA or I��

���� The I
� Framework

I
� is a �ve level speci�cation framework specially

intended for architectural speci�cation of distributed
systems ��
� Each level addresses di�erent aspects of
the speci�cation in a decreasing level of abstraction in�
cluding both software and hardware features� and us�
ing either graphical or textual notation� The graphical

notation is based on customized UML implementation
diagrams ��
� and the textual notation is based on the
Z speci�cation language ��
�

The levels of I� are Interface� Implementation� In�
tegration� Instantiation� and Installation� the �ve I s�
In any level� the designer can switch between graphi�
cal and textual notation� according to his preferences�
However� we have found that graphical notation is bet�
ter for the �rst three levels and textual notation is more
practical for the last two ��
 because graphics repre�
sent better high level abstractions� but text is more
scaleable when more and more detail is added�

Each level of speci�cation in I� deals with di�erent
concepts and uses a di�erent notation� but they are all
related� Figure  shows the �ve speci�cation levels in�
cluded in a I� with their software and hardware parts�
and the dependencies among them� We describe each
level and show how the GUESS�GENERATOR example is
represented�
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Figure �� The hardware and software levels of I�

and their dependencies�

Interface� This �rst level de�nes the component types
of the application� and the node and connector
types of the target network� For every component
type� the Interface speci�cation provides a name�



a set of interfaces� and a set of calls to interfaces
in other component types� Interface inheritance
is also speci�ed at this level� a subtype has the
same interfaces and calls as its supertypes and it
extends them�

In Figure �� we show the graphical represen�
tation of the software Interface level of I� for
the example� There are three component types�
GENERATOR� GUESS and WINNER� The GENERATOR

sends a number to GUESS� this one checks if it
matches its internal value� and if it does� it send
a true message back to GENERATOR and noti�es
WINNER that there is a winner� The calls and the
interfaces are shown in the diagram� but I� has

no means to specify the dynamics of the execution

just described�

number

whoWINNER

GUESS

GENERATOR answer

Figure �� I� Software Interface Graphical Speci�ca�

tion�

Implementation� This level deals with the de�nition
of implementation classes� Each component� node
or connector type in Interface may be realized by
zero or more classes in the Implementation �re�
alization is the relation between a class and the
type it implements�� Implementation inheritance
is de�ned at this level� a subclass inherits the im�
plementation of its superclasses� however� it is not
mandatory that a class realizing a subtype be a
subclass of the class realizing the supertype� We
use UML component diagrams for the graphical
notation� we use a stereotype for the component
classes and we represent them as shaded boxes�

The importance of the Implementation level is
more apparent when di�erent implementations are

whoWINNER_IC

numberGUESS_IC

(B)

SEQUENTIAL
answer answer

NON_DETERMINISTIC

Figure �� I� Software Implementation Graphical

Speci�cation�

provided for the same component type� In the
GUESS�GENERATOR example� we have two di�erent
classes of GENERATOR� a NON�DETERMINISTIC and
a SEQUENTIAL generator� these names describe the
way the components choose the numbers to guess�
The software Implementation diagram for the ex�
ample is shown Figure �� Notice that the exis�
tence of di�erent implementations for GENERATOR
is clear� but their internal di�erence is suggested

only by their names�

Integration� This level de�nes the dependencies that
exist between component and node classes for de�
ployment� a node class supports a component
class� meaning that instances of a component class
may be deployed to instances of a node class�
These dependencies correspond to hardware re�
quirements of the component classes�

Instantiation� In this level� the instance components�
nodes and connectors that form part of the actual
system are de�ned� Only instances of the classes
de�ned in the Implementation level can be de�ned
and they must follow the same communication
patterns� Figure 	 shows the software Instanti�

ation of the GUESS�GENERATOR example� there are
two non�deterministic and three sequential gener�
ators and one instance of GUESS and one instance
of WINNER�

Instances are named with an underlined lower case
name� a colon and the name of the class they
instantiate� as is standard for naming instances
in UML diagrams �we do not instantiate types
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Figure �� I� Software Instantiation Graphical Spec�

i�cation�

as is standard in UML� but classes�� The inter�
action occurs as follows� an instance generator
sends a number to the guess instance� this com�
ponent compares the received number with its in�
ternal value and if it is the same� it returns a true
answer to the generator� and otherwise a false�
Whenever there is a generator that guesses the
number� the instance of WINNER is noti�ed and
GUESS chooses another number� I� does not pro�

vide means for specifying this dynamics� and it
cannot be shown in the diagram� but all of the
possible messages are shown as calls to some in�
terface�

Installation� This last level de�nes the complete
deployment of instance components of the dis�
tributed application to instance nodes in the target
network� Every instance identi�ed in the Instanti�
ation must be part of the Installation� Installation
requirements such as �xing the location of certain
components� or prescribing that two components
must be deployed to the same or di�erent nodes�
are also de�ned at this level�

For simplicity of presentation� we make no references
to hardware or network elements in our example� Thus
we do not show the hardware parts of Interface� Imple�

mentation� and Instantiation levels and we do not spec�
ify the integration of software and hardware elements
in the Integration and Installation levels�

���� Input�Output Automata

IOA is a language for specifying� programming
and validating distributed systems ��
 described as in�
put�output automata� It has been applied to several
real world applications with good success�

An automaton A is speci�ed with a signature�
sig�A�� consisting of the declaration of its input�
output and internal transitions� a set of internal
states� states�A�� a set of start states� start�A��
the de�nition of its transitions as state�transition re�
lations� trans�A� �a subset of states�A� � sig�A�

� states�A��� and an optional task partition�

The signature is the declaration of all of the au�
tomaton�s transitions� There are input� output� and
internal transitions� The de�nition of the transitions
is given as a precondition and an e�ect� the precon�
dition is a logic expression that enables the transition
when it is true �an empty precondition is assumed to be
always true�� The internal state is de�ned by a set of
state variables� the transitions usually modify the val�
ues of these variables as part of their e�ects� the e�ects
is executed atomically to yield a post�state� The task
partition is de�ned to assure fair executions� avoiding
starvation of some enabled transitions�

In Figure � we show a GUESS automaton that re�
ceives a number i from another automaton g� and re�
turns true to g if the input value matches its internal
value and false if it does not� Whenever there is a g

that guesses the value� GUESS also outputs the identi�
�cation of the winner� We also include a speci�cation
of the GUESS automaton using IOA in Figure ��

The signature of GUESS includes the input transi�
tion number and the output transitions answer and
who shown in Figure �� and it also de�nes an internal
transition choose one� not present in the �gure� The
state is de�ned by the internal value to be guessed� the
identi�er of the sender of the number� and two �ags
indicating when a number has been received� ready�
and when the number has been guessed� respectively�
Notice that value is initialized nondeterministically to
a number between � and ��

The input transition number is always enabled �it
has an empty precondition�� and whenever automaton
g sends a new number i� it is compared to the internal
value� If it is equal� guessed is set to true enabling
the choose one and who transitions� Whenever a new
number is received� the variable ready is set to true
and sender is assigned the identi�er of the automaton
that sent the number� The transition answer gets en�
abled when a number is received �ready�� it sends a
true or false value to sender� depending on the value
of guessed� The transition who informs about the gen�



number  (i)g
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Figure 	� GUESS receives a number and says if it is

the internal value�

erator that guessed the number� whenever this hap�
pens �guessed�� The internal transition choose one

chooses non�deterministically a new number whenever
the old one was guessed �guessed��

This simple example shows the main features of the
speci�cation of a single input�output automaton� How�
ever� more powerful speci�cations can be built com�
posing di�erent communicating automata or specifying
families of automata through parameterization�

����� I�O Automata Composition

We can compose automata matching input transitions
in one automaton with output transitions with the
same name in another automaton� and by combining
the states of the composed automata� Whenever a
transition in one of the automata in the composition
is executed� every transition in other automata in the
same composition that has the same name is also exe�
cuted� The combination of an input transition and an
output transition with the same name can be consid�
ered an internal transition of the composition�

In Figure �� the automaton WINNER has only one in�
put transition� who� that matches the output transition
in GUESS with the same name� Figure � also speci�es
WINNER using IOA� The internal state of the automaton
is de�ned by the array score indexed by Index and
containing integer elements� this array is completely

automaton GUESS �Index � type �
signature

input number �i � Int� g � Index�
output answer �a � Bool� g � Index��

who �g � Index�
internal choose one ��

states

value � Int �� choose i where � � i � ���
ready � Bool �� false�
sender � Index�
guessed � Bool �� false

transitions

input

number�i�g�
e� � if i � value

then guessed �� true
� 	
ready �� true � sender �� g

output

answer �a�g�
pre � a �� guessed � g �� sender � ready
e� � ready �� false

who �g�
pre � guessed � true � g � sender

internal

choose one ��
pre � guessed � true
e� � guessed �� false	

value �� choose i where � � i � ��

Figure 
� GUESS receives a number and says if it is

the internal value�

initialized to zero� The e�ect of the who transition is
to accumulate  to the score of the winning generator�

����� Parameterized Automata

Input�output automata can be de�ned with param�
eters� so a whole family of automata is actually de�
�ned with the same speci�cation� one for each value
of the parameter� Figure � shows a generic automaton
GENERATOR� there is actually one automaton for each
value of g�

The GENERATOR automaton is parameterized by g�
meaning that there is actually one automaton for each
value of g� but the set of g�s is not speci�ed either�

The semantics of the GENERATOR type is shown in
Figure �� Notice that the input transition answer and
the output transition number correspond to the inter�
face and the call in the Interface speci�cation in I

��
The IOA speci�cation also provides the semantics of
the GENERATOR� that is� whenever an answer is received�
the generator is ready to choose another number be�
tween � and � and send it to GUESS�

We specify two di�erent implementations for the
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GUESSGENERATORg
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Figure �� The GENERATOR is a parameterized au�

tomata�

automaton WINNER �Index � type �
signature

input who �g � Index�
states

score � Array 
Index � Int�
so that � i � Index �score
i� � ��

transitions

input who �g�
e� � score 
g� �� score 
g� � �

Figure �� GUESS says who is the WINNER�

GENERATOR in Figure �� one that chooses the number
non�deterministically and another one that chooses the
number sequentially� In Figure �� we provide the spec�
i�cation of these two kinds of GENERATOR mentioned in
Section ��� Notice that this di�erentiation of gener�
ators is not present in Figure � because it shows only
the interface interaction of the automata but not the
semantics of this interaction� The speci�cations of the
two di�erent implementations of GENERATOR share their
name and signature� but they di�er in their internal
implementation� The parameter g in the signature is
de�ned as const� meaning that the value of this pa�
rameter is constant for every instance automaton�

The family of GENERATOR automata have an output
transition number that matches the input transition
with the same name in GUESS� and an input transi�
tion answer that matches the output transition with
the same name in GUESS� The answer transition has
an identical implementation in both generators� assign�
ing a true value to newtry� meaning that an answer
has been received� The implementation of the output
transition number is di�erent in both generators� in the

automaton GENERATOR �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

newtry � Bool �� true
transitions

input answer �a�g�
e� � newtry �� true

output number �i�g�
pre � � � i � �� � newtry � true
e� � newtry �� false

Figure � The GENERATOR type semantics�

non�deterministic generator� the new number i is an in�
teger number chosen non�deterministically between �
and �� and in the sequential generator� i is the num�
ber following the last one sent� In both cases� newtry
is set to false� disabling the number transition so no
other number is sent before a new answer is received�

Figure  shows the complete speci�cation of the
GUESS�GENERATOR example� The set of the generator
identi�ers Index is de�ned as an enumerated type� No�
tice that the set of identi�ers corresponds to the in�
stance components de�ned in Section ���

Notice that the composition corresponds to a high
level speci�cation and assumes that GENERATOR au�
tomata are all identical and it does not consider the
two implementations shown in Figure �� We can as�
sume we are using the type de�nition in Figure �� We
can also produce a similar composition at the imple�
mentation level by including the two implementations
of GENERATOR� Using IOA methodology ��
 it is pos�
sible to formally prove that the implementation com�
position correctly implements GUESS�GENERATOR with
respect to its external behavior�

�� The Integrated Speci�cation

In this section� we examine the steps that are re�
quired to build an integrated speci�cation� The inde�
pendent speci�cations using I� and IOA presented in
Sections �� and ���� respectively� have elements that
are unique to each language� and most importantly for
our purposes� have elements that match to each other�
Thus� it is possible to build an integrated speci�ca�
tion by using the strengths of both languages� Our
proposed integrated speci�cation contains the �ve ab�
straction levels of I�� where each level is enhanced by
the speci�cation of the application�s semantics using
IOA�



automaton GENERATOR SQ �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

value � Int�
newtry� Bool �� true�

transitions

input answer �a�g�
e� � newtry �� true

output number�i�g�
pre � newtry	

i �� choose i where � � i � ��
e� � newtry �� false

automaton GENERATOR ND �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

value � Int �� ��
newtry� Bool �� true�
last � Int

transitions

input answer �a�g�
e� � newtry �� true

output number�i�g�
pre � newtry � true	

if last � �� then i �� �
else i �� last � �
� 	

e� � newtry �� false	
last �� i

Figure ��� Two implementations for GENERATOR�

non�deterministic and sequential�

���� Matching Elements

Automata in IOA are de�ned by their name �with
zero or more parameters�� their signature� their state
variables� and the semantics of their transitions� In
I
�� component types are characterized by their names�

their interfaces and calls� component classes of the
same type share their interface but may have di�er�
ent implementations� component instances are identi�
cal implementations with a di�erentiating name� Ta�
ble  details the matching elements in IOA and I�� this
correspondence is critical to understand the construc�
tion process of an integrated speci�cation�

The correspondence shown in Table  establishes
associations between the di�erent modeling elements
that are present in IOA and I

�� These associations
are critical to allow a software engineer or distributed
system designer to utilize the two di�erent speci�ca�

automaton GUESS�GENERATOR

type Index � enumeration of nd�� nd� sq�� sq� sq�
compose

GUESS �type Index�	
WINNER �type Index�	
GENERATOR �type Index� g� for g � Index

Figure ��� Complete IOA Speci�cation�

IOA element I� element

Automaton�s name and signature Component type
Input transition declaration Interface
Output transition declaration Call
Internal transition declaration �
Parameterized automaton Component type�class

Not parameterized automaton Component instance
State variables �

Transitions� semantics �
� Hardware elements

Table �� Correspondence of I�O Automata and I�

de�nition elements�

tion languages in a complementary process in support
of de�ning a distributed application�

No hardware elements of a distributed system are
de�ned as part of input�output automata� So only the
software part of the Interface� Implementation� and In�

stantiation levels of I� can expect to share information
with IOA speci�cations�

���� I� � IOA

In this section� we explain the way that the di�er�
ent elements in select levels of I� match up with mod�
eling elements in IOA� However� there is one impor�
tant caveat for the discussion� Recall that unlike I��
there are no harware platforms or elements of a dis�
tributed system which can be explicitly de�ned as part
of input�output automata� Thus� for the purposes of
this paper� we concentrate on the software speci�cation
levels of I� �Interface� Implementation� and Instantia�

tion��

����� Interface

Generically� a type is de�ned by a combination of its
interface and its semantics� In I

�� the speci�cation
of a type is only given by its interface �the interfaces
and the calls� with the semantics only suggested by the
type�s name� Clearly� this semantics is imprecise� and
open for misinterpretation� In the de�nition of an IOA
automaton� a name is provided� and input and output



transitions are declared as part of its signature� If we
consider the component types in the diagram in Fig�
ure �� and the semantic speci�cation of the automata
in Figures �� � and �� we can see the coincidence of
types and automata names� interfaces with input tran�
sitions� and calls with output transitions� Thus� we
can combine the software Interface diagram of I� and
the corresponding speci�cation of each automaton cor�
responding to its type to obtain an integrated software
Interface speci�cation� As a result� we begin to aug�
ment I��s Interface with semantics supplied by IOA�s
automata�

����� Implementation

In the Implementation level of I�� we must spec�
ify the di�erent implementation classes that realize
each type identi�ed in the Interface level� In Fig�
ure �� we provide two di�erent IOA implementa�
tions for GENERATOR� GENERATOR ND and GENERATOR SQ�
These automata share the same input and output tran�
sitions with the type speci�cation of GENERATOR� More�
over� it can be shown that these two implementations
for the GENERATOR automaton type are forward simu�
lations ��
 of the GENERATOR type speci�ed in Figure ��
meaning that every trace of the implementations is also
a trace of the type� For example� there cannot be two
consecutive number transitions without a answer tran�
sition in between� and the numbers sent are always
integers between  and �� Using this interpretation�
these implementations correspond to classes in I� ter�
minology�

In the cases of the GUESS and WINNER automata� we
provided a single implementation for each one� so the
need for a distinct level of abstraction between I� com�
ponent type and class speci�cation of these automata
is not evident�

Combining the concepts of I� and IOA in this case
yields an integrated speci�cation of the software Im�

plementation level of I�� shown in the diagram in Fig�
ure �� and enhanced with the IOA speci�cations in Fig�
ures �� � and ��

����� Instantiation

In the Instantiation level of I�� the actual instance
components of the application are identi�ed� The se�
mantics of these instances is identical to the semantics
of the classes they belong to� and they are distinguished
with a di�erent identifying name� As a result� the IOA
speci�cation of the complete system given in Figure 
is equivalent to the combination of the Instantiation in
Figure 	 and the integrated Implementation speci�ca�
tion described in Section ������

The progression that combines I��s Interface� Imple�

mentation� and Instantiation with IOA automata from
Figures �� �� �� �� and � yields an integrated speci��
cation where the abstraction capabilities of I� can be
augmented and complemented with the semantic capa�
bilities of IOA�

�� Conclusions

The speci�cation� design� and construction of a dis�
tributed application is a di�cult task� complicated by
the absence of a single model� language� or methodol�
ogy that can be employed throughout all steps of the
process�

In this paper� our proposed integration of I� and
IOA represents an important �rst step in supporting
this di�cult process� where the strengths of one speci�
�cation language can o�set the weakness of the other�
We have shown that IOA provides the semantics and
dynamics I� lacks� while I� provides abstractions that
di�erentiate between types and classes� which is not as
clearly supported in IOA�

We have also shown that I� software Interface com�
ponent types and Implementation classes can be aug�
mented with semantics through the speci�cation of cor�
responding automata using IOA� Forward simulation in
IOA can be used to formalize the realization relation
between I��s types and classes� To accomplish this� we
must prove that a class actually implements the seman�
tics speci�ed for the type it realizes� the class and the
type must have the same input and output transitions�
and every trace of the class must also be a trace of the
type� Once this forward simulation is proven� the soft�
ware engineer can reason using the simpler type speci�
�cation rather than the more speci�c implementation�
The work presented in this paper is an important step
towards a combined speci�cation language that spans
multiple steps of the distributed application design and
development process�

Our ongoing e�orts continue to focus on a complete
integration of IOA and I

�� I
� provides an abstrac�

tion of hardware elements that is very important for
the speci�cation of distributed systems� especially for
de�ning deployment� Consider� for example� the re�
quirement that the GUESS and GENERATOR components
must be deployed together� but the WINNER is a remote
printer� This kind of requirements can be speci�ed us�
ing the Integration and�or Installation levels of I�� and
as a result the integrated speci�cation is more expres�
sive� However� there are no obvious analogs of this
activity within IOA� rather� we must understand how
this process in I� can in�uence and complement IOA�

We are also pursuing the speci�cation of the se�



mantics of interface� There is still no way to spec�
ify the meaning of the inheritance in I� without using
the component types�classes semantics� Inheritance in
IOA has been analyzed in ��
� and interface extension
seems to map nicely to I��s interface inheritance� as
well as specialization describes implementation inher�
itance� but additional work is needed to fully under�
stand the correspondence and its implications�
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