
Comprehensive Speci�cation of Distributed

Systems Using I
� and IOA

M� Cecilia Bastarrica
DCC� Universidad de Chile
Av� Blanco Encalada ����

Santiago� Chile
cecilia�dcc�uchile�cl
phone�	
����������

Steven A� Demurjian
CS�E� Univ� of Connecticut
��� Auditorium Rd�� U��

Storrs� CT ������ USA
steve�cse�uconn�edu
phone�	������������

Alex A� Shvartsman
CS�E� Univ� of Connecticut
��� Auditorium Rd�� U��

Storrs� CT ������ USA
aas�cse�uconn�edu
phone�	�����������

�
LCS� MIT

�
 Tech� Sq�� Bldg� NE��
Cambridge� MA ������ USA

Abstract

Low level di�culties in the development of dis�

tributed systems that are due to non�standard com�

munication protocols and incompatible components or

platforms have largely been solved through standardiza�

tion and commoditization of protocols and platforms�

Distributed systems are being designed at higher levels

of sophistication these days� and having an expressive

yet usable speci�cation language is a valuable tool�

IOA is a formal language for specifying the seman�

tics of distributed systems� I� is a speci�cation frame�

work for architectural de�nition of distributed systems�

also intended as a basis for con�guration management�

I
� has �ve levels that specify mainly the structural

characteristics at di�erent levels of abstraction� but I�

does not address the semantics or dynamics of dis�

tributed systems interactions� We explore the integra�

tion of IOA and I
� to create combined speci�cations

that enjoy the bene�ts of both speci�cation languages�

the �ve di�erent levels of abstraction of I� with their

structural speci�cation capabilities are enhanced by a

semantic speci�cation written in IOA� We show an ex�

ample of a speci�cation developed using IOA and I� in

an integrated way� We consider general approaches to

such integrated speci�cations and discuss the possibili�

ties and limitations of integrating IOA and I�� as well

as our future work towards the complete integration�

Keywords� software engineering� software architec�
ture� formal speci�cations� distributed systems� dis�
tributed software engineering�

�� Introduction

Distributed systems are ubiquitous� Computers are
connected� and software components running on dif�
ferent computers work together interacting to achieve
common goals� Low level technical problems like com�
munication protocols have long been solved� New so�
phisticated and powerful distributed systems are being
developed� and new challenges include the need to de�
sign systems at a higher level of abstraction�

Software architecture has become important within
the software engineering community� There has
been a big e�ort in developing architectural pat�
terns �	
 and several architectural de�nition languages
�ADLs�� Examples of these ADLs are Rapide ��
� Ae�
sop ��
� MetaH ��
� UniCon ��
� Wright �
� C� ��
�
SADL �	
� and ACME ��
� All these languages pro�
vide formality to architectural speci�cations� some�
thing lacking from box and line diagrams that are still
common in professional practice� Distributed systems
are the most typical application for ADLs since they
are naturally thought of as a set of interacting com�
ponents� ADLs are precise for specifying distributed
systems� but even the simplest systems require a very
verbose and detailed speci�cation�
I
� is a framework for specifying the architecture of

distributed systems� I� can be considered an ADL� It
is fully formalized ��
� and it also has many interesting
features� it has �ve integrated levels of abstraction�
it includes software and hardware features� and it has
a graphical and textual notation� All these features
make I� a powerful speci�cation framework� providing

the designer with a graphical high level language and
a textual detailed speci�cation language� I� provides
a high abstraction level speci�cation framework� but
it does not have any means for specifying semantics or
dynamics of the communication of distributed systems�

Input�output automata is a formal language de�
signed by Lynch and Tuttle ��
 at MIT for specifying
the semantics of distributed systems� IOA is a pre�
cise language for describing Input�Output Automata
and for stating their properties ��
� IOA models dis�
tributed systems as a set of automata that have an
internal state and may execute input� output and in�
ternal transitions� IOA has been successfully used for
specifying distributed algorithms �
�

IOA is used to specify semantics of distributed sys�
tems at a level of abstraction that does not include the
ability to specify system deployment� I

� is a frame�
work for specifying the architecture of distributed sys�
tems but includes no semantics� Our objective is to
investigate the integration of the two languages and
produce a powerful speci�cation framework taking ad�
vantage of the abstraction levels and structure of I�

and the expressiveness for specifying distributed sys�
tems� semantics and dynamics of IOA�

In Section � we present an overview of I� and IOA
by developing a common example in both speci�cation
languages� In Section � we show how the two speci�
�cations can be integrated into a unique more power�
ful speci�cation of the same example� We analyze the
bene�ts of the integrated speci�cation� We draw some
conclusions in Section 	 and discuss the possibility of
a complete integration�

�� I� and IOA

We introduce input�output automata and I� by de�
veloping an example� The GUESS�GENERATOR example
has three types of interacting components� one that
chooses a number� another one that generates numbers
and tries to guess the chosen number� and a third one
that counts the number of times the number generator
guesses the number� This simple example highlights
some structural and dynamics features that become ap�
parent when speci�ed either with IOA or I��

���� The I
� Framework

I
� is a �ve level speci�cation framework specially

intended for architectural speci�cation of distributed
systems ��
� Each level addresses di�erent aspects of
the speci�cation in a decreasing level of abstraction in�
cluding both software and hardware features� and us�
ing either graphical or textual notation� The graphical

notation is based on customized UML implementation
diagrams ��
� and the textual notation is based on the
Z speci�cation language ��
�

The levels of I� are Interface� Implementation� In�
tegration� Instantiation� and Installation� the �ve I s�
In any level� the designer can switch between graphi�
cal and textual notation� according to his preferences�
However� we have found that graphical notation is bet�
ter for the �rst three levels and textual notation is more
practical for the last two ��
 because graphics repre�
sent better high level abstractions� but text is more
scaleable when more and more detail is added�

Each level of speci�cation in I� deals with di�erent
concepts and uses a di�erent notation� but they are all
related� Figure shows the �ve speci�cation levels in�
cluded in a I� with their software and hardware parts�
and the dependencies among them� We describe each
level and show how the GUESS�GENERATOR example is
represented�

COMPONENT
TYPES

COMPONENT
IMPLEMENTATION

CLASSES

FINAL
INSTALLATION

INSTALLATION
REQUIREMENTS
(fixed components)

NODE
IMPLEMENTATION

CLASSES

NODE
TYPES

COMPONENT
INSTANTIATION

NODE
INSTANTIATION

APPLICATION
INSTANTIATION

INSTALLATION
REQUIREMENTS
(together, separated)

IMPLEMENTATION
INTEGRATION

1 1

2 2

3 3

4

4

4

5 6

7

7

7

SOFTWARE HARDWARE

INSTANTIATION

INTERFACE

INSTALLATION

IMPLEMENTATION

INTEGRATION

Figure �� The hardware and software levels of I�

and their dependencies�

Interface� This �rst level de�nes the component types
of the application� and the node and connector
types of the target network� For every component
type� the Interface speci�cation provides a name�

a set of interfaces� and a set of calls to interfaces
in other component types� Interface inheritance
is also speci�ed at this level� a subtype has the
same interfaces and calls as its supertypes and it
extends them�

In Figure �� we show the graphical represen�
tation of the software Interface level of I� for
the example� There are three component types�
GENERATOR� GUESS and WINNER� The GENERATOR

sends a number to GUESS� this one checks if it
matches its internal value� and if it does� it send
a true message back to GENERATOR and noti�es
WINNER that there is a winner� The calls and the
interfaces are shown in the diagram� but I� has

no means to specify the dynamics of the execution

just described�

number

whoWINNER

GUESS

GENERATOR answer

Figure �� I� Software Interface Graphical Speci�ca�

tion�

Implementation� This level deals with the de�nition
of implementation classes� Each component� node
or connector type in Interface may be realized by
zero or more classes in the Implementation �re�
alization is the relation between a class and the
type it implements�� Implementation inheritance
is de�ned at this level� a subclass inherits the im�
plementation of its superclasses� however� it is not
mandatory that a class realizing a subtype be a
subclass of the class realizing the supertype� We
use UML component diagrams for the graphical
notation� we use a stereotype for the component
classes and we represent them as shaded boxes�

The importance of the Implementation level is
more apparent when di�erent implementations are

whoWINNER_IC

numberGUESS_IC

(B)

SEQUENTIAL
answer answer

NON_DETERMINISTIC

Figure �� I� Software Implementation Graphical

Speci�cation�

provided for the same component type� In the
GUESS�GENERATOR example� we have two di�erent
classes of GENERATOR� a NON�DETERMINISTIC and
a SEQUENTIAL generator� these names describe the
way the components choose the numbers to guess�
The software Implementation diagram for the ex�
ample is shown Figure �� Notice that the exis�
tence of di�erent implementations for GENERATOR
is clear� but their internal di�erence is suggested

only by their names�

Integration� This level de�nes the dependencies that
exist between component and node classes for de�
ployment� a node class supports a component
class� meaning that instances of a component class
may be deployed to instances of a node class�
These dependencies correspond to hardware re�
quirements of the component classes�

Instantiation� In this level� the instance components�
nodes and connectors that form part of the actual
system are de�ned� Only instances of the classes
de�ned in the Implementation level can be de�ned
and they must follow the same communication
patterns� Figure 	 shows the software Instanti�

ation of the GUESS�GENERATOR example� there are
two non�deterministic and three sequential gener�
ators and one instance of GUESS and one instance
of WINNER�

Instances are named with an underlined lower case
name� a colon and the name of the class they
instantiate� as is standard for naming instances
in UML diagrams �we do not instantiate types

answer
r2:NON_DETERMINISTIC

answerr1:NON_DETERMINISTIC

numberg:GUESS_IC

s3:SEQUENTIAL

answer

s2:SEQUENTIAL

answer

answer

s1:SEQUENTIAL

whow:WINNER_IC

Figure �� I� Software Instantiation Graphical Spec�

i�cation�

as is standard in UML� but classes�� The inter�
action occurs as follows� an instance generator
sends a number to the guess instance� this com�
ponent compares the received number with its in�
ternal value and if it is the same� it returns a true
answer to the generator� and otherwise a false�
Whenever there is a generator that guesses the
number� the instance of WINNER is noti�ed and
GUESS chooses another number� I� does not pro�

vide means for specifying this dynamics� and it
cannot be shown in the diagram� but all of the
possible messages are shown as calls to some in�
terface�

Installation� This last level de�nes the complete
deployment of instance components of the dis�
tributed application to instance nodes in the target
network� Every instance identi�ed in the Instanti�
ation must be part of the Installation� Installation
requirements such as �xing the location of certain
components� or prescribing that two components
must be deployed to the same or di�erent nodes�
are also de�ned at this level�

For simplicity of presentation� we make no references
to hardware or network elements in our example� Thus
we do not show the hardware parts of Interface� Imple�

mentation� and Instantiation levels and we do not spec�
ify the integration of software and hardware elements
in the Integration and Installation levels�

���� Input�Output Automata

IOA is a language for specifying� programming
and validating distributed systems ��
 described as in�
put�output automata� It has been applied to several
real world applications with good success�

An automaton A is speci�ed with a signature�
sig�A�� consisting of the declaration of its input�
output and internal transitions� a set of internal
states� states�A�� a set of start states� start�A��
the de�nition of its transitions as state�transition re�
lations� trans�A� �a subset of states�A� � sig�A�

� states�A��� and an optional task partition�

The signature is the declaration of all of the au�
tomaton�s transitions� There are input� output� and
internal transitions� The de�nition of the transitions
is given as a precondition and an e�ect� the precon�
dition is a logic expression that enables the transition
when it is true �an empty precondition is assumed to be
always true�� The internal state is de�ned by a set of
state variables� the transitions usually modify the val�
ues of these variables as part of their e�ects� the e�ects
is executed atomically to yield a post�state� The task
partition is de�ned to assure fair executions� avoiding
starvation of some enabled transitions�

In Figure � we show a GUESS automaton that re�
ceives a number i from another automaton g� and re�
turns true to g if the input value matches its internal
value and false if it does not� Whenever there is a g

that guesses the value� GUESS also outputs the identi�
�cation of the winner� We also include a speci�cation
of the GUESS automaton using IOA in Figure ��

The signature of GUESS includes the input transi�
tion number and the output transitions answer and
who shown in Figure �� and it also de�nes an internal
transition choose one� not present in the �gure� The
state is de�ned by the internal value to be guessed� the
identi�er of the sender of the number� and two �ags
indicating when a number has been received� ready�
and when the number has been guessed� respectively�
Notice that value is initialized nondeterministically to
a number between � and ��

The input transition number is always enabled �it
has an empty precondition�� and whenever automaton
g sends a new number i� it is compared to the internal
value� If it is equal� guessed is set to true enabling
the choose one and who transitions� Whenever a new
number is received� the variable ready is set to true
and sender is assigned the identi�er of the automaton
that sent the number� The transition answer gets en�
abled when a number is received �ready�� it sends a
true or false value to sender� depending on the value
of guessed� The transition who informs about the gen�

number (i)g

GUESS who (g)

ganswer (a)

Figure 	� GUESS receives a number and says if it is

the internal value�

erator that guessed the number� whenever this hap�
pens �guessed�� The internal transition choose one

chooses non�deterministically a new number whenever
the old one was guessed �guessed��

This simple example shows the main features of the
speci�cation of a single input�output automaton� How�
ever� more powerful speci�cations can be built com�
posing di�erent communicating automata or specifying
families of automata through parameterization�

����� I�O Automata Composition

We can compose automata matching input transitions
in one automaton with output transitions with the
same name in another automaton� and by combining
the states of the composed automata� Whenever a
transition in one of the automata in the composition
is executed� every transition in other automata in the
same composition that has the same name is also exe�
cuted� The combination of an input transition and an
output transition with the same name can be consid�
ered an internal transition of the composition�

In Figure �� the automaton WINNER has only one in�
put transition� who� that matches the output transition
in GUESS with the same name� Figure � also speci�es
WINNER using IOA� The internal state of the automaton
is de�ned by the array score indexed by Index and
containing integer elements� this array is completely

automaton GUESS �Index � type �
signature

input number �i � Int� g � Index�
output answer �a � Bool� g � Index��

who �g � Index�
internal choose one ��

states

value � Int �� choose i where � � i � ���
ready � Bool �� false�
sender � Index�
guessed � Bool �� false

transitions

input

number�i�g�
e� � if i � value

then guessed �� true
� 	
ready �� true � sender �� g

output

answer �a�g�
pre � a �� guessed � g �� sender � ready
e� � ready �� false

who �g�
pre � guessed � true � g � sender

internal

choose one ��
pre � guessed � true
e� � guessed �� false	

value �� choose i where � � i � ��

Figure
� GUESS receives a number and says if it is

the internal value�

initialized to zero� The e�ect of the who transition is
to accumulate to the score of the winning generator�

����� Parameterized Automata

Input�output automata can be de�ned with param�
eters� so a whole family of automata is actually de�
�ned with the same speci�cation� one for each value
of the parameter� Figure � shows a generic automaton
GENERATOR� there is actually one automaton for each
value of g�

The GENERATOR automaton is parameterized by g�
meaning that there is actually one automaton for each
value of g� but the set of g�s is not speci�ed either�

The semantics of the GENERATOR type is shown in
Figure �� Notice that the input transition answer and
the output transition number correspond to the inter�
face and the call in the Interface speci�cation in I

��
The IOA speci�cation also provides the semantics of
the GENERATOR� that is� whenever an answer is received�
the generator is ready to choose another number be�
tween � and � and send it to GUESS�

We specify two di�erent implementations for the

number (i)g

WINNER

GUESSGENERATORg

ganswer (a)

who (g)

Figure �� The GENERATOR is a parameterized au�

tomata�

automaton WINNER �Index � type �
signature

input who �g � Index�
states

score � Array
Index � Int�
so that � i � Index �score
i� � ��

transitions

input who �g�
e� � score
g� �� score
g� � �

Figure �� GUESS says who is the WINNER�

GENERATOR in Figure �� one that chooses the number
non�deterministically and another one that chooses the
number sequentially� In Figure �� we provide the spec�
i�cation of these two kinds of GENERATOR mentioned in
Section ��� Notice that this di�erentiation of gener�
ators is not present in Figure � because it shows only
the interface interaction of the automata but not the
semantics of this interaction� The speci�cations of the
two di�erent implementations of GENERATOR share their
name and signature� but they di�er in their internal
implementation� The parameter g in the signature is
de�ned as const� meaning that the value of this pa�
rameter is constant for every instance automaton�

The family of GENERATOR automata have an output
transition number that matches the input transition
with the same name in GUESS� and an input transi�
tion answer that matches the output transition with
the same name in GUESS� The answer transition has
an identical implementation in both generators� assign�
ing a true value to newtry� meaning that an answer
has been received� The implementation of the output
transition number is di�erent in both generators� in the

automaton GENERATOR �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

newtry � Bool �� true
transitions

input answer �a�g�
e� � newtry �� true

output number �i�g�
pre � � � i � �� � newtry � true
e� � newtry �� false

Figure � The GENERATOR type semantics�

non�deterministic generator� the new number i is an in�
teger number chosen non�deterministically between �
and �� and in the sequential generator� i is the num�
ber following the last one sent� In both cases� newtry
is set to false� disabling the number transition so no
other number is sent before a new answer is received�

Figure shows the complete speci�cation of the
GUESS�GENERATOR example� The set of the generator
identi�ers Index is de�ned as an enumerated type� No�
tice that the set of identi�ers corresponds to the in�
stance components de�ned in Section ���

Notice that the composition corresponds to a high
level speci�cation and assumes that GENERATOR au�
tomata are all identical and it does not consider the
two implementations shown in Figure �� We can as�
sume we are using the type de�nition in Figure �� We
can also produce a similar composition at the imple�
mentation level by including the two implementations
of GENERATOR� Using IOA methodology ��
 it is pos�
sible to formally prove that the implementation com�
position correctly implements GUESS�GENERATOR with
respect to its external behavior�

�� The Integrated Speci�cation

In this section� we examine the steps that are re�
quired to build an integrated speci�cation� The inde�
pendent speci�cations using I� and IOA presented in
Sections �� and ���� respectively� have elements that
are unique to each language� and most importantly for
our purposes� have elements that match to each other�
Thus� it is possible to build an integrated speci�ca�
tion by using the strengths of both languages� Our
proposed integrated speci�cation contains the �ve ab�
straction levels of I�� where each level is enhanced by
the speci�cation of the application�s semantics using
IOA�

automaton GENERATOR SQ �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

value � Int�
newtry� Bool �� true�

transitions

input answer �a�g�
e� � newtry �� true

output number�i�g�
pre � newtry	

i �� choose i where � � i � ��
e� � newtry �� false

automaton GENERATOR ND �type Index� g � Index�
signature

input answer �a � Bool� const g�
output number �i � Int� const g�

states

value � Int �� ��
newtry� Bool �� true�
last � Int

transitions

input answer �a�g�
e� � newtry �� true

output number�i�g�
pre � newtry � true	

if last � �� then i �� �
else i �� last � �
� 	

e� � newtry �� false	
last �� i

Figure ��� Two implementations for GENERATOR�

non�deterministic and sequential�

���� Matching Elements

Automata in IOA are de�ned by their name �with
zero or more parameters�� their signature� their state
variables� and the semantics of their transitions� In
I
�� component types are characterized by their names�

their interfaces and calls� component classes of the
same type share their interface but may have di�er�
ent implementations� component instances are identi�
cal implementations with a di�erentiating name� Ta�
ble details the matching elements in IOA and I�� this
correspondence is critical to understand the construc�
tion process of an integrated speci�cation�

The correspondence shown in Table establishes
associations between the di�erent modeling elements
that are present in IOA and I

�� These associations
are critical to allow a software engineer or distributed
system designer to utilize the two di�erent speci�ca�

automaton GUESS�GENERATOR

type Index � enumeration of nd�� nd� sq�� sq� sq�
compose

GUESS �type Index�	
WINNER �type Index�	
GENERATOR �type Index� g� for g � Index

Figure ��� Complete IOA Speci�cation�

IOA element I� element

Automaton�s name and signature Component type
Input transition declaration Interface
Output transition declaration Call
Internal transition declaration �
Parameterized automaton Component type�class

Not parameterized automaton Component instance
State variables �

Transitions� semantics �
� Hardware elements

Table �� Correspondence of I�O Automata and I�

de�nition elements�

tion languages in a complementary process in support
of de�ning a distributed application�

No hardware elements of a distributed system are
de�ned as part of input�output automata� So only the
software part of the Interface� Implementation� and In�

stantiation levels of I� can expect to share information
with IOA speci�cations�

���� I� � IOA

In this section� we explain the way that the di�er�
ent elements in select levels of I� match up with mod�
eling elements in IOA� However� there is one impor�
tant caveat for the discussion� Recall that unlike I��
there are no harware platforms or elements of a dis�
tributed system which can be explicitly de�ned as part
of input�output automata� Thus� for the purposes of
this paper� we concentrate on the software speci�cation
levels of I� �Interface� Implementation� and Instantia�

tion��

����� Interface

Generically� a type is de�ned by a combination of its
interface and its semantics� In I

�� the speci�cation
of a type is only given by its interface �the interfaces
and the calls� with the semantics only suggested by the
type�s name� Clearly� this semantics is imprecise� and
open for misinterpretation� In the de�nition of an IOA
automaton� a name is provided� and input and output

transitions are declared as part of its signature� If we
consider the component types in the diagram in Fig�
ure �� and the semantic speci�cation of the automata
in Figures �� � and �� we can see the coincidence of
types and automata names� interfaces with input tran�
sitions� and calls with output transitions� Thus� we
can combine the software Interface diagram of I� and
the corresponding speci�cation of each automaton cor�
responding to its type to obtain an integrated software
Interface speci�cation� As a result� we begin to aug�
ment I��s Interface with semantics supplied by IOA�s
automata�

����� Implementation

In the Implementation level of I�� we must spec�
ify the di�erent implementation classes that realize
each type identi�ed in the Interface level� In Fig�
ure �� we provide two di�erent IOA implementa�
tions for GENERATOR� GENERATOR ND and GENERATOR SQ�
These automata share the same input and output tran�
sitions with the type speci�cation of GENERATOR� More�
over� it can be shown that these two implementations
for the GENERATOR automaton type are forward simu�
lations ��
 of the GENERATOR type speci�ed in Figure ��
meaning that every trace of the implementations is also
a trace of the type� For example� there cannot be two
consecutive number transitions without a answer tran�
sition in between� and the numbers sent are always
integers between and �� Using this interpretation�
these implementations correspond to classes in I� ter�
minology�

In the cases of the GUESS and WINNER automata� we
provided a single implementation for each one� so the
need for a distinct level of abstraction between I� com�
ponent type and class speci�cation of these automata
is not evident�

Combining the concepts of I� and IOA in this case
yields an integrated speci�cation of the software Im�

plementation level of I�� shown in the diagram in Fig�
ure �� and enhanced with the IOA speci�cations in Fig�
ures �� � and ��

����� Instantiation

In the Instantiation level of I�� the actual instance
components of the application are identi�ed� The se�
mantics of these instances is identical to the semantics
of the classes they belong to� and they are distinguished
with a di�erent identifying name� As a result� the IOA
speci�cation of the complete system given in Figure
is equivalent to the combination of the Instantiation in
Figure 	 and the integrated Implementation speci�ca�
tion described in Section ������

The progression that combines I��s Interface� Imple�

mentation� and Instantiation with IOA automata from
Figures �� �� �� �� and � yields an integrated speci��
cation where the abstraction capabilities of I� can be
augmented and complemented with the semantic capa�
bilities of IOA�

�� Conclusions

The speci�cation� design� and construction of a dis�
tributed application is a di�cult task� complicated by
the absence of a single model� language� or methodol�
ogy that can be employed throughout all steps of the
process�

In this paper� our proposed integration of I� and
IOA represents an important �rst step in supporting
this di�cult process� where the strengths of one speci�
�cation language can o�set the weakness of the other�
We have shown that IOA provides the semantics and
dynamics I� lacks� while I� provides abstractions that
di�erentiate between types and classes� which is not as
clearly supported in IOA�

We have also shown that I� software Interface com�
ponent types and Implementation classes can be aug�
mented with semantics through the speci�cation of cor�
responding automata using IOA� Forward simulation in
IOA can be used to formalize the realization relation
between I��s types and classes� To accomplish this� we
must prove that a class actually implements the seman�
tics speci�ed for the type it realizes� the class and the
type must have the same input and output transitions�
and every trace of the class must also be a trace of the
type� Once this forward simulation is proven� the soft�
ware engineer can reason using the simpler type speci�
�cation rather than the more speci�c implementation�
The work presented in this paper is an important step
towards a combined speci�cation language that spans
multiple steps of the distributed application design and
development process�

Our ongoing e�orts continue to focus on a complete
integration of IOA and I

�� I
� provides an abstrac�

tion of hardware elements that is very important for
the speci�cation of distributed systems� especially for
de�ning deployment� Consider� for example� the re�
quirement that the GUESS and GENERATOR components
must be deployed together� but the WINNER is a remote
printer� This kind of requirements can be speci�ed us�
ing the Integration and�or Installation levels of I�� and
as a result the integrated speci�cation is more expres�
sive� However� there are no obvious analogs of this
activity within IOA� rather� we must understand how
this process in I� can in�uence and complement IOA�

We are also pursuing the speci�cation of the se�

mantics of interface� There is still no way to spec�
ify the meaning of the inheritance in I� without using
the component types�classes semantics� Inheritance in
IOA has been analyzed in ��
� and interface extension
seems to map nicely to I��s interface inheritance� as
well as specialization describes implementation inher�
itance� but additional work is needed to fully under�
stand the correspondence and its implications�

References

��	 Robert Allen and David Garlan
 A Formal Basis for
Architectural Connection
 ACM Transactions on Soft�
ware Engineering and Methodoly� ����������� July
����

�	 M
 Cecilia Bastarrica� Scott Craig� Steven A
 Demur�
jian� and Alex A
 Shvartsman
 Structural Speci�cation
of a Distributed System Using �
 In Proc� of the � In�
ternational Conference on Computer Science and In�
formatics� IC����� Atlantic City� NJ� February ���

��	 M
 Cecilia Bastarrica� Steven A
 Demurjian� and
Alex A
 Shvartsman
 I�� A Framework for Archi�
tectural Speci�cation of Distributed Object Systems

In Proceedings of the �rd International Conference
On Principles Of DIstributed Systems� OPODIS	

�
Hanoi� Vietnam� October ����

��	 Frank Buschman� Regine Meunier� Hans Rohnert� and
Peter Sommerlad
 Pattern Oriented Software Architec�
ture� A System of Patterns
 John Wiley � Son Ltd
�
August ����

��	 Hans�Erik Eriksson and Magnus Penker
 UML Toolkit

Johen Wiley and Sons� Inc
� �rst edition� ����

��	 D
 Garlan� R
 Allen� and J
 Ockerbloom
 Exploit�
ing Style in Architectural Design Environments
 In
Proceedings of SIGSOFT	
�� Foundations of Software
Engineering� pages �������� New Orleans� Louisiana�
USA� December ����

��	 D
 Garlan� R
 Monroe� and D
 Wile
 ACME� An Archi�
tectural Interconnection Language
 Technical Report
CMU�CS������� Carnegie Mellon University� Novem�
ber ����

��	 Stephen J
 Garland� Nancy A
 Lynch� and Mandana
Vaziri
 IOA� A Language for Specifying� Programming�
and Validating Distributed Systems
 Technical Report
User and Reference Manual� MIT Laboratory for Com�
puter Science� Cambridge� MA� December ����

��	 Idit Keidar� Roger Khazan� Nancy Lynch� and Alex
Shvartsman
 An Inheritance�Based Technique for
Building Simulation Proofs Incrementally
 In Proceed�
ings of the ��nd� International Conference on Soft�
ware Engineering� ICSE	���� to appear�� Limerick�
Ireland� ���

���	 D
 C
 Luckham and J
 Vera
 An Event�Based Archi�
tecture De�nition Language
 IEEE Transactions on
Software Engineering� pages �������� September ����

���	 Nancy Lynch
 Distributed Algorithms
 Morgan Kauf�
mann Publishers� ����

��	 Nancy Lynch and Mark Tuttle
 An Introduction to
Input�Output Automata
 CWI Quart� ����������
����

���	 N
 Medvidovic� R
 N
 Taylor� and Jr
 E
 J
 Whitehead

Formal Modeling of Software Architectures at Multiple
Levels of Abstraction
 In Proceedings of the California
Software Symposium �

�� pages ����� April ����

���	 M
 Moriconi� X
 Qian� and R
 A
 Riemenschneider

Correct Architecture Re�nement
 IEEE Transactions
on Software Engineering� pages ������� April ����

���	 Mary Shaw� Robert DeLine� Daniel V
 Klein�
Theodore L
 Ross� David M
 Young� and Gregory Ze�
lesni
 Abstractions for software architecture and tools
to support them
 IEEE Transactions on Software En�
gineering� ������������� April ����

���	 J
 M
 Spivey
 Understanding Z
 Cambridge Tracts in
Theoretical Computer Science �
 Cambridge Univer�
sity Press� ����

���	 S
 Vestal
 Metah Programmer�s Manual� version �
��

Technical report� Honeywell Technology Center� April
����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

