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The linearized Vlasov equation gives a semiclassical version of the random phase ap- 
proximation. The solution of this equation is studied for electrons moving in a deformed 
equilibrium mean field which is approximated by a cavity of a spheroidal shape (both 
prolate and oblate). Contrary to spherical systems, there is a coupling between exci- 
tations of different multipolarity induced by the interaction between constituents. The 
dipole response presents a typical double-peaked profile with a strong dependence on the 
deformation. 

The linearized Vlasov equation offers an interesting semiclassical alternative to 
the fully quantum RPA calculations in the study of collective oscillations in many- 
body systems. If the equilibrium mean-field Hamiltonian is integrable, the zero- 
order propagator given by the Vlasov equation is relatively simple [1, 2]. An integral 
equation analogous to the RPA integral equation for the ph propagator [3] can be 
obtained from the linearized Vlasov equation. In momentum space this equation 
reads 

D(q',q,t#) = D°(q',q,~o) + (1) 

Here D is the semiclassical limit of the RPA propagator, and D O corresponds to 
the single-particle propagator. Following [1, 2], 

D°(q ', q,~)  = (2 , )  3 ~ /  d I  F'(ho(I)) 
,,. ,,,(x) 

n .  o. ,(I)  - (~  + i~) 
Q*(q', I) Q,,(q, I) 

(2) 

*) Presented by A. DellMiore at the International Conference on "Atomic Nuclei and Metallic 
Clusters", Prague, September 1-5, 1997. 
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with the Fourier coefficients 

Qn(q, I)  .~- , 1 ~ fd(J~ e - in*e  iq'~', (3) 
J 

taking the place of the quantum matrix elements. The angle variables • are canoni- 
cally conjugate to the action variables I .  The components of the vector w are the 
fundamental frequencies of the multiply-periodic particle motion in the equilibrium 
mean field. 

For spheroidal systems a partial-wave expansion of the propagators in (1) leads 
to the following set of coupled integral equations for the dynamic polarizability 
tensors 

DL,I.M(q , q, W) o , ' = DL,LM(q ,q,w) 

1 oo fooo 
-t-(2~] 3 E dkk2D°L,tM(q',k,w)u(k)DtLM(k,q,w) (4) 

" t=fMI 

with 

2 (27r)3/dAz/d  ~ c9(I~,I~) 
DOL'LM(q"q'w)-- (27rh)a n~n" I O(E, e ) 

nuwu + now,, + Mw~ ( I (L 'M),  (g, at.W.}(LM ) [ ~  × 
n~,w~, + n,w, "+--Mw-~ ----'~ + iT/)"~,.,,.,Mt--, e, A~; ~/.,Vn.,n,,,M~JJ, ,, Az, q). (5) 

The frequencies and the coefficients in the last equation can be expressed in terms 
of elliptic integrals if the equilibrium mean field is approximated by a spheroidal 
cavity (details will be published elsewhere). Note that, since we do not consider 

0 "pear-shaped" clusters, DL,LM ---- 0 unless (_)L' = (_)L, only multipoles with 
the same parity are mixed in (4). Clearly Eq. (4) is useful only if the sum over 
I can be truncated at some relatively small /max- Fortunately this turns out to 
be the case, even at rather large deformations. In Figure 1 we show the photoab- 
sorption cross section in arbitrary units (proportional to wR(q, w), with R(q, w) = 
- I r a  [EM DllM(q, q,w)]/Tr) for various values of the deformation parameter y = 
R>/R<, corresponding to a prolate sodium cluster containing 254 atoms (7/ = 1 
corresponds to spherical shape). The peaks in the region of the Mie resonance cor- 
respond to the two M components M = 0 and M = 5:1, while the peaks around 
w ~, 0.2WM are the analogous peaks in the zero-order propagator D O . 

Since we have not taken ihto account the electron "spill-out', the plasmon peaks 
shown in Figure 1 are slightly blue shifted compared to the corresponding Mie 
frequencies. From the classical Mie theory one has the following expression for the 
frequency of the surface plasmon corresponding to oscillations along the/-axis: 

wi = v wp, (6) 

where wp is the bulk plasmon frequency and ni the appropriate depolarizing factor 
[4]. For spherical symmetry n~ = nu = nz = 1/3, while for a prolate spheroid [4] 

l - e 2  ( l + e  2e) , n , : = n y = ½ ( 1 - n z )  (7) 
n* = - -~e3  l ° g l _  e 
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Fig. 1. Dipole response for prolate spheroidal sodium clusters and different deformations, 
as a function of frequency, expressed in units of the Mie frequency for spherical geometry 
WM. The lefthand side figure displays the single-particle response. The righthand side 

figure displays the full response. 

where e = VII - 1/7/2 is the eccentricity. For 7} = 1.8, Eq. (6) gives w0 ~ 0.76WM, 
and w1 ~ 1.10WM. Our plasmons in Figure 1 are slightly blue shifted. 

The analysis for the oblate geometry is slightly complicated by the fact that  in an 
oblate cavity there are two types of three-dimensional orbits: the orbits that  never 
cross the focal circle (W orbits), and the orbits that always cross the focal circle (B 
orbits). The two kinds of orbits are characterized by the value of )%, the component 
of the particle angular momentum along the symmetry axis. Since the two kinds of 
orbits never mix, for each kind we can define the zero-order propagators W or B 
similar to (5). Thus, for the oblate equilibrium geometry, we have 

0 
DL,LM = BL,LM -[- WL'LM, (8) 

and the collective response is still described by the solution of Eq. (4). 
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