
Multimed Tools Appl (2009) 41:215–233
DOI 10.1007/s11042-008-0226-z

Improving the space cost of k-NN search in metric
spaces by using distance estimators

Benjamin Bustos · Gonzalo Navarro

Published online: 17 September 2008
© Springer Science + Business Media, LLC 2008

Abstract Similarity searching in metric spaces has a vast number of applications in
several fields like multimedia databases, text retrieval, computational biology, and
pattern recognition. In this context, one of the most important similarity queries is
the k nearest neighbor (k-NN) search. The standard best-first k-NN algorithm uses
a lower bound on the distance to prune objects during the search. Although optimal
in several aspects, the disadvantage of this method is that its space requirements
for the priority queue that stores unprocessed clusters can be linear in the database
size. Most of the optimizations used in spatial access methods (for example, pruning
using MinMaxDist) cannot be applied in metric spaces, due to the lack of geometric
properties. We propose a new k-NN algorithm that uses distance estimators, aiming to
reduce the storage requirements of the search algorithm. The method stays optimal,
yet it can significantly prune the priority queue without altering the output of the
query. Experimental results with synthetic and real datasets confirm the reduction
in storage space of our proposed algorithm, showing savings of up to 80% of the
original space requirement.

Keywords Similarity search · Metric spaces · k-NN search

Funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile (both authors), and FONDECYT Projects 11070037 (B. Bustos) and 1-080019
(G. Navarro).

B. Bustos (B) · G. Navarro
Center for Web Research, Department of Computer Science,
University of Chile, Santiago, Chile
e-mail: bebustos@dcc.uchile.cl

G. Navarro
e-mail: gnavarro@dcc.uchile.cl

216 Multimed Tools Appl (2009) 41:215–233

1 Introduction

The concept of similarity search has applications in a vast number of fields. For
example, content-based retrieval of similar objects in multimedia databases can be
very useful for industrial applications, medicine, molecular biology, among others.
In the case of industrial applications, the engineering and industrial design, the
animation, and the entertainment industry heavily rely on digitized models of
products or parts thereof. Given effective retrieval capabilities, the re-use of content
from existing repositories can support a more efficient production processes [8]. In
medical imaging applications, often 2D and 3D volume data are generated, e.g., using
MRI scans. A possible application lies in automatic diagnosis support by analysis
of organ deformations, via matching the actual images with medical databases of
known deformations [15]. In molecular biology, structural classification is a basic
task. This classification can be supported by geometric similarity search, where
proteins and molecules are modeled as 3D objects, which can be compared against
bio-molecular reference databases using similarity measures that consider geometry,
electric properties, and others [1].

Other applications for similarity search include machine learning and classification
(where a new element must be classified according to its closest existing element);
image quantization and compression (where only some vectors can be represented
and those that cannot must be coded as their closest representable point); text
retrieval (where we look for words in a text database allowing a small number of
errors, or we look for documents which are similar to a given query or document);
sequence comparison in computational biology (where we want to find a DNA or
protein sequence in a database allowing some errors due to typical variations); etc.

All those applications have some common characteristics [5]. There is a universe
of objects, and a nonnegative distance function defined among them, which in many
interesting cases satisfies the triangle inequality. The smaller the distance between
two objects, the more similar they are. This distance is assumed to be expensive to
compute. We have a finite database, which is a subset of the universe of objects and
can be preprocessed (to build an index, for instance). Later, given a new object from
the universe, we must retrieve all similar elements found in the database.

A particular case of this problem arises when the space is R
d (a vector space).

There are effective methods for this case, such as the kd-tree, R-tree, and X-tree,
among others [2]. However, there are many applications where the space cannot be
regarded as d-dimensional, for example in string similarity problems that appear in
text retrieval or computational biology applications. We focus in this paper in general
metric spaces, although the solutions are well suited also for d-dimensional spaces.
Moreover, when d is large, methods tailored for vector spaces tend to fail and the
metric space approach might be more successful.

We focus on a popular type of query called k-NN query, which aims at finding the
k database objects closest to a given query. The best known solutions to this problem
(in terms of distance computations) have a serious memory problem, as they might
require to maintain in memory a priority queue of database objects. This priority
queue can be as large as the database itself. We propose an improved version of
these k-NN search algorithms, which uses distance estimators to reduce their storage
requirements without altering the number of distance evaluations nor the outcome
of the algorithm.

Multimed Tools Appl (2009) 41:215–233 217

We present experimental results on various synthetic and real datasets. The
experiments confirm the reduction in storage space necessary to run our proposed
algorithm compared to the original one. The specific numbers depend on the
database and the query, and can be as low as 8% in some cases. However, in other
cases we show savings of more than 80%, that is, our algorithm needs less than 20%
of the space required to run the original algorithm.

The paper is organized as follows. Section 2 introduces the basic concepts of
efficient similarity search in metric spaces. Section 3 depicts the proposed algorithm
and analyzes its cost. An experimental evaluation using well known metric indices is
presented in Section 4. Finally, in Section 5 we present our conclusions and outline
the future work.

2 Searching in metric spaces

There are excellent books [20, 23] and surveys [2, 5, 9, 14] on efficient similarity
queries in metric and multidimensional databases. In this chapter, we will briefly
introduce the main indexing techniques for similarity search and will motivate the
space cost problem of the optimal search algorithm.

Let X be the universe of valid objects, and δ : X × X → R a distance function
in X. If δ satisfies the properties of a metric, that is, strict positiveness (δ(x, y) ≥ 0
and δ(x, y) = 0 ⇔ x = y), symmetry (δ(x, y) = δ(y, x)), and the triangle inequality
(δ(x, z) ≤ δ(x, y) + δ(y, z)), then the pair (X, δ) is a metric space. Let U ⊆ X be our
finite database, with |U| = n. There are two typical similarity queries in metric spaces:

• Range query. A range query (q, r), q ∈ X, r ∈ R
+, reports all database objects

that are within distance r to q, that is, {u ∈ U, δ(u, q) ≤ r}.
• k nearest neighbors query (k-NN). Reports the k objects from U that are closest to

q, that is, a set C ⊆ U such that |C| = k and ∀x ∈ C, y ∈ U − C, δ(x, q) ≤ δ(y, q).

Indexes for metric spaces can be classified into two main categories [5]: based on
pivots and based on compact partitions.

Pivot-based indexes [5, 7, 21] select a number of “pivot” objects from the database,
and classify all the other objects according to their distance to the pivots. The
canonical pivot-based range query algorithm is as follows: Given a range query
(q, r) and a set of k pivots {p1, . . . , pk}, pi ∈ U, by the triangle inequality it follows
for any x ∈ X and 1 ≤ i ≤ k that δ(q, x) ≥ |δ(pi, x) − δ(pi, q)|. The objects u ∈ U of
interest are those that satisfy δ(q, u) ≤ r, so one can exclude all the objects that satisfy
|δ(pi, u) − δ(pi, q)| > r for some pivot pi (exclusion condition), without actually
evaluating δ(q, u). The index consists of the kn distances δ(u, pi) between every
object of the database and every pivot. At query time it is necessary to compute
the k distances between the pivots and the query q in order to apply the exclusion
condition. The list of objects {u1, . . . , um} ⊆ U that do not satisfy the exclusion
condition must be directly checked against the query. Several indexes resort to a tree
structure to avoid considering the exclusion condition for each u ∈ U individually.
Each tree node p is a pivot and its subtrees correspond to ranges of distances δ(u, p).
At search time, we compute δ(q, p) and need only to enter tree branches whose
ranges of distances intersect [δ(q, p) − r, δ(q, p) + r].

218 Multimed Tools Appl (2009) 41:215–233

Indexes based on compact partitions [4–6, 17] divide the space into zones as
compact as possible. Each zone stores a representative point, called the center,
and data that permit discarding the entire zone at query time without measuring
the actual distance from the objects of the zone to the query. Each zone can be
recursively partitioned into more zones, inducing a search hierarchy. There are two
general criteria for partitioning the space: Voronoi partition and covering radius. The
Voronoi diagram of a set of objects is a partition of the space into cells, each of which
consisting of the objects closer to one particular center than to any other. A set of m
centers is selected and the rest of the objects are assigned to the zone of their closest
center. Given a range query (q, r), the distances between q and the m centers are
computed. Let c be the closest center to q. Every zone of center ci 	= c which satisfies
δ(q, ci) > δ(q, c) + 2r can be discarded, because its Voronoi area cannot intersect the
query ball. On the other hand, the covering radius cr(c) is the maximum distance
between a center c and an object that belongs to its zone. Given a range query (q, r),
if δ(q, ci) − r > cr(ci) then zone i cannot intersect the query ball and all its objects
can be discarded.

In most cases, authors focus on solving range queries, as these can be regarded as
being more basic than k-NN queries [5]. Given a technique to solve range queries,
one can derive k-NN query solutions. The most naive way is to try range queries with
increasing radii until retrieving k objects or more. A more sophisticated method is to
launch a range search with infinite radius, and reduce it on the fly as new database
objects are compared and better candidates for the k-NN answer appear (that is, if
we have already found k database objects with maximum distance r to q, then our
search radius becomes r). This has been explored especially with tree-like indexes
(the most popular category).

Unlike the case of range searching, where the tree traversal order is irrelevant,
for k-NN search we wish to find close candidates as soon as possible, as this will
determine how much of the tree is traversed. The most common traversal order is
depth-first traversal. In this case, the tree traversal is recursive, and the criterion to
try to find soon good k-NN candidates translates into traversing the children of the
current node from most to least promising. Given a criterion to prefer one node
over another, depth-first traversal does not achieve the optimal node traversing order
because it is forced to be depth-first. On the other hand, the amount of memory it
requires does not exceed the height of the tree index.

An optimal, best-first traversal ordering [12, 22] uses a global priority queue where
unprocessed tree nodes are inserted, giving higher priority to the more promising
ones, and the tree is traversed in the order given by the queue. Each extracted node
inserts its children in the queue. If this priority is defined as a lower bound to the
distance between q and any element in the subtree rooted at the tree node, then the
search can finish as soon as the most promising node has a lower bound larger than
the distance to the current kth NN. This algorithm has been proved to be optimal
in the number of nodes (i.e., disk page accesses) required [2]. It was also proved to
be range-optimal [13], that is, the number of distance computations to find the k-NN
answer is exactly that of a range search with distance δ(q, ok), where ok is the kth
NN. This range search would give the same answer as the k-NN search, so there is no
penalty for not knowing δ(q, ok) beforehand.

The algorithm has, however, an important problem, which may discourage its use
in practice. The problem is the amount of memory required for the queue, which

Multimed Tools Appl (2009) 41:215–233 219

can store as many elements as the database itself. The non-optimal depth-first-search
algorithm may be preferable for its much lower space consumption, proportional
to the depth of the hierarchy. Samet [19, 20] proposed a technique to alleviate this
problem, based on computing an upper bound to the distance between q and any
subtree element, and using the fact that one knows that a subtree must have at least
one element within that upper bound distance to q. We refine this idea, which will
be described later as a particular case of ours. Our refinement consists in using the
information on the number of elements in the ball, all of which lie within that upper
bound. Unlike Samet’s approach, ours translates into a relevant contribution even
on Euclidean spaces, where Samet’s approach is never better than the MinMaxDist
estimator [18].

3 Algorithm description

Table 1 lists the notation used throughout this section. We assume that the database
index is a hierarchical data structure which groups close objects in clusters. We will
refer to these clusters in our metric space as balls (for their shape resemblance in
Euclidean spaces, in many index structures). A ball B from the index contains a
number of objects from the database, represented by B.bsize. The center of B is a
distinguished object B.c ∈ B, usually selected trying to minimize the covering radius
of B, B.cr = max{δ(B.c, b), b ∈ B}, that is, the maximum distance between B.c and
any other object in B. Those elements b ∈ B can be recursively organized into balls,
which descend from B forming a search hierarchy. As seen in Section 2, this type of
hierarchical clustering index is very popular (for example see [4, 6, 17]). There are
other indexes that, although less obviously, can be considered as belonging to this
scheme (for example, pivot-based indexes organized in trees).

Given a query q and a ball B, the lower bound distance from q to B, B.lbound, is a
lower bound to δ(q, b) for any b ∈ B. Similarly, the upper bound distance from q to

Table 1 Summary of symbols Symbol Definition

k ∈ N # of NN to be retrieved
B ⊆ U Ball (cluster of objects)
B.c ∈ U Center of ball B
B.cr ∈ R Covering radius of B
B.bsize ∈ N # objects inside B
B.children Set of children balls of B
B.lbound ∈ R Lower bound distance from B to q
B.ubound ∈ R Upper bound distance from B to q
Bb Bubble of B
x.csize ∈ N Size of bubble or object in C
Q Queue with unprocessed balls
C Queue with NN candidates
C.maxU B ∈ R Max. upper bound distance in C
C.size ∈ N Sum of all x.csize in C
x.distq ∈ R Distance from x to q

220 Multimed Tools Appl (2009) 41:215–233

(q,b.c)-B.crδ
(lower bound)

q

B.cr

B.c

(q,B.c)+B.crδ
(upper bound)

q

B.cr

B.c

Fig. 1 Distance estimators: Lower and upper bound distance from q to any object on the ball. This
example shows the estimators based on the covering radius

B, B.ubound, is an upper bound to δ(q, b) for any b ∈ B.1 Figure 1 illustrates both
bounds in 2D space using the Euclidean distance and the covering radius. On index
structures for vector spaces that use minimum bounding rectangles (MBRs), the
lower (upper) bound distance can be defined as the minimum (maximum) distance
from q to the MBR. These distance bounds can be used to prune the search while
performing a similarity query. For example, if we know that the upper bound distance
to the kth NN candidate at some point of the search is maxU B, and we know that
maxU B < B.lbound for a ball B, then it is not possible that an object inside B is
closer to q than any of the current k-NN candidates. Thus, one can safely discard B
and all its descent.

3.1 Standard best-first k-NN algorithm

The best-first k-NN search algorithm [12, 22] uses two priority queues, one (Q) that
contains the balls not yet processed (also called active page list in the literature),
and the other (C) with the k-NN candidate list. A ball is stored in Q if it is not
yet processed but its parent was already processed. At each step of the search, the
algorithm removes the ball B from Q with smallest B.lbound. The distance between
the center of each children of B and q is computed, inserting in C all centers that are
closer than the current kth NN candidate. The children balls are inserted in Q. The
algorithm ends when Q becomes empty or when the minimum lbound from a ball in
Q is greater than the distance to q of the current kth NN candidate, as at this point
no other ball can improve the current candidate list.

Note that the size of C never exceeds k, but Q can be as large as the database itself.
As explained before (Section 2), this algorithm is optimal in several aspects but it has
a serious memory usage problem (for Q), which our proposal seeks to alleviate.

1Our proposed algorithms are general and will work with any hierarchical index structure with
appropriately defined distance estimators. For simplicity, we will describe them using the covering
radius for computing the distance bounds.

Multimed Tools Appl (2009) 41:215–233 221

3.2 Our proposal

As in the basic algorithm, we use two priority queues, Q and C. Q still contains
unprocessed balls whose center has already been processed, and is sorted by lbound.
C is still sorted by ubound, but now it will contain a mixture of objects and bubbles.
A bubble Bb in C corresponds to a ball B that exists in Q, but the bubble itself
does not contain any element. From the bubble Bb we only know the upper bound
B.ubound and size B.bsize of its corresponding ball B (that is, B.bsize indicates the
number of objects u ∈ U that are inside B). The existence of bubble Bb in C just
tells us that there exist B.bsize elements at distance at most B.ubound from q, yet
we still do not know those elements. With this upper bound information, we can
prune irrelevant elements from Q earlier. For example, assume we find B such that
B.bsize > k. Before knowing the elements of B, we find B′ such that B′.lbound ≥
B.ubound. At this point we can discard B′, as we know that we will get enough better
k-NN candidates from B, even when we have not yet obtained them.

Our algorithm maintains the following invariants. We assume that there are at
least k elements in the database, otherwise the query is trivial. For simplicity we
assume that balls do not directly contain objects in general, just further balls. The
leaf balls of the tree contain balls that have only one element, so the balls become
empty once one removes their center. This does not restrict the algorithm in any way,
it is just a way to present it.

1. We process the database hierarchy starting at the root, and never process a node
without having processed its parent.

2. Any hierarchy ball not yet processed is in Q or descends from a ball in Q, yet the
centers of balls in Q have already been processed.

3. Any object c in C is the center of a ball already processed, c.csize = 1.
4. Any bubble Bb in C corresponds to a ball B currently in Q, Bb .csize = B.bsize −

1 > 0.
5. C.size ≥ k is the sum of csize’s of objects and bubbles in C. C.maxU B is the

maximum ubound in C, taking c.ubound = c.distq for objects.
6. C contains the objects and bubbles with smallest ubound processed so far.
7. If we remove any element from C with ubound equal to C.maxU B, then

C.size < k.
8. For any ball B, B.lbound ≤ B.ubound, and the lbound (ubound) of any descen-

dant of B is not smaller (larger) than B.lbound (B.ubound).
9. (optional) For any ball B such that B.bsize > 1, B.lbound < B.ubound. This

holds for many indexes and we can take advantage of it (as shown in the second
point below).

The above invariants ensure the correctness of the following termination
conditions.

• Assume Q = ∅ at some point. Then we have processed all the database objects
(1, 2). Moreover, there cannot be bubbles in C (4), so C contains just objects,
of csize = 1 (3). Therefore, C contains exactly k objects (5, 7), and those are the
objects with smallest distq in the database (6). Thus C is the correct answer to
the query.

222 Multimed Tools Appl (2009) 41:215–233

• Assume, at some point, that B has the smallest lbound in Q and B.lbound >

C.maxU B. Because of condition (8), ubound ≥ lbound for any element and
lbound for a descendant of B can never be smaller than B.lbound. Thus,
condition (6) holds for all the database, not only for the elements processed
so far (2). Moreover, C cannot contain any bubble B′

b , because B′
b .lbound ≤

B′
b .ubound ≤ C.maxU B < B.lbound for any ball B in Q, and ball B′ must be in

Q (4). Thus the same arguments as before show that C is the correct answer to
the query.

The second point above makes clear the correctness of the following observation,
which is the key to the space reduction we achieve.

Observation 1 If, for some B, B.lbound > C.maxU B [or B.lbound ≥ C.maxU B
if (9) holds], then the output of the algorithm does not vary if we remove B and
all its descent from Q.

If condition (9) holds, then, if B′
b were in C, it would hold B′.csize > 1 (4), and

thus B′
b .lbound < B′

b .ubound, and it would be sufficient that B.lbound ≥ C.maxU B
to know that we have already the correct answer in C. For simplicity, we assume for
the rest of the paper that condition (9) holds; it is already clear how to modify the
algorithms otherwise.

We explain now how we set and maintain the invariants throughout the algorithm.
We initialize Q with the only ball that roots the whole index (for simplicity, we
assume there is only one such root, it is easy to insert several roots if so is the index
structure). Its center and corresponding bubble are inserted in C (only the center
if k = 1 or the bubble size is zero). This satisfies all the invariants. At each step of
the algorithm, we extract the ball B from Q with smallest B.lbound. Recall that B.c
has already been processed. Now, to restore invariant (2), we must insert in Q every
child B′ of B such that B′.lbound < C.maxU B (otherwise, we know that the descent
objects of B′ can be immediately pruned from the search, by Obs. 1). Then, to restore
invariants (3, 4), we must insert into C every center B′.c and bubble B′

b , as well as
remove bubble Bb from C, if present. Actually, if Bb is in C, we will replace it with
the centers B′.c and bubbles B′

b , which add up the same Bb .csize. This replacement
cannot affect invariants (5, 6) as the new ubounds are never larger than that of Bb

(8; note that C.maxU B adjusts automatically as the maximum of the priority queue
C). Yet, we have to restore invariant (7). We must remove from C the elements
with largest ubound as long as C.size ≥ k. We choose those with largest ubound so
as to maintain (6), and update C.size and C.maxU B to maintain (5). The remaining
invariant (1) holds because we only access B′ from its already processed parent B.
Although not necessary for the correctness of the algorithm, we remove balls of Q
that become irrelevant each time C.maxU B is reduced (according to Observation 1).
This further diminishes the memory requirement for Q.

Algorithm 1 shows the pseudocode of the proposed k-NN search algorithm. Note
that we enforce that lbound is increasing and ubound is decreasing as we descend
in the hierarchy (8). Although this should hold, it might not occur automatically if
we simply use, for example B′.ubound = δ(q, B′.c) + B′.cr for B′ child of B, because

Multimed Tools Appl (2009) 41:215–233 223

Algorithm1: Our proposed k-NN search algorithm
Input: Index, q , k
Output: k-NN
Q ;1

C ;2

C.maxU B ;3

C.size 0;4

B root of Index;5

B .c.distq (q, B.c);6

B.lbound ← B.c.distq – B.cr;7

Q.Add(B, B.lbound);8

C.Add2(B.c, B.c.distq, 1);9

C.Add2(B, B.c.distq + B.cr, B.bsize − 1);10

while Q do11

B ← Q.DequeueMin();12

if Bb C then13

ubound ←
 ←

 ←

 ←

 ←

 ←
 ←

 ←
 ←

 ←

Bb.ubound;14

C.size C.size – Bb .csize;15

C.Remove(Bb);16

else ubound ;17

foreach B.children do18

δ (q, .c);19

C:Add2(.c, .c.distq, 1);20

if .bsize > 1 then21

.lbound ← max(B.lbound , .c.distq – .cr);22

if .lbound < C.maxUB then Q.Add(, .lbound);23

minub ← min{ubound, .c.distq + .cr};24

C:Add2(, minub, .bsize – 1);25

Q.Shrink();26

returnC27

.c.distq

the ball of B′ could exceed spatially that of B, although we know that there cannot
be objects of B′ in the exceeded area (Fig. 2 illustrates). Thus, the correct value
is B′.ubound = min(B.ubound, δ(q, B′.c) + B′.cr). We make the correction only if
Bb is in C, otherwise B.ubound > C.maxU B and the correction is irrelevant. The
same holds for B′.lbound = max(B.lbound, B′.c.distq − B′.cr), which might permit
pruning B′ from Q earlier.

Add2 is a special procedure to insert into C, which in addition to the element and
its ubound takes the csize of the element. Add2 takes care of updating C.size and
C.maxU B, and of maintaining invariants (6, 7). Algorithm 2 shows the pseudocode
of the Add2 function for C. The algorithm assumes that C is a priority queue sorted
decreasingly by ubound, and in case of ties, it is sorted increasingly by csize. This is
necessary to ensure that condition (8) is maintained.

224 Multimed Tools Appl (2009) 41:215–233

Fig. 2 The correct ubound
for B′ is min{B.ubound,

δ(q, B′.c) + B′.cr}. The index
hierarchy ensures that no
object farther than B.cr from
B.c can be stored in B′

δ (q,B’.c)+B’.cr

δ (q,B.c)+B.cr

q

B’.c B.c

Algorithm 3 shows the pseudocode for the pruning of Q, Shrink, called each time
the maximum upper bound distance C.maxU B might change, to reduce the storage
requirements of the search algorithm. Note that, thanks to the use of Shrink, we
can always finish when Q becomes empty, since if the other termination condition
holds, then Shrink will take care of removing all the remaining elements from Q. To
reduce the CPU cost associated to Shrink, one should call it only when C.maxU B has
changed (not when it might have changed, as shown for simplicity), and implement
Q as a min-max heap.

A key element of our k-NN algorithm is B.bsize. If this value is not stored in
the index, then the proposed algorithm cannot run and the best that one can do in
that case is to assume B.bsize = 2 for internal hierarchy nodes (since B.bsize ≥ 2, for
the center and at least another point). This is precisely what was done by Samet in
previous work [19], and we refine it here assuming B.bsize is known. Slightly better
than assuming B.bsize = 2 is, if B has cb child balls and co child objects, assume
B.bsize = 2 · cb + co.

Algorithm 2: Add2 algorithm for C

Input: B, ubound , csize
if ubound < C.maxU B then1

Bb ← CreateBubble(B);2

Bb .ubound ← ubound;3

Bb.csize ← csize;4

C.size ← C.size + Bb.csize;5

C.Add(Bb, Bb.ubound);6

while C.size – C.Max().csize ≥ k do7

C.size ← C:size – C:Max().csize;8

C.DequeueMax();9

if C.size ≥ k then C.maxUB ← C.max().ubound;10

Multimed Tools Appl (2009) 41:215–233 225

Algorithm 3: Shrink algorithm for Q

while Q and Q.Max().lbound ≥ C.MaxUB do1

Q.DequeueMax();2

3.3 Example

Figure 3 shows an example of a k-NN query for some k > 1. The index consists of a
ball B which has three child balls: B1, B2, and B3. From the figure, it follows that
B.bsize = 1 + X + Y + Z , and let us suppose that X ≥ k. The figure shows the index
hierarchy up to the first level. In the beginning, B.c is inserted into C, as well as the
bubble Bb with upper bound B.c.distq + B.cr. Thus, C.size = 1 + X + Y + Z ≥ k
and if we extract the bubble with greater ubound then C.size = 1 < k, thus the
invariants hold. Ball B is inserted into Q and the algorithm enters the loop. Ball B is
extracted from Q, and then Bb is removed from C. Now the algorithm processes the
children of B. The object B1.c and the bubble B1b are inserted into C. Meanwhile,
B.c is removed from C because B1.ubound < B.c.distq and C.size ≥ k with B1b

and B1.c in C. The maximum upper bound C.maxU B is updated to C.maxU B =
B1.ubound, B1 is inserted into Q, and the algorithm invokes Q.Shrink(). B2 and
B3 will never be inserted into Q, because C.maxU B < B2.lbound < B3.lbound.
Therefore, the maximum length of Q until this step was 1. Using the standard
algorithm, B2 and B3 will be inserted into Q, even when they will never be removed
from the queue (the algorithm will stop searching before removing them), thus
wasting storage space.

Fig. 3 Example of a k-NN
query. Note (visually) that all
k-NN are on B1 and
B1.ubound < B.c.distq

B.c

B1.c

B2.c

q

B2.lbound

B1.ubound

B3.c

B.c.distq

B3.lbound

B1.bsize=X>=k
B2.bsize=Y

B3.bsize=Z

226 Multimed Tools Appl (2009) 41:215–233

Assume now that B1, B2, and B3 are inserted into Q (for example, this could be
the case if the index contained several roots). The algorithm removes B1 from Q and
processes each of its children. Then, it updates C.maxU B. Note that the algorithm
ensures that C.maxU B ≤ B1.ubound. Next, procedure Q.Shrink() is invoked, which
removes balls B2 and B3 from Q, thus diminishing the average length of Q during
the search.

In both cases, the algorithm was able to prune balls B2 and B3 without processing
them and at a very early stage of the search. Therefore, the storage requirements for
Q was successfully diminished using our proposed algorithm.

3.4 Cost analysis of the proposed algorithm

Now we compare the computational complexity of the original and our proposed
k-NN search algorithms. Firstly, as both algorithms perform a best-first traversal
of the index, it follows that they carry out exactly the same number of distance
computations for the same query object. Thus, for this concept the CPU cost is the
same on both algorithms. Moreover, this implies that our algorithm is also optimal
in the number of node accesses required to answer k-NN queries, and it is range-
optimal (see Section 2).

Regarding the insertion/deletions of elements in Q, the CPU cost of the original
algorithm is O(totQ · log maxQ), where totQ is the overall number of balls ever
inserted into Q and maxQ the maximum size of Q across the process. The cost for
our proposed algorithm is the same, noting that in our case totQ and maxQ will be
smaller, given that we avoid some insertions into Q.

With respect to C, the CPU cost of the original algorithm is in the worst case
O(totQ · log k), since all centers from balls in Q may be inserted into C, and it is
ensured that only one object per iteration may be extracted from C. For our proposed
algorithm, in the worst case it may be possible that totQ objects and totQ bubbles are
inserted into C, but then the algorithm may extract up to k elements from C after an
insertion (cf. Algorithm 2, lines 7–9 of the pseudocode). However, it is not possible to
extract more elements that those inserted into C, therefore the total CPU cost in the
worst case is also O(totQ · log k), that is, it is the same CPU cost compared with the
original algorithm. Note that the query “Bb ∈ C” in line 13 of Algorithm 1 requires a
dictionary data structure built on top of C (such as a hash table) if one wants to avoid
an O(k) time linear traversal. Such a table involves spending O(k) extra memory,
but this is usually irrelevant as k is very small in all meaningful cases.

Thus, our proposed algorithm has the same CPU cost as the original one, but
it always uses less memory for Q. As previously observed, our algorithm needs to
know how many objects are within each ball of the index, which also uses some
memory space (one integer value per internal node, which is usually very modest).
Many indexes already store this value. Otherwise, in most practical situations, there
is always some free room on each index node, because it is almost impossible to
completely use its assigned space (equal to the size of a disk data page), so the extra
integer can be stored “for free”. Also, we experimentally observed that the memory
savings are at least an order of magnitude higher than the extra space used. Although
not easy to guarantee analytically, the next section shows that the space savings are
very significant in practice.

Multimed Tools Appl (2009) 41:215–233 227

4 Experimental evaluation

In this section, we show empirically that our proposed technique can achieve
significant space savings. The exact amount will depend on the type of metric space
and queries posed to it.

For our experiments, we used several synthetic and real-world databases:

• Gaussian: This is a set of synthetic databases that are formed by clusters in a
vector space using different dimensionalities (8-D, 16-D, and 32-D), where the
objects that conform each cluster follows a Gaussian distribution. Each Gaussian
database contains 1,000 clusters, and their centers are random points with coor-
dinates uniformly distributed in [0, 1]. The variance for the Gaussian distribution
was set equal to 0.001 for each coordinate, to produce compact clusters. The size
of each cluster is similar but not necessarily equal, and the whole dataset contains
100,000 objects. We generated 1,000 random query points, which follow the same
data distribution as the database.

• Corel Features: The Corel image features contains features from 68,040 images
extracted from a Corel image collection. The features are based on the color
histogram (32-D), color histogram layout (32-D), co-occurrence texture (16-D),
and color moments (9-D). This database is available at the UCI KDD Archive
[10]. For our experiments, we used the color histogram (CH) and the layout
histogram (LH) databases. We selected a subset of this database consisting on
65,515 images, because there were some missing features for some of the images.
For each database, we choose 1,000 images at random to be used as queries.

• Edge structure: This database contains 20,197 feature vectors (edge structure,
18-D) extracted from the Corel image database. We selected 1,000 random
objects from the database as query points.

• English String DB: It contains 69,069 strings (a dictionary of English words). We
selected 1,000 random strings as query points.

We used the Manhattan distance as the metric for the multidimensional databases.
Other metrics (e.g., Euclidean) may be used, but better results have been obtained
with respect to the effectiveness of the search using the Manhattan distance [3]
(which is in accordance with theoretical results [11]), and it is the (computation-
ally speaking) cheapest Minkowski distance. For the English String DB, we used
the edit distance (the minimum number of insertions, deletions and replacements
performed to convert one string into another) as the metric, as it is relevant for many
applications [16].

The number of objects per cluster was selected depending on the dimensionality of
the dataset, in such a way that all objects from the cluster (plus a small header) could
fit on a disk datapage. Setting the datapage size to 4 Kb, we obtained the following
cluster size values: 127 (8-D), 63 (16-D), 56 (18-D), and 31 (32-D). For the English
String DB, we used a cluster size of 16.

We compared the standard best-first k-NN algorithm (labeled HS) against ours
(labeled Ours) and the best-first version proposed by Samet [19] (labeled Samet).2

2Actually, Samet speaks mostly of depth-first algorithms [19], but the paper mentions that the best-
first algorithm could be handled as well. As we are interested only in the optimal traversal order in
this paper, we compare only its best-first version.

228 Multimed Tools Appl (2009) 41:215–233

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 8−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 8−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 4 Gaussian 8-D: Mean of the maximum queue length (left) and average queue length (right)

As representative index structures, we used the list of clusters [4] and the M-tree [6].
The list of clusters can be seen as a “list of balls”, that is, a search hierarchy with only
one level, while the M-tree is a more general hierarchical index structure. The former
usually performs better on higher dimensional spaces. To compare the storage
requirements of each search algorithm, we computed the mean of the maximum
queue lengths (max{|Q|}) obtained on each query, and the average length of Q over
all queries. The first measure indicates how much memory (on average) needs the
search algorithm to answer the k-NN query. The second measure is related with the
number of disk accesses made if the queue were stored on secondary memory. All
results are shown as percentages of the database size.

Figures 4, 5, 6 show the results obtained with the Gaussian databases. Our
algorithm needs considerably less memory than the standard algorithm, especially
for high dimensions. For example, our algorithm used only 18% of the memory
required by the standard algorithm in 32-D and using list of clusters (k = 50). In low

 0

 0.5

 1

 1.5

 2

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 16−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.5

 1

 1.5

 2

 2.5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 16−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 5 Gaussian 16-D: Mean of the maximum queue length (left) and average queue length (right)

Multimed Tools Appl (2009) 41:215–233 229

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Gaussian 32−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Gaussian 32−D

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 6 Gaussian 32-D: Mean of the maximum queue length (left) and average queue length (right)

 0

 1

 2

 3

 4

 5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Corel Features − Color Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.5

 1

 1.5

 2

 2.5

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Corel Features − Color Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 7 Corel features CH: Mean of the maximum queue length (left) and average queue length
(right)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Corel Features − Layout Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Corel Features − Layout Histogram

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 8 Corel features LH: Mean of the maximum queue length (left) and average queue length (right)

230 Multimed Tools Appl (2009) 41:215–233

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 200 150 100 50

A
vg

 |Q
| (

%
D

B
)

k

Edge Structure

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200 150 100 50

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

Edge Structure

List of Clusters − HS
List of Clusters − Samet

List of Clusters − Ours
M − tree − HS

M − tree − Samet
M − tree − Ours

Fig. 9 Edge structure: Mean of the maximum queue length (left) and average queue length (right)

dimensions, the gain was smaller (48% of the memory requirement of the standard
algorithm), but still considerable. The list of clusters performed better than the
M-tree in terms of storage usage. In this index, our algorithm was consistently better
than the simpler version by Samet. The average length of the queue was up to five
times shorter than the standard algorithm. In the M-tree, on the other hand, all
the space performances were rather similar. The charts also show that the storage
efficiency degrades as k grows, especially in the case of the M-tree.

We obtained similar results with real-world datasets (see Figs. 7, 8 and 9). For
example, with the color histogram database, our algorithm only used 34% of the
storage requirement of the standard algorithm with list of clusters. The average
queue length was always smaller than 32% of that of the standard algorithm. Similar
improvements were obtained with the layout histogram and the edge structure
databases. Finally, the obtained results with the English String DB were not as good
as with the other database, but the algorithm was able to save 16% of the memory
used by the standard algorithm on average (Fig. 10).

Table 2 summarizes the improvements in storage requirements of our algorithm
over the standard k-NN search.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100

M
ea

n
m

ax
 |Q

| (
%

D
B

)

k

English String DB

List of Clusters - HS
List of Clusters - Samet

List of Clusters - Ours
M-tree - HS

M-tree - Samet
M-tree - Ours

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100

A
vg

 |Q
| (

%
D

B
)

k

English String DB

List of Clusters - HS
List of Clusters - Samet

List of Clusters - Ours
M-tree - HS

M-tree - Samet
M-tree - Ours

Fig. 10 English String DB: Mean of the maximum queue length (left) and average queue length
(right)

Multimed Tools Appl (2009) 41:215–233 231

Table 2 Storage requirements (maximum and average queue length) of our algorithm (standard
algorithm: 100%, k = 50)

Database LC-max (%) LC-avg (%) MT-max (%) MT-avg (%)

Gaussian 8-D 49.4 48.3 93.7 86.5
Gaussian 16-D 19.5 19.2 96.2 88.3
Gaussian 32-D 18.5 18.2 96.3 89.1
Color histogram 34.6 32.3 93.4 89.1
Layout histogram 30.8 28.4 93.7 88.9
Edge structure 26.1 23.4 86.8 81.3
English string DB (k = 100) 95.6 83.4 98.4 92.1

5 Conclusions

We presented an improved version of the optimal-order k-NN search algorithm,
using distance estimators (such as the upper and lower bound distance to the query
object) in order to reduce the storage requirements of the search algorithm. Our
proposed algorithm aims to prune from the active page list, as soon as possible, all
nodes from the index where it is ensured that no relevant objects can be found.
We also introduce the concept of bubbles, which are “abstract” index nodes with
no elements inside. Bubbles can be used to prune index nodes from the active page
list using the distance estimators, even if the algorithm has not yet visited the index
nodes which actually contain the objects inside the bubble. We tested our algorithm
with several synthetic and real-world datasets, using two state-of-art index structures
for metric spaces. Our experimental results confirm that the storage requirements of
our proposed algorithm are considerably smaller compared with the standard k-NN
algorithm (up to five times smaller).

We observed that the best results (i.e., the larger savings in space) were obtained
with the list of clusters. This result can be explained as follows: the list of clusters
produces more compact balls (regions) than the M-tree, due to the dynamic nature of
the latter. For example, for the color histogram database the average covering radius
using the M-tree was 0.32, while the average covering radius using list of clusters
was only 0.18. Also, the M-tree creates more balls than the list of clusters, and not
all them are necessarily full (as in the case of the list clusters). This means that the
“density” of each ball in the M-tree is smaller than in the balls of the list of clusters.
Thus, the search algorithm is able to find better distance estimations to the balls with
the list of clusters, which allows this index to discard balls from Q sooner than the
M-tree.

We plan to continue exploring the trade-off between the index size and the storage
requirements for the active page list. Further improvements on the average length of
Q may be obtained if one has more structural information about the balls, at the cost
of storing more information on each index node.

Although we focused in this paper on indexes for metric spaces, our technique
is general and can be adapted with minimal effort to be used with spatial access
methods. In that case, each subtree is usually bounded by a hyperrectangle. Our
heuristic translates into the following rule: Assume a tree node contains bsize elements
within a hyperrectangle. Then there are bsize elements at distance max δ(q, c), where c
ranges among all the corners of the hyperrectangle. This heuristic is different from the
usual MinMaxDist [18], which gives a better distance estimator but holds only for one

232 Multimed Tools Appl (2009) 41:215–233

object per tree node. If we use the simpler rule by Samet [19] our work builds on, and
translate it to a spatial data structure, the result is always inferior to the MinMaxDist
heuristic.

Acknowledgement We thank Christian Rohrdantz for implementing the algorithms and the index
structures, and for running the experimental evaluation.

References

1. Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason J (2007) A common reference framework
for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP):
theory and applications. J Chem Inf Model 47:279–294

2. Böhm C, Berchtold S, Keim D (2001) Searching in high-dimensional spaces: Index structures for
improving the performance of multimedia databases. ACM Comput Surv 33(3):322–373

3. Bustos B, Keim D, Saupe D, Schreck T, Vranić D (2006) An experimental effectiveness compar-
ison of methods for 3D similarity search. Special issue on Multimedia Contents and Management
in Digital Libraries. Int J Digit Libr 6(1):39–54

4. Chávez E, Navarro G (2005) A compact space decomposition for effective metric indexing.
Pattern Recogn Lett 26(9):1363–1376

5. Chávez E, Navarro G, Baeza-Yates R, Marroquín J (2001) Searching in metric spaces. ACM
Comput Surv 33(3):273–321

6. Ciaccia P, Patella M., Zezula P (1997) M-tree: an efficient access method for similarity search
in metric spaces. In: Proc. 23rd Intl. Conf. on Very Large Databases (VLDB’97), Morgan
Kaufmann, pp 426–435

7. Dohnal V, Gennaro C, Savino P, Zezula P (2003) D-index: distance searching index for metric
data sets. Multimed Tool Appl 21(1):9–33

8. Funkhouser T, Kazhdan M, Shilane P, Min P, Kiefer W, Tal A, Rusinkiewicz S, Dobkin D (2004)
Modeling by example. ACM Trans Graph 23(3):652–663

9. Gaede V, Günther O (1998) Multidimensional access methods. ACM Comput Surv 30(2):
170–231

10. Hettich S, Bay S (1999) The UCI KDD archive [http://kdd.ics.uci.edu]
11. Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional

spaces? In: Proc. 26th international conference on very large databases (VLDB’00), Morgan
Kaufmann, pp 506–515

12. Hjaltason G, Samet H (1995) Ranking in spatial databases. In: Proc. 4th intl. symp. on advances
in spatial databases, LNCS, vol 951. Springer, pp 83–95

13. Hjaltason G, Samet H (2000) Incremental similarity search in multimedia databases. Technical
report CS-TR-4199, University of Maryland, Computer Science Department

14. Hjaltason G, Samet H (2003) Index-driven similarity search in metric spaces. ACM Trans Data-
base Syst 28(4):517–580

15. Keim DA (1999) Efficient geometry-based similarity search of 3D spatial databases. In: Proc.
ACM international conference on management of data (SIGMOD’99), ACM Press, pp 419–430

16. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):
31–88

17. Navarro G (2002) Searching in metric spaces by spatial approximation. The VLDB J 11(1):28–46
18. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proc. ACM interna-

tional conference on management of data (SIGMOD’95), ACM Press, pp 71–79
19. Samet H (2003) Depth-first k-nearest neighbor finding using the MaxNearestDist estimator. In:

Proc. 12th intl. conf. on image analysis and processing (ICIAP’03), IEEE Computer Society,
pp 486–491

20. Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann,
San Francisco, CA, USA

21. Santos-Filho R, Traina A, Traina C Jr, Faloutsos C (2001) Similarity search without tears:
the OMNI family of all-purpose access methods. In: Proc. 17th intl. conf. on data engineering
(ICDE’01), IEEE Computer Society, pp 623–630

22. Uhlmann J (1991) Implementing metric trees to satisfy general proximity/similarity queries. In:
Code 5570 NRL Memo Report, Naval Research Laboratory

23. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach
(advances in database systems). Springer, New York

http://kdd.ics.uci.edu

Multimed Tools Appl (2009) 41:215–233 233

Benjamin Bustos is an assistant professor in the Department of Computer Science at the University
of Chile. He is also a researcher at the Millennium Nucleus Center for Web Research. His research
interests are similarity searching and multimedia information retrieval. He has a doctoral degree in
natural sciences from the University of Konstanz, Germany. Contact him at bebustos@dcc.uchile.cl.

Gonzalo Navarro earned his PhD in Computer Science at the University of Chile in 1998, where he is
now Full Professor. His research interests include similarity searching, text databases, compression,
and algorithms and data structures in general. He has coauthored a book on string matching and
around 200 international papers. He has (co)chaired international conferences SPIRE 2001, SCCC
2004, SPIRE 2005, SIGIR Posters 2005, IFIP TCS 2006, and ENC 2007 Scalable Pattern Recognition
track; and belongs to the Editorial Board of Information Retrieval Journal. He is currently Head of
the Department of Computer Science at University of Chile, and Head of the Millenium Nucleus
Center for Web Research, the largest Chilean project in Computer Science research.

	Improving the space cost of k-NN search in metric spaces by using distance estimators
	Abstract
	Introduction
	Searching in metric spaces
	Algorithm description
	Standard best-first k-NN algorithm
	Our proposal
	Example
	Cost analysis of the proposed algorithm

	Experimental evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

