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Given a parametrised measure and a family of continuous functions (<pn), we construct a
sequence of functions (uk) such that, as fc-> co, the functions fn(uk) converge to the
corresponding moments of the measure, in the weak * topology. Using the sequence (uk)
corresponding to a dense family of continuous functions, a proof of the fundamental theorem
for Young measures is given.

We apply these techniques to an optimal design problem for plates with variable thickness.
The relaxation of the compliance functional involves three continuous functions of the
thickness. We characterise a set of admissible generalised thicknesses, on which the relaxed
functional attains its minimum.

1. Introduction

Usual strategies to prove existence of solutions for PDEs, and the problems of the
calculus of variations, consist in studying the limit of an approximating sequence.
When the problem is linear, this limit will usually satisfy the PDE or be an admissible
candidate for a minimum. However, the limit of nonlinear expressions does not in
general coincide with the nonlinear expression of the limit. The following theorem,
known as the fundamental theorem for Young measures, enables us to represent
limits of nonlinear expressions of a sequence of functions by a parametrised family
of measures.

THEOREM 1.1. Let Q be a closed boundary set in IRP, Q an open bounded set in W.
(1) Let (uk) be a sequence of measurable functions satisfying

uk:£l^>Rp, ukeQ a.e. xeCl,

and consider a continuous function fe < (̂Q, K). There exists a subsequence, still denoted
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(uk) and a family of Borel probability measures (vx)xeii such that

supp (vx) c Q a.e. xeQ,

f(uk)^f(x) weakly * in L°°(Q),

where f(x) = (yx,fy. (For a Borel measure \i with support in Rp, < / i , / ) denotes

(2) Conversely, given (vx) as above, there exists a sequence of measurable functions
ut: fi —• (?, such that

V/e<if(<Q,R), / ( u , W ( x ) = <vx,/> weakly * in L°°(Q). (1.1)

Parametrised measures were introduced by L. C. Young [20] as a means of
studying problems of the calculus of variations that did not admit solutions in the
classical sense. Subsequent developments and applications to problems of optimal
control have been made by McShane [14].

The above version of the fundamental theorem is due to Tartar [19], who applied
it to show existence of solutions to a single scalar hyperbolic equation [9,17].
Di Perna [15] proved existence of solutions in the more difficult case of a system
of two hyperbolic equations in one space variable. James and Kinderlehrer [13],
and Chipot and Kinderlehrer [8] have used Young measures in the context of
variational problems of continuum mechanics. Kinderlehrer and Pedregal [11] have
addressed the problem of identifying those Young measures which are weak * limits
of a sequence of gradients.

Tartar's proof is based on the Radon-Nykodym Theorem, and on the closedness
and convexity properties of the set of measures associated with a measurable function,
i.e. measures fx such that there exists a measurable function u :Q->2, with
</i,/> = J n / (x , u(x)) dx, for all continuous functions / e ^(fi x Q, R).

In this paper, we are mainly interested in proving the converse part of the
fundamental theorem in a more constructive way: given a parametrised measure (vx),
we exhibit a sequence (uk) that satisfies (1.1).

Our construction can be sketched as follows. We consider a dense family of
functions (<pm) e ^(Q, K). For each n, we construct a sequence of functions
(uKn):Q.-yQ, that satisfies (1.1) for the n first q>m. These functions are obtained using
a result in measure theory stated in Section 2 of this paper, Theorem 2.2, which
yields an approximation of the parametrised measure vx by convex sums of Dirac
masses. A diagonal process, as n tends to infinity, yields the desired sequence (uk).

The sequence of functions we construct, have "rapid variations", and can be
interesting in the characterisation of minimising sequences in problems of the calculus
of variations. As an example, we apply our method to a problem of optimal design
of orthotropic plates with parallel stiffeners. The admissible half-thicknesses heU°
depend on one variable only. We would like to minimise the compliance (the work
done by the load) under the constraint of a prescribed volume. However, this
minimisation problem does not have a solution in the set of admissible thicknesses,
because the non-zero coefficients of the thickness matrix are proportional to h3. We
show that, with our approximation Theorem 2.2, the set of admissible thicknesses
and the definition of the compliance can be extended, so that the minimisation
problem has a solution.

This paper is organised as follows: in Section 2, we state our approximation
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Theorem 2.2: given a parametrised measure (vx)xea, there exists a measurable convex
sum of Dirac masses for a.e. x, whose moments, with respect to a finite number of
continuous functions (q>n), coincide with those of vx. This result is related to measur-
able multifunctions and to the selection theorem of convex analysis [3 ,5 ] , although
we do not use the same techniques here. We prove this first for p = 1, i.e. when the
support of vx lies in an interval, and when the continuous functions are the monomials
(X, X2, X3,...). This case is related to the Gauss-Jacobi mechanical quadrature and,
when vx is the Lebesgue measure, to the Gauss-Lobatto quadrature formula.

In Section 3, we consider the general case p S; 1, with sufficient hypotheses on the
family (<pn). The proof of the fundamental theorem for Young measures is given in
Section 4, and Section 5 is devoted to the application to optimal design of plates
with stiffeners.

2. Approximation of the moments of a measure by those of convex sums of
Dirac masses

Let Q = [0, l ] p and let (cpk)keN be a sequence of continuous functions defined on Q,
that satisfy the following hypotheses:

(HI) the functions (<pk)keM form a dense set of linearly independent functions
in <«?(2, R);

(H2) the functions (<pk)keN are positive and bounded on Q, uniformly with respect
to k, for example

(H3) there exists N ^ 1, such that for n ^ N, no point (<Pi(X),..., q>n{X)), with X e Q,
can be written as a finite convex combination of points of the same form.
That is, if

\<Pn(Xi)l

with

X,XteQ 0 , ^ 0 l £ i

then there exists i0, 1 ^ i0 g m, such that

Remark 2.1. Hypothesis (H3) implies that the functions (%)*<= N separate the meas-
ures d±. When p = 1, and when the functions <pk are the polynomials Xk, assumptions
(H1)-(H3) are clearly satisfied. In particular, (H3) is satisfied since the curve
X->(X, X2,..., X") is a twisted curve in R".

Our construction of a sequence of functions satisfying (1.1), in the converse part
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of the fundamental theorem for Young measures, is based on the following result,
which we sometimes refer to as the "approximation theorem".

THEOREM 2.2. Let Q be an open bounded set in Rr, and (/Oxen be a family of positive
Borel measures such that

supp {nx) <= g _
a.e. x e £2.

Assume that x -• /<x is measurable, i.e. that

V/e«i?(G,R), x-+(nxjy

is Lebesgue measurable on Q.
Then there exist 2(n + 1) measurable functions 9j(x), a;(x), defined on Q,

'6j(x)e 10,11

aj(x) e g ~J a.e. xeil,
n + l

: 8j(X)=i

such that

V 1 ^ m ̂  n, < fix, <pm > = £ fl/x^^/x)) a.e. xeCl

//, moreover, p = 1, and #>t = A*, f/ien tnere exist 2n measurable functions 9j(x), aj(x),
defined on Q, with value in [0 ,1] , sucn that

V l ^ m ^ 2 n - 1 <^,Am>= X ^(x)a7(x) a.e. xeQ. (2.1)

The rest of this section is devoted to the proof of this theorem when p = 1, and
w h e n <pk = Xk.

Orthogonal polynomials
Let us fix a point xeil, and let us consider the distribution function OL(X) associated
with the measure vx, i.e. the unique increasing function of bounded variation, defined
on [0 ,1] , such that

V/eff([0, l ]) , <vx,/(*)>= f f(l)da(X),
Jo

where the integral on the right-hand side is defined in the sense of Lebesgue-Stieltjes
integrals [2] . Since L^(0,1) is a Hilbert space, the following result holds:

THEOREM 2.3. Assume that a has at least I + 1 points of increase. There exists a unique
set of orthonormal polynomials with real coefficients, po(fy, Pi(A),..., pt(X), such that

(a) f pn(X)pm(X)da(l) = 5nm 0^n,m^l, and
Jo

(b) for n^l, the degree of pn(X) is exactly n, and the coefficient of k" is positive.
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Let us list some of the properties of these polynomials. The proofs (and more
properties) can be found in Szego's book [18].

PROPOSITION 2.4. The quantity

cn=

is the n-th moment of the distribution function a. The polynomial pn(X) has the following
explicit representation:

Cn Cn+1 • • • C2n-1

X X2 ... X"

where the brackets denote the determinant and where, for n 2:0,

Let Jfn(X) denote the set of polynomials with complex coefficients, of degree less
than or equal to n. The polynomials {pk},0^k^n — l, form a family of increasing
degree, hence a basis of jrn_x(A). Any polynomial in the latter space can be written
as a linear combination of the pk, and the orthogonality properties yield the following
proposition:

PROPOSITION 2.5. V ? e JT^^X), \\q(X)Pn{X)da(X) = 0.

We also need some properties of the zeros of orthogonal polynomials:

PROPOSITION 2.6. The zeros of pn(X) are real and distinct. They are located in the
interior of the interval (0,1).

Proof. Let a0 be an arbitrary root of pn(X). As its coefficients are real, it is divisible
by the polynomial (X — a0). The polynomial (pn(X))/(X — a0) is in Jfn_1; and is thus
orthogonal to pn(X):

da{X),0= f^rpn{X)da(X) = (*-flo),M ,
Jo ^ - « o Jo \U-flol

i.e.

a0 o \\*-ao\
da(X).

Jo VU-Ool.

Since the integrand on the right-hand side is positive, a0 is real and

0 < a0 < 1.
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If a0 were a multiple root, we would have

Jo (^-«o) Jo \ A a /

which is impossible, since a is positive. •

The following theorem is known as the Gauss-Jacobi mechanical quadrature:

THEOREM 2.7. Let (anl,..., ann) denote the zeros ofpn{X). There exists a unique set of
real numbers (6nl,..., 6m) e U", such that

V p e Jfi,.!(A), f p{X) da(X) = £ 6nip(ani). (2.2)
Jo ; = i

T/ie coefficients 0ni are called the Cristoffel numbers, and satisfy

Proof. Let p be a polynomial of degree less than 2n — 1, and let Lp denote the
Lagrange interpolation polynomial of degree n — 1, such that

Lp(ani) = p(aBf), 1 ^ i ̂  n,

i.e.

The polynomial p(X) — Lp(A) is divisible by pn(X):

3 r e Jtr.-dXi/piX) - Lp(X) = pn(X)r(X).

Integrating with respect to a and applying Proposition 2.5 yields

which is formula (2.2) with

To get (2.3), choose
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and (2.2) becomes

Jo U-OrttaJ
Proof of the second part of the approximation theorem
Let Ck, k ^ 0 be the set of points x in Q, such that the distribution function associated
to vx has k points of increase, i.e. vx is a sum of k Dirac masses. Let

As x varies in 0B + 1, we can define for 1 ̂  j ^ n

0/x) = 0Bj, a^(x) = aBJ-,

to be the weights and roots associated to the measure /ix.
If x e Ck, we can only define k orthonormal polynomials, because the functions

{1, X, X2,..., Xk+1} are not independent. In this case, we define at{x), 6i(x) as the
roots and Cristoffel numbers associated with pk(X), i.e.

6j(x) = 6kJ, aj(x) = akj, lZj^k,

and we set

6j(x) = 0, aj(x) = 0,j>k.

With these definitions and using Theorem 2.7, we see that relations (2.1) are satisfied.
To complete the proof of Theorem 2.2, we have to show that these functions are

measurable.

PROPOSITION 2.8. Assume that {vx}xen is a family of probability measures with support
in [0 ,1] such that, for all continuous functions f defined on [0 ,1 ] , the function

is measurable. Then the functions Gj, ap as defined above, are measurable on Q x [0 ,1]
with respect to Lebesgue measure.

Proof. Step 1: Consider the function

Gn+1: x e @n+1->(aHl(x),..., am(xj).

By Proposition 2.6, Gn+1 is the composition of the following functions:

where Jf *(1) is the subset of elements of 3Cn(X) which have n distinct roots. The
Implicit Function Theorem ensures that g2 is continuous on X * . On the other hand,
Proposition 2.4 gives us explicit expressions for the coefficients of pn{X) in terms of
the moments <vx, l

p>. By assumption, these are measurable functions. Hence, the
composition g2°gi is measurable.

Theorem 2.7 provides explicit formulae for the Cristoffel numbers in terms of the
moments and the roots of pn(X). Hence, the mapping

is also measurable.
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The same argument shows the measurability of the mappings

x e Ck: -> (akl(x),..., akk(x), 0 , . . . , 0),

xeCk:^(6kl{x),...,Oa(x),0,...,0).

Step 2: We now show that the sets Q 0 ^ k ^ n, and OH+1, are measurable. Let Ji
be the set of Borel probability measures denned on [0 ,1] . To each element of Ji,
there corresponds a unique increasing distribution function of bounded variation.
Consider the function H which associates to an element in Ji, the number of points
of increase of its distribution function. Since the elements of Ji are positive measures,
the set Jin = H~1([0, n]) consists of the convex sums of at most n Dirac masses.

LEMMA 2.9. The set Jin is a closed set for the weak * topology on Ji.

Proof. Assuming that

Hk^fi weakly * in Ji,

to= 1 ^ . E 0 H = 1, and fcHe[0,l],
; = i i = i

we can extract a subsequence such that, as k tends to infinity,

Then, S?=1 d, = 1, and for <p e <$(\_0,1]) we have

<n*,9>= t 0HP(*«)- t ei9(bi) (
i = l i=l \ i= l

Thus, ,u = Z?=! flj^ belongs to Jin. U

Now consider the mapping:

F: Q. -»(«^, weak * topology),

By assumption F is measurable, and we have:

\Ck= F-^iJ

Since the sets (Ji\Jin), {Jik\Jik-1) are Borel sets, &n+l, Ck are measurable. •

3. The proof (orp^l

In this part we consider the general case. The proof is based on techniques of convex
analysis, since polynomials of several variables are much more difficult to handle.
However, our result will not be as sharp as in the case p = 1, since we need n + 1
Dirac masses to represent n moments of the original measure fix, for a.e. x.
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Properties of the moment space
Let Jt denote the space of (Borel) probability measures with supports in Q. We
define the moment space Dn by

Dn = {y e R" such that 3 fie Jt/ym = O , <pm} l^m^n}.

When a point y e Dn is defined by a Dirac measure 5^, we say that y is an image
of A.

PROPOSITION 3.1. The set Dn is a closed, convex, bounded body in M.".

Proof. Our proof and the proof of Theorem 3.2 extend the work of Karlin and
Shapley [8] . For simplicity, we assume that <pm{0) = 0 for all m.

(1) Since Jt is a convex set, we have

Vl^m^n, V0e[0,1], Vnun2eJt,

9m> + (1 - 0)</*2, <Pm> = <fyl + (1 - 0)H2, <pm).

It follows from (H2) that Dn is bounded: indeed for y = ((n, $?!> , . . . , </i, (pm}) e Dn

we have

V 1 ̂  m ^ n, \ym\ = \(n, <pm}\ ̂  sup \<pm\(n, 1> ^ sup \<pm\.

(2) Let us consider a sequence of points (yfc)fesl in Dn, that converges to some yx.
A measure / t̂ is associated to each point, such that

V l ^ m ^ n , yk,m = (nk,(pm}.

Since the sequence (fik) is relatively compact for the weak convergence in Jt [2 ] ,
we can extract a subsequence that converges weakly to a measure \ix e M. In
particular / ^ satisfies

It follows that Dn is closed.
(3) To show that Dn is a body, i.e. that it contains an n-dimensional manifold, it

suffices to prove that it contains a n-simplex. We claim that, since the functions
(<p1,..., (pn) are linearly independent on Q, there exist n distinct points
{X1,...,Xn)eQn, such that

det (3.1)

This claim is easily proved by induction: let us suppose that it is true up to n — 1.
Were it not true for n, developing the determinant (3.1) about its last column would
yield

t <Pi(L)GMu ..., L-i) = 0, V (Xlt..., Xn) e Qn, (3.2)

where the functions Gt are minor determinants. By the induction hypothesis, there
exist n — 1 points (»/!, ...,»/„_!) such that
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Relation (3.2) yields

with gi = Gi(n1,..., r\n _!), which is contradictory to the assumption of linear indepen-
dence of the (<pm). Hence, there exist (A1 ; . . . , An) e Q", which satisfy (3.2). It follows
that the images of (0, A j , . . . , AB), i.e. the points

form a n-simplex of Dn. D

Characterisation of the extreme points of Dn

We recall that a point x in a convex set C is called an extreme point if x does not
lie in the interior of any segment of points of C. We say that x e C is spanned by
points (xt)iSisk<a0 e Ck, if x is a convex combination of these points.

We are now ready to describe the extreme points of Dn: let Cn denote the points
of Dn which are images of points of Q, i.e.

THEOREM 3.2. For n^tN given by hypothesis (H3), the set of extreme points of Dn is
exactly Cn.

Proof. Let M denote the subset of M, consisting of finite convex combinations of
Dirac masses with support in Q, and let Dn be the moment space of elements of Jt.
Clearly, Dn is spanned by Cn. Since Cn is closed and bounded, so is Dn [17].
Moreover, Jt is dense in J( for the weak topology [2] : for each fieJf, there exists
a sequence fik of elements of J(, such that

In particular, for / = <pm, 1 ̂  m ̂  n, we can approximate the moments of fi by the
moments of p.k, for k large enough. Hence, Dn is contained in the closure of Dn, and
since the latter is closed,

Thus, Cn spans Dn. Assumption (H3) implies that no point in Cn can be spanned by
other points of Cn. It follows that Cn is the set of extreme points of Dn [17]. •

EXAMPLE 3.3. We consider the family of homogeneous monomials in [0, l ] p ,
classified by increasing total order,

Pk = x\i...xk/, k = {ku...,kp).

We are going to show that this family satisfies hypotheses (H1)-(H3). The first two
follow from standard results on polynomials, so we focus only on (H3).

Let

fr + p
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We consider the n polynomials Kn = {Pk/\k\ :g r}, and the associated moment space
Dn.

We denote by k(i) the p-upple {Sij)lsJip, while 2k(i) stands for (28itj)lsJ&p. Thus,
the polynomials Pm and P2k(i) are simply xt and xf respectively, and they belong
to Kn.

Given a point r\ e Q, we consider the linear form H^ defined on IR" by

where y7- denotes the j-th component of y, and nt the i-th component of n.
Let y(^) denote the image of a point k e Q, in the moment space Dn, i.e.

For X # ?;, we have

It follows that y(f/) cannot be written as a convex combination of other points of
the form y(k), for we would have

Approximation of the n first moments of a measure
From Caratheodory's Theorem [17], we conclude that for n^.

such that

V l g m ^ n , in,(pm)= Y, UVmini), (3-3)

n + l
S t* = I- (3-4)

Of course, for a given measure pie Jt, such (n + l)-upples of points nt and weights
tt are not unique (in fact, if the moments of n are in the interior of Dn, there are
infinitely many ways of spanning these moments). We are going to construct an
application that will select one set of points r\h and the associated weights:
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Let us fix n e Jl. We define Jln{\£) as the set of convex combinations of at most
n + 1 Dirac masses, and whose n first moments coincide with those of \i:

= (nu...,nn+1)€Q°+1

H(E,T) I

+, byWe also define a function

Hypothesis (H2) ensures that fl>^ is well defined, and is a bounded positive function.
The same argument as in the proof of Lemma 2.9, shows that J^n{pt) is compact for
the weak * topology on Jl.

LEMMA 3.4. The function <!>,, is continuous on Jl, and strictly convex.

Proof, (a) Since Jl is metrisable [16], it suffices to show that $„ is sequentially
continuous. Let (vfc) be a sequence of elements of Jl that converge weakly to a
measure v, and let s > 0.

The weak convergence of (vk) implies that

For k ^ N, it follows that

l<Mvt)-<Mv)|^ £ 2-'|<vjt-/i,^>
i = l

(b) Let 6 e [0 ,1 ] , and consider vl5 v2 e «#.

with equality if and only if

VfceN, <v

i.e. if and only if vx = v2, since (<pk) is a dense family in ^{Q, R). Thus, $„ is strictly
convex. D

Remark 3.5. A slight modification in part (a) of the above proof gives a stronger
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result: if (fik, vk) is a sequence of elements in Ji x J{n that converges to (/i, v), then

%k(vk)-^%(v) as/c->oo.

THEOREM 3.6. There exists a unique element ^ e Jtn{\n), that minimises fy over Jtn{\i).

Proof. Let us consider a minimising sequence n(Ek, Tk) in Jln{\£). Since JIn{n) is
compact, we can extract a subsequence that converges weakly to some £„. Since <!>,,
is continuous,

*„«, , )= inf %.

The minimum is unique due to the strict convexity of $^. •

We can therefore define a mapping

Measurability of the mapping X
In this part, we show that the mapping X defined above is measurable. This result
will enable us to conclude that the functions 0}, a} are measurable, as advertised in
the statement of Theorem 2.2.

To this effect, we first approximate X in order to deal with a minimisation problem
defined on the whole Jtn, rather than on J?n(fi). We define, for v e i 1 , ,

k=l / k=n+l

If (nk, vk), sequence of elements of M x Mn, converges weakly to (n, v), it follows
from Lemma 3.4 and from Remark 4.2, that

% k % a s f c ^ a x (3.5)

The function 4>* is therefore continuous and strictly convex. We remark that, for
v e J?n(n),

<W = < W (3.6)
By an argument similar to that in Theorem 3.6, there exists a unique £* e Jtn,

which minimises <3>̂  over Mn. We denote by Xs the mapping that associates <jj to fi.

LEMMA 3.7. ^ -*• ^ , as s -* oo.

Proof. By compactness of Mn, we can extract a subsequence (<^)s, that converges to
some ^ e Jtn. We first show that £? e Jtn(\i\ and then that £% = ^ .

(a) Suppose that for some m, 1 ^ m ̂  n, we have

Then

<DJ({J) ̂  2~\ ^ >2 ~ 2-*a2s as s ^ oo.

But fl>*(^) has to be bounded uniformly with respect to s, since we have by (3.6),
for all s and for v € Jln{\x)
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Thus we must have

(b) By definition of <**, and since <*" e J^n{n), we have

On the other hand,

and the argument used in Lemma 3.4 shows that the right-hand side converges, as
s-» oo, to

Thus, <&^(^) = O/J(^), and the lemma follows from the strict convexity of $„. •

LEMMA 3.8. For s fixed, Xs is continuous.

Proof. Here again, it suffices to show that Xs is sequentially continuous. Let (fik) be
a sequence in Jl, that converges to n e M. We can extract a subsequence, such that
(£*J converges weakly to some £s e Jtn. Relation (3.5) implies

% k J % asfc^oo. (3.7)

The definition of £*k implies

By (3.5), the right-hand side of (3.8) converges to $^(^). Thus, it follows from
(3.7)-(3.8) that

and so £,s = ^ , by strict convexity of (DJ;. Thus, Xs{fik) converges weakly to Xs(n) as
/c^oo. D

As an immediate consequence of Lemma 3.8, we have

COROLLARY 3.9. The mapping X = lim inf^oo Xs is a Borel function.

Definition of the functions x ->• 0j(x), O,(JC)

Let E = (rj1,...,t]n+1) and T=(tl,.. .,tn+i) be the points and weights associated
with <*„. They are only defined up to a permutation of the points associated with a
non-zero weight. Let fc(£J be the number of such points and
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For ,ux e Cm, we define

0 .
for j > m,

0
where the points /jj are classified by lexicographic order.

From the measurability of the application which associates to an element of
Jim\Jim_t its points, classified by lexicographic order and its weights, from
Corollary 3.9, which implies that

is a Borel set, and from the measurability of x->/ix, it follows that the functions
6j(x), aj(x) are measurable.

By (3.3)—(3.4), these functions also satisfy the desired property on the moments:

n + 1

This concludes the proof of Theorem 2.2. •

4. A version of the proof of the fundamental theorem for Young measures

Representation of the weak * limit by parametrised measures
In this section we prove the direct part of Theorem 1.1. For a proof of a more
general statement, we refer to the article of J. Ball [1].

We can always assume that Q = [0, l ] p . Let Jfc(A) denote the space of polynomials
with rational coefficients. Since the sequence of functions (uk)k is bounded in Q, after
a countable number of extractions, we can extract a subsequence such that for each
polynomial p e Jfe, there exists a function p e LX(Q) such that

p{Uk)^PeL?°{Q) weakly * as k->oo.

We denote by co the set of those x e Q, such that p e JTC -»p(x) 6 M. is a positive
mapping and

VA,/*ee, Vp,qeXQ Xp + nq{x) = Ap(x) + nq{x)

Vpe^Q, |p(x)|^||p|| t~(n). (4.1)

Since jfQ is countable, (Q\co) is a set of measure 0.
We extend the mapping p->p(x) to all continuous functions: by the

Stone-Weierstrass Theorem, a function / e #(Q, K) can be uniformly approximated
by a sequence (pn)n of polynomials, and these polynomials can be chosen in Jfe. We
define then for x e co,

/(x)=limpn(x).
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This limit exists since by definition of co we have

V x € «, | pn{x) -pm(x)\^\pn- pjx) I

^ II P«— Pm II !/"<«)

^ H P « - P » I I L - ( P , I ) ,

hence, pn(x) is a Cauchy sequence. Letting m tend to zero in the previous inequality
yields

a, \f(x)-pn(x)\^\\f-pn\ (4.2)

The same argument shows that if (<?„)„ is another sequence of polynomials in Jf"Q,
that converges uniformly to / ,

V x e co, lim qn(x) = lim pn{x) = / (x) ,

i.e. / is well defined on co.
We claim that f{uk) converges to / weakly * in

i/' e L 1 ^ ) , and consider

(f(uk(x)-f(xMdx

as fc->oo. Indeed, let

The first two terms on the right-hand side go to 0 by the uniform convergence of
pn to / which, by (4.2), implies uniform convergence of pn towards / since (Q\co) has
measure 0. The last term tends to 0 by the definition of pn, the weak*limit of pn(uk).

For x e co, we can consider the mapping

/ 6 <f(Q,R)->/(*) eR .

Using the properties of co, it is easily seen that this mapping is linear and positive.
By the Riesz-Markov Representation Theorem [14], there exists a unique Borel
measure vx, such that

Taking / = 1, we see that vx is a probability measure a.e. on Q.

Proof of the converse
For simplicity, we assume that fl is an interval in R and that p = 1, but the proof
can be extended to the general case. Let vx be a family of measures parametrised by
the elements of Q, that satisfies the assumptions of Theorem 1.1. Let K be the set of
monomials Xm, m ^ 0.

We first construct a sequence unJi, for which we can pass to the limit in a finite
number of nonlinear expressions, corresponding to the 2n — 1 first functions of K:
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According to Theorem 2.2, there exist In measurable functions 0,(x), a,(x), such that

V 0 g m £ 2n - 1, <fix, X
m > = £ 0,(x)flT(x).

Let Ai(x) be the interval

Note that the (Lebesgue) measures of A((x) is 9t(x). Let

This is a measurable function on Q, x [0,1], with respect to Lebesgue measure. Also,
it satisfies

0 ^ inf a{(x) ^ un(x, y) g sup a,(x) ^ 1 a.e. on Q x [0, 1].

Let us consider the following sequence of functions:

«»,*(*) = un(x, (kx) - [/ex]), k e N,

where the brackets [z] denote the highest integer less than z. We remark that (unk(x))m

is also a function of the variables x and kx — [/ex]. This form of dependence on the
second variable introduces a rapidly oscillating behaviour around a mean value that
depends on x. By a lemma of [4], we can compute weak * limits of such functions:

f1
vk(x) = v(x, (kx) - [fcx]) -^ v(x, y) dy weakly * in L°°(Q), as k -»oo.

Jo

If we apply that lemma to our sequence (unsk)keH, we obtain as /e->oo:

Kk)m - f £ flT(x) 1 W ) 0 ^ V 0 ^ m ̂  In - 1,
Jo ;=i

= £ aT(x)6i(x)

= <vx,*
m>. (4.3)

A diagonal process yields a sequence, the limit of whose moments coincides with
the moments of vx. Consider a dense countable family {iAr}r6N in L 1 ^) . Let R ^ 0,
£ > 0. From (4.3) we have

Vn^O V 0 ^ m ^ 2 n - l

3 K(i?, £, n)/V k > K(R, e, ri),

PROPOSITION 4.1. The sequence vn(x) = unJC{ntilntn)(x) satisfies condition (1.1).

Proo/. Let r ^ 0, p ^ 0 and £ > 0. Choosing n greater than the supremum of p, r, l/e,
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we have

I r

This completes the proof of the fundamental theorem. •

Remarks 4.2. (a) The extension to the case p > 1 is straightforward: we only need to
replace the monomials Am by the family (A™1,..., A™»), since by Example 3.3 this
family satisfies Hypotheses (H1)-(H3). The functions u n t are then denned in the
same way.

(b) When Q is in W, with r>\, the functions un<k can be denned in a similar way,
for instance,

n

u ^ x j , ...,xr,y)= £ OfCxi,. . . , x^ l^ , . . . ,* , ) (}>) for (x, y) e O x [ 0 , 1 ] ,

and ^ ( X L . . . , xr) = un(xu ...,xr, (kxj - [/cxj).

5. An application to a problem of optimal design

Preliminaries
As an application of Theorem 2.2, we establish the relative compactness for the weak
* topology of some subsets of L°°(Q)".

THEOREM 5.1. Let Q be a bounded domain in W, Q = [0, l ] p , p ^ 1, and consider a
family of n linearly independent functions (<p1,...,(pn)e'$(Q,R)", that satisfy (H2)
and (H3).

Let H be the set of functions h = (ht,..., hn) e (L00^))", such that there exist

(fl,(x)) = hm(x), l^m^n,

T/ien H is compact for the weak * topology.

Proof. We only need to show that H is weakly closed. Let (hk)k = (huk,..., hnk)k <= H
be a sequence that converges to some h = (h1,..., hn), for the weak * topology, and
let 6i>k, aUk be the weights and points associated to hk.

From the fundamental theorem on Young measures, we deduce the existence of a
parametrised measure (^x)xSf i , with support in [0, l ] " x l x g"+1, such that, after
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extraction of a subsequence:

weakly * as k-*co,

417

fc= Z ei,
i = 1

(4.4)

where, for convenience, we have denoted by(X1,...,Xn+l,A1,...,An+1) the elements
of Rn+1 x(R")n+1.

Let (vx)xen denote the parametrised measure defined by

V (p € <%(Q, R ) , <VX, (p} =

We verify easily that supp (vx) c Q, for a.e. x, and that

», 1> = ( vx,
n + l n + 1

Thus, vx e ^#, for a.e. x, and satisfies the hypothesis of Theorem 2.2. Moreover, it
follows from (4.4), that

hm,k-^<vx,<pm} = hm as/c->oo.

Theorem 2.2 yields a measurable convex combination of n + 1 Dirac masses whose
moments with respect to (#>1;..., (pn) coincide with those of (v j , i.e. there exist

, 1 ^ i ^ n + 1, such that for a.e. xeQ,

" et(x)9m(a,(x)) = <vx,cpm > = fcjx), = I-

In other words, h = (h1,...,hn)eH. •

COROLLARY 5.2.

1 = 1

is compact for the weak * topology.

Relaxation of a plate optimisation problem

Introduction. Let Q be a smooth domain in R2. We consider a Kirchhoff model
for pure bending of symmetric plates with midplane Q. The deflection w satisfies an
equation of the form
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where the tensor M^yd depends on the half-thickness h(x, y) of the plate

M.,,yi = 2/3h3(x,

and B is a constant tensor that depends only on material constants. We are only
interested in thicknesses that depend on one variable, h = h(x), and we denote

(a, b) = {x/3 y with (x, y)eSi}.

Also, we only consider orthotropic materials, for which the non-zero elements of
B.K~z are

= ^2222 =
Ev

2222 = . _ 2 ' -^1122 = ^ 2 2 1 1 = 1 _ 2 '

E
'1212 — -"1221 — -"2112 — " 2 1 2 1 2(1 +v ) '

where E, v, denote respectively Young's modulus and Poisson's ratio. We also assume
that the plate is clamped, i.e. that w satisfies the boundary conditions

dw
vv = — = 0 on dSi, (4.6)

on

which makes w the minimiser of the following energy functional:

E(w) = - MaPygdal>wdyiw - Fw.

We assume that the load F is sufficiently smooth, and we denote Ho(fi) the set of
functions in H2(Q), which satisfy (4.6).

We define the compliance of the plate to be the work done by the load F,

L = Fw.
Jn

The value of this functional can be viewed as a measure of the overall rigidity of the
plate under F. We consider L = L(h) as a functional of the half-thickness h, and we
seek to minimise L(h) among certain plates with prescribed volume. The set of
admissible thicknesses is

Jpf= {heU°(a, b)/hmin^h(x)^= hm!LX, h=V0},

Jn
where hmin, hmax, Vo are positive constants that satisfy

0 < hnin meas (Si) <V0< /imax meas (Si).

Numerical experiments [6,7] have shown that the optimisation problem may have
no solution in Jf. To overcome this difficulty, Kohn and Vogelius, and Bonnetier
and Vogelius suggested some relaxation of L [4,12]. This amounts to introducing a
set of generalised thicknesses Jf, which contains 3tf, and to defining an extension L
of L to Jf, such that:
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(PI) for each he M', there exists a sequence (hn)n of elements of J f such that

limL(/zn); (4.7)

(P2) L attains its minimum in Jf.
The previous authors call a couple (Jf", L) a partial or a full relaxation, whether

it satisfies (PI) only, or both (P1)-(P2) respectively. They have also shown [4], that
the following choice of admissible thicknesses and generalised compliance led to a
partial relaxation:

(e,hs)e(L~(a,b))2/
0 = 6{x) =

W,hM) =

where w is the solution to

daliiMtfyidytw) = F in Q,

with the boundary conditions (4.6). The non-zero elements of M are

' - _ 2 E

M m i - -c(x) 1 _ v 2 ,

_ 2 2 £v2

M2222 = -m(x)E + -c(x) j — - 2 ,

(4.8)

(4.9)
2 £v

M1122 = M2211 = -c(x) 1 >
j I — V

1 E
M1212 = M1221 = M2112 = M2121 = -mix) j — ,

where m and c denote respectively the "cubic-average" and "harmonic cubic-average"
offc

c(x)-1 = e(x)/!ma
3
x + (1 - 0(x))K3(x).

The function 0 represents the density of fine scale stiffeners, which appear naturally
in the original optimisation problem [12].

However, property (P2) could not be verified, although numerical experiments
indicated that («#, L) could be a full relaxation for particular choices of the load F.

A full relaxation. In this paragraph, we extend # , L, to a full relaxation. We
first recall a H-convergence result, proved in [4].

We call a tensor M orthotropic if only the coefficients M n n , M2222, M1122 =
M22ii, ^1212 = ^1221 = ^2112 = ^2121! are different from 0. We say that M is
bounded by positive constants (d, D) if, for any symmetric second-order tensor fa/S,
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we have for a.e. x e (a, b),

Vy,8.

LEMMA 5.3. Let (Mkpyd), 1 ^ k <j oo, be a family of orthotropic tensors which are
uniformly bounded by (d, D)for k < oo. We also assume that

Mk
2
2222

- (Mri22)2(Mfm) - l
(4.10)

Mk

212-
•M 1212>

(4.11)

weakly * in Lx(a, b). Let wk, 1 ̂  k ^ oo, denote the solution to

dxfi(M
k
xllyddySw

k) = F in fi,

with the boundary conditions (4.6). Then
wk^"woo weakly * in Ho(fi) as k->co.

This lemma and relations (4.9) imply that if the cubic-averages and harmonic
cubic-averages of a sequence hk = (6k, hSyk) <= Jf converge to the cubic-average and
harmonic cubic-average of some h e $, for the weak * topology, then

Thus, in order to satisfy (P2), we would like to select as admissible thicknesses, those
whose averages (because of the volume constraint), cubic-averages and harmonic
cubic-averages, form a relatively compact set for the weak * topology. Recalling
Corollary 5.2, we consider

'(T, H) = (Bu 62, 03, 04, h, h2, h3, h4) e (L"(fl, b))8 such that"

^ / l m a x ,
a.e. xe{a,b), 1 ^ i g 4,

We define a generalised compliance L by

UT,H)= Fw,
Jn

where w is a solution to

d (M 3 w ) = F i n Q (412)

with the boundary conditions (4.6). The tensor M is denned as in (4.9), but m and
c are respectively replaced by

THEOREM 5.4. (3&, L) is a full relaxation of(H, L).
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Remark 5.5. In this optimisation problem we have to consider the limits of three
expressions depending on the thickness, and we know from Theorem 2.2 that we
can represent them through the mixture of four families of thicknesses. However, we
have not been able to prove yet that , # was the smallest set leading to a full
relaxation. We believe, though, that this smallest set is bigger than =?f.

If the three moments corresponded to the polynomials X, X2, X3, the second part
of Theorem 2.2 would suggest that one could write the moments of vx as those of a
convex combination of two distinct Dirac masses, in the general case.

That would suggest that the smallest set for a full relaxation should be

(T, H) = (6U B2, hu h2) e {U°{a, b)f such that'

ey{x),e2(x)e\_a,\l, , „

This set is larger than Jf, since the latter imposes one of the ht to be equal to /imax.

Proof of Theorem 5.4. (a) The property of partial relaxation (PI) is obtained using
Lemma 5.3, as in [4] , considering elements of Jf of the form

M*) for x/e - [x/e] ^ ( x ) ,

h2(x) for diix) < x/e - [x/e] ^ B^x) + 62(x),

h3(x) for O^x) + 02(x) < x/e - [x/e] ^ 8t(x) + 02{x) + 63(x),

hA{x) for d^x) + 62{x) + 63(x) < x/e - [x/e] ^ 1,

where [x/e] denotes the integer part of x/e.
(b) For (P2), we show that there exists an element of Jf, which attains the infimum

of L. Let (Tk, Hk) c j f be a minimising sequence for L. We can extract a subsequence
such that

weakly * in U°{a, b), as k-* oo.
Thus, the triple of functions (V0,fg) belongs to the adherence of the set H3: by

Corollary 5.2, there exists (T, H) e 3&, T= ( 0 1 ( . . . , d4), H = (hu..., h4), such that

1 = 1 1 = 1

As the averages, cubic-averages and harmonic cubic-averages of (Tk, Hk) converge
to those of (T, H), it follows from Lemma 5.3 that

w(Tk, Hk) - - w(T, H) weakly * in as k ^ oo,
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i.e.

Thus, L attains its minimum on Jf, (P2) is satisfied. D
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