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Abstract

Systems able to cope with very large text collections are
making intensive use of distributed memory parallel com-
puting platforms such as Clusters of PCs. This is particu-
larly evident in Web Search Engines which must resort to
parallelism in order to deal efficiently with both high rates
of queries per unit time and high space requirements in the
form of large numbers of small documents stored in sec-
ondary memory. Those documents can be stored in com-
pressed format to reduce memory space and communication
time. This paper proposes a parallel algorithm for com-
pressing text in such a distributed memory environment. We
show efficient performance against the usual-practice alter-
native of compressing the whole text on a single machine.

1 Introduction

Over the last decade it has become relevant to study al-
gorithms devised to reduce the amount of space occupied
by very large text databases (giga/tera bytes). In addition,
it has become clear the convenience of letting query opera-
tions be performed directly on the compressed text to avoid
decompression on the fly. On the other hand, it has also
become evident that parallel computing can be an effective
tool for reducing running times in systems that demand the
processing of large numbers of queries on text databases.
Here we can also profit from reduced communication as a
result of transmitting compressed text/queries.

Compression algorithms save space by replacing the
most frequent words in the text with symbols (codes) re-
quiring much less space (a few bits). Notice that the com-
pression process can take a significant amount of running
time as this process at least grows up linearly with the size
n of the text database. On a p processors parallel computer

we should be able to improve this to O(n/p).

Modern and truly scalable parallel computer architec-
tures are those based on the distributed-memory sharing-
nothing model. In this case, the practical alternative is just
distributing evenly the text on the different processors and
a straightforward, but naive, approach in this case would
be to compress co-resident text using a standard sequential
algorithm in every processor.

However, this would involve dealing with different word
coding in every processor as a result of considering only a
subset of the whole text database. Queries would have to
be transmitted to their target processors in its original form
and once there they would have to be compressed to proceed
with the scanning of co-resident text. Then if the processing
of a query would have to be continued in another processor
it would be necessary a decompression before leaving the
current processor. For hundreds of queries per second this
approach is clearly not efficient. In addition, for systems
in which new text is constantly added to and old one is re-
moved from (e.g., a news service) it is desirable to have a
fast method for maintaining the global consistency.

This paper presents a parallel compression algorithm
which works on a text database distributed on p proces-
sors. We propose the parallelization of the (s, c) Dense
Code compression algorithm presented in [3], which is a
generalization of the algorithm presented in [2]. This par-
allelization is effected on top of the BSP model of parallel
computing [8, 12]. The model makes use of barrier synchro-
nization of processors in a way that it makes possible accu-
rate performance prediction of BSP algorithms. We show
that the proposed algorithm is able to compress distributed
text in O(n/p) running time and its design is such that it
let processors work in an almost perfect balanced manner at
reduced communication and synchronization costs.

To the best of our knowledge, no other attempts to par-
allelize this algorithm have been made so far, particularly



none for this one and other compression algorithms on the
BSP model of parallel computing.

Classic compression techniques such as the well-known
algorithms of Ziv and Lempel [13, 14] or the character ori-
ented code of Huffman [5], are not suitable for large textual
databases. An important disadvantage of these techniques
is the inefficiency of searching for words directly on the
compressed text. Compression schemes based on Huffman
codes are not often used on natural language text because
of the poor compression ratios achieved. On the other hand,
Ziv and Lempel algorithms obtain better compression ra-
tios, but the search for a word on the compressed text is
inefficient [7].

One of the compression schemes presented in [4] is
based on plain Huffman coding over words and allows the
fast search for a word on the compressed text without de-
compressing it. Here text words are considered the sym-
bols to be compressed and thereby the usual searching and
indexing techniques can work on the compressed repre-
sentation of words [6, 15]. In [2] an improved scheme is
presented which achieves better compression ratios, allows
searching directly on the compressed text, has a simpler and
smaller vocabulary representation and has a simpler and
faster coding strategy. The work in [3] further improves
compression ratios by adjusting codes generation to the par-
ticular word distribution in the given text database.

The remaining of this paper is organized as follows. Sec-
tion 2 presents a description of the model of parallel com-
puting. Section 3 describes the sequential compression al-
gorithm and section 4 presents its parallelization and analy-
sis. Section 5 presents conclusions.

2 The BSP model of Parallel Computation

The parallel compression algorithm we propose is de-
vised upon the bulk-synchronous model of parallel com-
puting (BSP model) [8, 12]. This is a distributed memory
model with a well-defined structure that enables the predic-
tion of running time. We use this last feature to compare
different alternatives by considering their respective effects
in communication and synchronization of processors. The
model of computation ensures portability at the very funda-
mental level by allowing algorithm design in a manner that
is independent of the architecture of the parallel computer.
Shared and distributed memory parallel computers are pro-
grammed in the same way. They are considered emulators
of the more general bulk-synchronous parallel machine.

In the BSP model of computing [8, 12] both computation
and communication take place in bulk before the next point
of global synchronization of processors. A BSP program is
composed of a sequence of supersteps. During each super-
step, the processors may only perform computations on data
held in their local memories and/or send messages to other

processors. These messages are available for processing at
their destinations by the next superstep, and each superstep
is ended with the barrier synchronization of the processors.

The practical model of programming is SPMD, which is
realized as p program copies running on the p processors,
wherein communication and synchronization among copies
is performed by ways of libraries such as BSPlib [10] or
BSPub [11]. Note that BSP is actually a paradigm of par-
allel programming and not a particular communication li-
brary. In practice, it is certainly possible to implement BSP
programs using the traditional PVM and MPI libraries. A
number of studies have shown that bulk-synchronous paral-
lel algorithms lead to more efficient performance than their
message-passing or shared-memory counterparts in many
applications [8, 9].

The total running time cost of a BSP program is the cu-
mulative sum of the costs of its supersteps, and the cost
of each superstep is the sum of three quantities: w, h g
and l, where w is the maximum of the computations per-
formed by each processor, h is the maximum of the mes-
sages sent/received by each processor with each word cost-
ing g units of running time, and l is the cost of barrier
synchronizing the processors. The effect of the computer
architecture is included by the parameters g and l, which
are increasing functions of p. These values along with the
processors speed s (e.g. mflops) can be empirically deter-
mined for each parallel computer by executing benchmark
programs at installation [8].

3 The (s, c)-Dense Coding Compression Al-
gorithm

Codes representing text elements are formed by se-
quences of base-c digits terminated by a digit between c and
c + s − 1. Digits between 0 and c− 1 are called continuers
whereas digits between c and c + s− 1 are called stoppers.
Digits can use any number of bits within bytes and codes
are stored using a certain number k of bytes. Thus there
is a pair (c, s) for which it is possible to get the optimal
compression. This depends on the particular distribution of
words (elements) in the text. Correspondence between ele-
ments and codes is assigned in a sequential way by follow-
ing a decreasing frequency order. Let k ≥ 1 be the number
of bytes in each code, then k satisfies

s
ck−1 − 1

c − 1
≤ i < s

ck − 1

c − 1
.

The code corresponding to text element i is formed by k−1
base-c digits plus a final digit. If k = 1, the code is the
stopper c + i where i = 0, 1, 2, ... indicate elements in de-
creasing frequency order with i = 0 being the most frequent
one in the whole text. Elements i > s requires one or more



continuers. In that case the code is formed by the number
bx/sc written as a sequence of digits in base-c and ended
by c + (x mod s) with x = i − sck−1−s

c−1
.

The optimal value for (s, c) is found by considering that
s + c = 2b and 1 ≤ s ≤ 2b − 1 where in practice b =
8 bits. The first s elements in frequency decreasing order
are encoded with 1 byte, the following s c elements with 2
bytes, s c2 with 3 bytes, s c3 with 4 bytes and so on. As
frequency information is determined for every text element
it is possible to predict the final size of the compressed file.
Then it suffices to test all possible values of s and choose the
one which produces the minimal file size. Calculation of the
compressed file size for a given s can be reduced by looking
directly at the points in which coding passes from k to k+1
bytes and working with the cumulative frequency at those
points. This is effected by advancing at s ck step increments
and adding the difference between the cumulative frequency
between the two inflection points.

The main steps followed by the sequential compression
algorithm are the following (further details in [3]):

1. Assume a text database composed of ne elements
(words, symbols, spaces, etc.). A scan over the text
determines a table T of nv pairs (element, frequency)
where frequency is the number of times the respec-
tive element appears in the text. This operation takes
O(ne) running time.

2. The table T is sorted by decreasing frequency and then
the cumulative frequency is calculated following the
pairs from the largest frequency to the smallest one.
The cost of these operations is O(nv log nv) units of
running time.

3. Compute the value of s that produces the least com-
pressed file size. This is effected by testing s values
between 1 and 2b − 1 in a binary search fashion. For
each value of s the determination of the file size can be
made in O(log nv log log nv) time [3].

4. Build up a codes table C with pairs (element, code)
by following the frequency table T in decreasing fre-
quency order and assigning codes from one byte first
to two or more bytes last. This has cost O(nv).

5. Produce the compressed file by transforming every ele-
ment in the input file to its corresponding code in table
C and storing it in the output file. This takes O(ne)
time.

Thus the cost of the sequential compression algorithm is
mainly O(ne). This because the size nv of the vocabulary
table T grows very slowly when the text size ne is very large
(it has been conjectured that it achieves a constant value for
huge ne [1]).

4 Parallel Compression with (s, c)-Dense
Coding

We assume that the text is evenly distributed on p proces-
sors such that co-resident text has size ne/p. The algorithm
proposed in this paper compress the whole text in O(ne/p)
computation time with very low overheads in communica-
tion and synchronization. The description is based on the 5
steps of the above described sequential algorithm.

The proposed BSP algorithm takes 6 supersteps to com-
plete the compression work. Every processor i effects the
following operations,

Superstep 1

• Every processor i builds table Ti of size nv at
cost ne/p + nv .

• Each pair (e, q) of table Ti is sent to processor
j = hash(e) where the hash function distributes
evenly elements e on the p processors. This op-
eration costs nv g + l.

Superstep 2

• Get the nv arriving pairs (ei, qi), (ej , qj),
(ek, qk), ..., and calculate (ei, qi + qj + qk + ...)
for all cases in which ei = ej = ek = .... At this
point in every pair (e, q) the value of q is the total
number of occurrences (frequency) of element e
in the whole text database. In every processor i
those values are stored in table T ∗

i of size nv/p.
The cost of this operation is nv.

BSP–Sort( T ∗
i )

• The p tables T ∗
i are sorted by decreasing fre-

quency order using a standard BSP sort algo-
rithm at cost O((nv/p) log(nv) + (nv/p) g + l)
for nv/p � 1. Let T+

i be the p sorted sets
0 ≤ i ≤ p − 1, each located in a different pro-
cessor such that T +

0 on processor 0 has the nv/p
elements with the largest frequency, T +

1 on pro-
cessor 1 has the nv/p second ones, and so on.

• Every processor i adds the frequencies located in
their respective tables T +

i and send the result to
processors i+1, i+2, ..., p−1 at cost O(nv/p+
p g).

Superstep 3

• Every processor i calculates the cumulative fre-
quency by considering the sums received from
processors 0, 1, ..., i − 1 and the frequency val-
ues stored in their respective tables T +

i at cost



O(nv/p). The cumulative frequencies are asso-
ciated with the elements of T from the most fre-
quent one to the least one.

• Calculate 2b log nv indexes x related to the posi-
tions in the global table T = ∪ 0≤ i <p T+

i for the
range of values of s and c with c = 2b − s and
1 ≤ s ≤ 2b − 2, such that the x values are the
positions at which each x is increased as x+ s ck

with k ≥ 0 and 0 ≤ x ≤ nv. This is effected
to let every processor i work on a different range
of 2b/p values of s in order to determine the pair
(s, c) that produces the optimal compressed file
size. These calculations use a determined num-
ber of cumulative frequencies stored at positions
given by the x values.

• Every processor i sends pairs (x, u), where po-
sition x is in T+

i and u is its cumulative fre-
quency, to the processor in charge of the respec-
tive range of values of s. The cost of this opera-
tion is O( (2b/p log nv )g ).

Superstep 4

• Every processor i receives the pairs (x, u) and
calculates the local minimum value of s and the
respective file size using the sequential algorithm
at cost O(2b/p log nv).

• Send the local minimum (s,size) to all other pro-
cessors at cost O(p g).

Superstep 5

• From the arriving local minima determine the op-
timal (s, c).

• Using the optimal (s, c) and information about
how the global indexes to table T = ∪ 0≤ i <p T+

i

are distributed on the p processors, calculate the
codes table Ci. This costs O(nv).

• Every processor i sends its codes table Ci to all
others at cost nv g.

Superstep 6

• Merge the arriving codes tables Ck at cost nv .

• Compress the local text using table C =
∪ 0≤ i <p Ci at cost O(ne/p).

Then the total asymptotic cost of the compression BSP al-
gorithm is given by

ne/p + nv + nv g + l

Note that any parallel algorithm has to pay the communica-
tion cost nv g since the text is distributed on the p machines
and all of them need the same codes table C of size nv. If
this table were calculated in just one machine this cost could
increase to nv p g.

Empirical Results

Experiments where performed to evaluate the practical
performance of the proposed BSP algorithm. We worked
on a number of PCs connected by a communication 100MB
switch. Text come from a Chilean newspaper, Latex files
and postscript files. Since we observed that the cost of com-
munication was smaller than the cost of memory secondary,
we performed experiments with fairly small texts since, for
our PC cluster, those are the conditions in which the paral-
lel algorithm is less efficient when compared to the sequen-
tial one. We worked with files sizes ranging from 1MB to
32MB.

We performed experiments to investigate the running
time cost of the five main steps followed by the sequen-
tial algorithm. The first and last steps of the sequential
algorithm take O(ne) time and our parallel algorithm can
perform those in O(ne/p) time. Thus it is relevant to in-
vestigate the relative importance of the steps 2-4 so we can
have a picture of how hard is to amortize communication
and synchronization with the gain O(ne/p). The parallel
algorithm can also amortize communication by performing
the 2-4 steps over a n/p fraction of the data size. In all cases
we observed that the running time cost of steps 2-4 was be-
low 15%. The cost of steps 1 and 5 was strongly influenced
(70%) by the data structure used to handle tables T and C.

In figure 1 we show speedups for 4 and 8 processors on
1MB–32MB samples of a Chilean newspaper. Other for-
mat files performed in a similar way. It can be observed that
the parallel algorithm can easily outperform the sequential
one. This is mainly due to the O(ne/p) improvement on the
steps 1 and 5 of the sequential algorithm. Note, however,
that the sequential running times are quite high when com-
pared with fast compressors such as the GNU gzip pro-
gram. Our implementations are in C++ and we compiled
with GNU g++ with -O3 compiler option. We have real-
ized that we need to further improve our implementation of
tables T and C as they are still an important fraction of the
total running time.

Nevertheless the BSP cost of the algorithm we propose
in this paper shows that it is indeed a scalable algorithm
which can deal efficiently with very large text databases.
This because the term nv grows very slowly with ne making
that the dominant cost be the supersteps 1 (first point) and 6
(last point).

5 Conclusions

We have proposed a BSP realization of a recently de-
veloped compression algorithm [3]. The algorithm is ef-
ficient in practice because it is able to reduce the amount
of communication and synchronization. Its asymptotic cost
is ne/p + nv + nv g + l with low constant factors. For
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Figure 1. Speedups for 4 and 8 processors for
text from a newspaper.

very large text databases (terabytes) the dominating factor
is ne/P since nv tends to a constant or grows very slowly.

The proposed BSP algorithm admits some low cost vari-
ants that simplify its implementation. A crude but effective
strategy can be to locally sort the resulting tables T ∗

i in su-
perstep 2 and immediately send those tables to all other pro-
cessors. This costs O(nv/p log nv/p+nv g). In superstep 3
we can merge the arriving tables so we end up with a vocab-
ulary table that contains all text elements (words, symbols,
etc) together with their global frequencies of occurrences in
the whole text database. From this point onward we can
proceed as in the sequential algorithm. We can also include
a couple of supersteps to let every processor work on the
calculation of the optimal (s, c) in parallel and over a sub-
set 2b/p of the range of values of s. Of course, all of this
performs more sequential work than the proposed BSP al-
gorithm because no calculations over a subset nv/p of the
vocabulary are performed. However, we have observed that
it has reasonable performance in practice.

We are currently improving the efficiency of the algo-
rithms in charge of handling the vocabulary table T and the
codes table C. Even though in our implementation we have
them as hashing tables, they are still dominating the run-
ning time cost. Thus some extra care must be taken in order
to make them faster so that our sequential realization can
achieve running times fairly similar to standard compres-
sion programs. This does not have a significant effect in the
comparative efficiency of the parallel algorithm proposed in
this paper since in it the same strategy is to be used in the
respective tables T and C.
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