
OPERATIONS RESEARCH
Vol. 60, No. 3, May–June 2012, pp. 517–528
ISSN 0030-364X (print) � ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.1120.1050

© 2012 INFORMS

A New Algorithm for the Open-Pit Mine
Production Scheduling Problem

Renaud Chicoisne, Daniel Espinoza
Department of Industrial Engineering, Universidad de Chile, 8370439 Santiago, Chile

{renaud.chicoisne@gmail.com, daespino@dii.uchile.cl}

Marcos Goycoolea
School of Business, Universidad Adolfo Ibañez, 7941169 Santiago, Chile, marcos.goycoolea@uai.cl

Eduardo Moreno
Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, 7941169 Santiago, Chile, eduardo.moreno@uai.cl

Enrique Rubio
Department of Mining Engineering and Advanced Mining Technology Center, Universidad de Chile, 8370439 Santiago, Chile,

erubio@redcoglobal.com

For the purpose of production scheduling, open-pit mines are discretized into three-dimensional arrays known as block
models. Production scheduling consists of deciding which blocks should be extracted, when they should be extracted, and
what to do with the blocks once they are extracted. Blocks that are close to the surface should be extracted first, and
capacity constraints limit the production in each time period. Since the 1960s, it has been known that this problem can be
cast as an integer programming model. However, the large size of some real instances (3–10 million blocks, 15–20 time
periods) has made these models impractical for use in real planning applications, thus leading to the use of numerous
heuristic methods. In this article we study a well-known integer programming formulation of the problem that we refer to
as C-PIT. We propose a new decomposition method for solving the linear programming relaxation (LP) of C-PIT when
there is a single capacity constraint per time period. This algorithm is based on exploiting the structure of the precedence-
constrained knapsack problem and runs in O4mn logn5 in which n is the number of blocks and m a function of the
precedence relationships in the mine. Our computations show that we can solve, in minutes, the LP relaxation of real-sized
mine-planning applications with up to five million blocks and 20 time periods. Combining this with a quick rounding
algorithm based on topological sorting, we obtain integer feasible solutions to the more general problem where multiple
capacity constraints per time period are considered. Our implementation obtains solutions within 6% of optimality in
seconds. A second heuristic step, based on local search, allows us to find solutions within 3% in one hour on all instances
considered. For most instances, we obtain solutions within 1–2% of optimality if we let this heuristic run longer. Previous
methods have been able to tackle only instances with up to 150,000 blocks and 15 time periods.

Subject classifications : open-pit mining; optimization; mixed integer programming.
Area of review : Environment, Energy, and Natural Resources.
History : Received November 2009; revisions received March 2011, June 2011, October 2011; accepted November 2011.

1. Introduction
Open-pit mining consists of extracting commercially valu-
able ore from a mineral deposit by digging from the sur-
face as opposed to tunneling underground. Hustrulid and
Kuchta (2006) describe the open-pit mineral supply process
in terms of three important phases: planning, implemen-
tation, and production. During the planning phase, mining
engineers have the highest potential for influencing the pro-
duction value. The goal of this phase is to prepare a feasi-
bility report containing a tentative production schedule, that
is, to construct a plan outlining which part of the orebody
should be extracted, when it should be extracted, and how
it should be extracted. The feasibility study of a mine is
considered a bankable document required by investors.

The planning phase of a mine typically is subdivided
into a number of steps, which are solved sequentially in
order to obtain a tentative production schedule. Because it
is difficult to find a concise and formal description of the
mine planning phase in the literature, we briefly describe it
below.

1. Block model determination. The first step consists
of preparing a discretized model of the physical mineral
deposit. By drilling in different locations and depths of the
mine, samples of material are obtained and used to interpo-
late grade and densities throughout the deposit. With this,
the orebody is divided into cubes of equal size (known as
blocks), each of which is assigned an estimated tonnage and
estimated mineral grades (see Journel and Huidbregts 1978,
Isaaks and Srivastava 1989). Based on this information,
an estimated extraction profit for each block in the model

517



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
518 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

is computed. Profit depends on cost, and cost depends on
what is done with the block after extraction, that is, if it is
sent to a mill, a waste dump, or a stockpile. Block mod-
els with such profit attributes typically are referred to as
economic block models. Formally, we will describe a block
model in terms of a set of blocks B and a set of destina-
tions D. For each block b ∈ B we assume a profit of pbd

if block b is sent to destination d. Profit computations are
done in present value and are done a priori; thus, they do
not take into account the time at which the block is actually
extracted.

2. Final pit contour delineation. This step consists of
delimiting the subregion of the mine in which extraction
will take place, or equivalently, the part of the whole inven-
tory that will be considered for mining. This subdivision is
known as the final pit contour or ultimate pit limit.

Before any block can be extracted, all blocks immedi-
ately above and at certain angles must also be removed
(see Hustrulid et al. 2000). These angles are known as
wall-slope requirement angles. To determine the ultimate
pit limit, it is first necessary to determine these. Slope angle
requirements depend on the structural composition of the
rocks and vary depending on the location and depth of each
block.

Once wall-slope angle requirements are determined, it is
possible to define precedence relationships between blocks.
These can be represented in terms of a digraph G= 4B1A5
in which 4a1 b5 ∈ A means that block a must be extracted
before block b. We may assume that G contains only imme-
diate precedence relationships. That is, if a1b1 c ∈ B are
such that a must be extracted before b, and b must be
extracted before c, then 4a1 c5yA.

To compute the ultimate pit limit, let pb = maxd∈D8pbd9
represent the best possible profit that can be obtained from
a block (also known as the estimated undiscounted profit)
and solve the following problem:

UPL4u5= max
∑

b∈B

ubxb1 (1a)

s.t. xb ¶ xa ∀ 4a1 b5 ∈A1 (1b)

xb ∈ 80119 ∀b ∈B0 (1c)

In this problem, variable xb takes a value one if and only
if block b is to be included in the ultimate pit. Under sim-
ple assumptions, it is possible to prove that the ultimate pit
limit contains the sets of all blocks that should be included
in an optimal production schedule (see Caccetta and Hill
2003). The ultimate pit limit problem has received much
attention in the literature. Lerchs and Grossmann (1965)
first observed that it is equivalent to finding the maximum
closure of a graph and proposed a customized algorithm.
For modern algorithms and a comprehensive survey, includ-
ing complexity analysis and computations, see Hochbaum
and Chen (2000) and Chandran and Hochbaum (2009).

3. Production scheduling. This consists of deciding
which blocks should be extracted, when they should be
extracted, and how extracted blocks should be treated
(Dagdelen 2007). This step assumes an a priori discretiza-
tion of time into periods and an a priori definition of capac-
ity in each time period. Capacity can be defined in terms
of milling, transportation, and processing capabilities.

To determine a production schedule, it is common prac-
tice to proceed as follows.

First, determine a set of pushbacks (or phases). For this,
a decreasing sequence of cost vectors �1 >�2 > · · · >�k

is determined. Then, for i = 11 0 0 0 1 k, each of the prob-
lems UPL4� i5 is solved to optimality to obtain solution xi.
It is well known (Lerchs and Grossmann 1965, Matheron
1975a, b) that �1 > �2 > · · · > �k implies x1 ¶ x2 ¶ · · ·

¶ xk. That is, the solutions x11 0 0 0 1 xk correspond to a
sequence of pits P 11 0 0 0 1 P k, such that P 1 ⊆ P 2 ⊆ 0 0 0 1 P k.
For details see Whittle (1999, Appendix E). Pushbacks are
defined by taking the difference of consecutive pits. For-
mally, F 1 = P 1, F 2 = P 2 −P 11 0 0 0 1 F k = P k −P k−1. Ideally,
the vectors � i should be defined in such a way that the
pushbacks F i all have a similar size (in terms of the num-
ber of blocks). Unfortunately, it is not always possible to
do this (this is known as the gapping problem), so in some
cases heuristics must be used to separate pushbacks.
After the pushbacks are defined, these are further subdi-
vided into groups of blocks at the same vertical level (or
bench). These subdivisions are known as bench-phases. In a
final step, the bench-phases are each scheduled a time of
extraction. This is done in such a way that in each time
period, the scheduled bench-phases do not exceed capacity
limitations. The whole process is illustrated in Figure 1.
This process can be repeated when other considerations—
such as minimum working space for shovels, trucks, and
blending requirements—are not satisfied. To schedule the
bench-phases, a number of proprietary algorithms exist.
Perhaps the best known algorithm for doing this is Milawa,
by Gemcom Software (2011). Once the bench-phases are
scheduled, a detailed plan of extraction is defined in which
the material of each bench-phase is assigned a destination.
This typically is done by deciding a cutoff grade that dis-
criminates between an ore and waste block (see Lane 1988
and King 2001). After the detailed plan is made, push-
backs are smoothed out to be more compliant with geomet-
ric operational requirements. Finally, haul-roads and ramps
are designed in order to more accurately assess set-up and
transportation costs.

Mine planning, as described in the three steps listed
above, suffers from a number of important limitations.
For example, processing capacity and net-present value are
taken into account only after the bench-phases are com-
puted, and multiple possible processing options for each
block are considered only after blocks have been scheduled
in time. Additionally, block destination is decided based
on cutoff grade criteria rather than by considering capac-
ities, time, and how other blocks are processed. Despite



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
Operations Research 60(3), pp. 517–528, © 2012 INFORMS 519

Figure 1. A production plan scheduled by pushbacks.

(a) (b)

(c) (d)

1 11
1 22

2

3 33

3

4

4

4

4

4

5

5

5

5

5

6

6

Notes. In (a), a sequence of nested pits is defined. In (b), pushbacks are defined by selecting a subset of the nested pits. In (c), the bench-phases are
defined. In (d), the bench-phases are assigned a time period of extraction.

these limitations, most commercial software packages use
this method or variants thereof. Some important examples
include Whittle (by Gemcom Software 2011), NPVsched-
uler (by DataMine Software 2011), Vulcan (by Maptek
Software 2011), Comet (by Strategy Optimisation Systems
2011), among others. Moreover, most of these packages are
not fully automated and require many manual computations
in steps such as pushback generation.

2. Literature Review
To our knowledge, the first attempt to address the open-
pit mine production scheduling problem in a holistic and
exact optimization model was that of Johnson (1968, 1969).
Johnson defines [0-1] variables describing the amount
and type of material mined from each block, as well
as the method and time of extraction. Johnson considers
precedence constraints and a number of different capac-
ity constraints, including (i) hours available per type of
equipment; (ii) waste handling capacity; (iii) stockpiling
capacity; (iv) capacity of plants (such as concentrators,
refineries, and maintenance facilities); (v) blasting man-
hours; (vi) lower and upper bounds on mining volumes
due to legal constraints, plant-feed requirements, and mar-
ketability; (vii) volumetric ratio constraints for concentrator
inputs; and others. A generalized form of Johnson’s model
is presented in Equations (2a)–(2g). In this model, vari-
able xbdt represents the fraction of block b sent to destina-
tion d in time period t or before, pbdt represents the profit
obtained per unit of block b sent to destination d in period
t, abdtr represents the amount of resource r consumed in
time period t per unit of block b sent to destination d, and

crt represents the amount of resource r available in time
period t.

max
∑

b∈B

D
∑

d=1

T
∑

t=1

pbdt4xbdt − xb1d1 t−151 (2a)

s.t.
D
∑

d=1

∑

b∈B

abdtr4xbdt − xb1d1 t−15¶ crt

∀ r ∈R1 ∀ t = 11 0 0 0 1 T (2b)
T
∑

t=1

D
∑

d=1

4xbdt − xb1d1 t−15¶ 1 ∀b ∈B (2c)

xbdt ¶ xadt ∀ 4a1 b5 ∈A1 ∀ t = 11 0 0 0 1 T 1

∀d ∈D (2d)

xb1d1 t−1 ¶ xbdt ∀b ∈B1 ∀ t = 11 0 0 0 1 T 1

∀d ∈D (2e)

xbd0 = 0 ∀b ∈B1 ∀d ∈D1 (2f)

0 ¶ xbdt ¶ 1 ∀b ∈B1 ∀d ∈D0 (2g)

Johnson (1968) first observed that in practical applica-
tions, the number of constraints of type (2b) is small rel-
ative the other constraints. Furthermore, he observed that
if these constraints are relaxed, the problem reduces to
solving T disjoint maximum closure problems. Because of
this reduction, he proposed a Dantzig-Wolfe decomposi-
tion for solving problem. Dagdelen (1985) and Dagdelen
and Johnson (1986) later developed a Lagrangian relaxation
procedure and subgradient methods to tackle this problem.
However, because most real-world problems are very large



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
520 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

(in terms of the number of blocks, destinations, and capac-
ity constraints), most articles in the academic literature that
follows consider some kind of simplified version. Equa-
tions (3a)–(3f) presents a simplified version of Johnson’s
formulation (C-PIT) in which the destination of each block
is decided a priori, as in traditional economic block model
constructions. C-PIT also differs from the more general
model in that (i) it is assumed that a ¾ 0 and crt ¾ 0 for
all r1 t, and (ii) there exists � > 0 such that pbt = pb/441+

�5t5 for all b and t. When we consider C-PIT formula-
tions with only a single resource (i.e., when R = 1), we
will denote c1t as ct .

max
∑

b∈B

T
∑

t=1

pbt4xbt − xb1 t−151 (3a)

s.t.
∑

b∈B

arb4xbt − xb1 t−15¶ crt

∀ t ∈ 1 0 0 0 T 1∀ r ∈ 1 0 0 0R1 (3b)

xbt ¶ xat ∀ 4a1 b5 ∈A1 ∀ t ∈ 1 0 0 0 T 1 (3c)

xbt ¶ xb1 t+1 ∀b ∈B1 ∀ t ∈ 1 0 0 0 T − 11 (3d)

xbt ∈ 80119 ∀b ∈B1 ∀ t ∈ 1 0 0 0 T 1 (3e)

xb0 = 0 ∀b ∈B0 (3f)

Even though the C-PIT model is much simplified with
respect to Johnson’s formulation, it is still of much value
to current planning methodologies. Instead of schedul-
ing bench-phases, one can use C-PIT to schedule blocks
directly. This allows the explicit consideration of net
present value and capacity when constructing the schedule.

Caccetta and Hill (2003) use the solution of the ultimate
pit limit problem for preprocessing and propose a branch-
and-cut framework for solving the problem. Ramazan and
Dimitrakopoulos (2004) relax the integrality of variables
with negative objective function value. Boland et al. (2010)
and Fricke (2006) use cutting planes derived from the
precedence constrained knapsack problem. Gaupp (2008)
computes bounds on the earliest (and latest) possible times
a block can be extracted to pre-process before apply-
ing Lagrangian relaxation methods. Gershon (1987a, b),
and Fricke (2006) propose a series of optimization-based
heuristics.

While each of these methods has contributed to faster
solution times, solving problem instances with more than
1001000 blocks remains elusive. Perhaps the only exception
to this can be found in the work of Caccetta and Hill (2003),
who claim to solve instances with up to 250,000 blocks.
Unfortunately, citing commercial interests, the authors do
not describe any replicable algorithm or methodology.

Alternative methods to using C-PIT have been proposed
for simplifying Johnson’s model. Ramazan et al. (2005)
combine integer programming with aggregation in order to
reduce problem size. In their research, they define large
aggregated blocks called fundamental trees and solve the
problem in the reduced-variable space. Gershon (1983)

allows the partial extraction of blocks in the bottom of the
pit. More recently, Boland et al. (2009) propose a formu-
lation (henceforth, BIN-PIT) in which blocks are grouped
into aggregate units, called bins, and impose precedence
relationships only between bins. In this way, they signifi-
cantly reduce the number of precedence relationships and
can instead incorporate multiple processing destinations
for blocks. Moreover, they propose a novel decomposition
approach to quickly solve the linear programming (LP)
relaxation of this formulation.

While preparing this document it has come to our atten-
tion that Bienstock and Zuckerberg (2010) have developed
a new decomposition method suited to solving the C-PIT
linear programming relaxation with an arbitrary number of
side constraints per time period. The computational results
they present are very promising.

For a more detailed survey of exact optimization
approaches for Johnson’s model and other variants, see
Osanloo et al. (2008). For a recent survey of operations
research applications in mine planning, see Newman et al.
(2010). For a detailed treatment of open-pit mine planning,
see Hustrulid and Kuchta (2006).

In this paper, we present a new methodology for solv-
ing instances of C-PIT with a single resource constraint
per time period (i.e., when R = 1). This methodology is
described in §3. In §4 we describe an implementation of
the algorithm and the results obtained from testing it on
several real mine planning instances.

3. Methodology
The proposed methodology consists of three steps: First,
we solve the linear programming (LP) relaxation of C-PIT
with a new decomposition method called the critical multi-
plier algorithm. This algorithm requires that the C-PIT for-
mulation have a single resource constraint per time period.
A description of the critical multiplier algorithm is pre-
sented in §3.1. Second, we apply a rounding heuristic to
the fractional solution obtained from the critical multiplier
algorithm. This heuristic is based on topological sorting and
is described in §3.2. Third, in §3.3, we apply a local-search
heuristic to improve the quality of the solutions obtained by
the rounding heuristic. Throughout this section, we assume
that all scalars and vectors are rational numbers.

3.1. The Critical Multiplier Algorithm

In this section, we describe the critical multiplier algorithm
for solving the linear programming relaxation of C-PIT
when there is only a single resource constraint per time
period.

We begin by studying the problem CP4�5, which can be
considered as a single time period version of C-PIT with
only a single resource constraint.

CP4�5= max px1

s.t. ax¶ �



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
Operations Research 60(3), pp. 517–528, © 2012 INFORMS 521

xi ¶ xj ∀ 4i1 j5 ∈A

0 ¶ xi ¶ 1 ∀ i ∈B0

Let z4�5 correspond to the optimal objective function value
of problem UPL4p−�a5, as defined in (1a)–(1c). It is well
known (Lerchs and Grossmann 1965, Matheron 1975a,
b) that

1. z4�5 is a convex piecewise linear function with a finite
number of break-points

�1 >�2 > · · ·>�k3

2. for each i ∈ 11 0 0 0 1 k there exists xi such that it is an
optimal solution of UPL4p−�a) for all � ∈ 6�i+11�i7 and
such that

x1 ¶ x2 ¶ · · ·¶ xk0

Proposition 3.1. Consider a scalar b. For each i ∈

11 0 0 0 1 k let bi = axi, and define

u= min8i ∈ 1 0 0 0 k2 bi ¾ b91

l = max8i ∈ 1 0 0 0 k2 bi ¶ b90

If u = l, then solution x̄ = xu = xl is optimal for CP4b5.
Otherwise, define

�=
bu − b

bu − bl
0

Solution x̄ = �xl + 41 −�5xu is optimal for CP4b5.

Proof. Let Nx ¶ 0 represent the set of precedence con-
straints, and let 1 represent the vector of all ones. The dual
problems associated to UPL4p − �a5 and CP4b5 are as
follows:

min 1yB

DUPL4p−�a5= s.t. yB +N T yA ¾ 4pT
−�aT 5

y ¾ 01

min 1yB +�b

DCP4b5= s.t. yB +N T yA +�aT ¾ pT

y1�¾ 01

where yA1 yB, and � are dual variables associated with con-
straint sets Nx¶ 0, x¶ 1, and ax¶ b, respectively.

First, note that x̄ is feasible for CP4b5.
Second, let 4y∗

A1 y
∗
B5 be an optimal solution of

DUPL4p−�ua5; then, it is easy to see that 4y∗
A1 y

∗
B1�

u5 is
feasible for DCP4b5 and has objective function value 1y∗

B+

�ub. Because both xu and xl are optimal for UPL4p−�ua5,
it follows that

1y∗

B = 4p−�ua5xu1 (4)

1y∗

B = 4p−�ua5xl0 (5)

Taking 41 −�5 · (4) +� · (5), we obtain

1y∗

B = p441 −�5xu
+�xl5−�u441 −�5axu

+�axl5

= px̄−�u441 −�5bu
+�bl5

= px̄−�ub0

Thus,

px̄ = 1y∗

B +�ub0

By strong duality, we conclude that x̄ is optimal for
CP4b5. �

A similar version of Proposition 3.1 was proved in
Lerchs and Grossmann (1965), but with a focus on
parametric analysis of ultimate pit limit solutions.

Proposition 3.2. Let �1 > �2 > 0 and let x̄1 and x̄2 be
corresponding optimal solutions of CP4�15 and CP4�25 as
characterized in Proposition 3.1. Then, x̄1 ¾ x̄2.

Proof. From Proposition 3.1 we know for some i1 j and
�11�2 that

x̄1
= �1xi

+ 41 −�15xi+11

x̄2
= �2xj

+ 41 −�25xj+10

First, suppose i > j . We have xj ¶ xj+1 ¶ xi ¶ xi+1. Hence,
x̄1 ¾ x̄2. Second, suppose i = j . As in Proposition 3.1, let
�u = �i+1 = �j+1 and �l = �i = �j . Define bu and bl in the
same way. We have

�1
=

bu −�1

bu − bl
�2

=
bu −�2

bu − bl
0

Thus, �1 > �2 implies �1 < �2. Because xi ¶ xi+1, it fol-
lows that x̄1 ¾ x̄2. �

We now present the main result of this section: an algo-
rithm for solving the linear programming relaxation of
C-PIT, as defined in Equations (3a)–(3f), when there is only
a single resource constraint per time period (i.e., R = 1).
A summary of the solution methodology is presented in
Algorithm 1.

Theorem 3.1. Consider an instance of C-PIT with a single
resource constraint per time period. For each t ∈ 11 0 0 0 1 T
let Ut =

∑t
s=1 ct , and let x̄t represent the optimal solu-

tion of CP4Ut5, obtained as in Proposition 3.1. Then, x̄ =

4x̄11 x̄21 0 0 0 1 x̄T 5 is an optimal solution to the linear pro-
gramming relaxation of C-PIT. Furthermore, x̄ can be com-
puted in O4mn logn5, where n is the number of blocks and
m the number of precedences.



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
522 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

Proof. First, note that x̄ is feasible for the following
problem:

AUX = max
∑

b∈B

T
∑

t=1

pbt4xbt − xb1 t−151 (6a)

s.t. xit ¶ xjt ∀ t = 11 0 0 0 1 T ∀ 4i1 j5 ∈A (6b)

xbt ¶ xb1 t+11

∀b ∈B1 ∀ t = 11 0 0 0 1 T − 11 (6c)
∑

b∈B

abxbt ¶Ut ∀ t = 11 0 0 0 1 T 1 (6d)

0 ¶ xbt ¶ 1 ∀b ∈B1 ∀ t = 11 0 0 0 1 T 1 (6e)

xb0 = 0 ∀b ∈B0 (6f)

In fact, because x̄t is feasible for CP4Ut5 for all t, it follows
that constraints (6b), (6d), (6e), and (6f) are all satisfied.
On the other hand, because Ut ¶ Ut+1 for all t < T , from
Proposition 3.2, it follows that (6c) is satisfied.

Second, note that x̄ is an optimal solution of AUX.
In fact, let y be any feasible solution for AUX. We will
write y = 4y11 y21 0 0 0 1 yT 5, where yti corresponds to yit . In
this way, we have that yt is a feasible solution for CP4Ut5
for t = 11 0 0 0 1 T . For any x feasible for AUX, let z4x5 be the
corresponding objective function value. It can be seen that

z4x5=
∑

b∈B

T
∑

t=1

pbt4xbt − xb1 t−15=

T−1
∑

t=1

�tpx
t1

where �t = 41−1/41+�5541/41+�5t5 for t < T and �T =

1/41 +�5T . It thus follows that

z4x̄5− z4y5=

T
∑

t=1

�t4px̄
t
−pyt50

However, for t = 1 0 0 0 T , both yt and x̄t are feasible for
CP4Ut5. Because x̄t is optimal for CP4Ut5 we have 4px̄t −

pyt5¾ 0 for all t, and hence z4x̄5− z4y5¾ 0.
Finally, note that because x̄ is an optimal solution of

AUX, it must be feasible for C-PIT. Because x̄ is optimal
for AUX, it must hold that if x̄t 6= x̄t+1 for some t < T , then
ax̄t =Ut . However, this implies x̄ is feasible for C-PIT.

Because AUX is a relaxation of C-PIT, we conclude that
x̄ must be optimal for C-PIT.

The complexity O4mn logn5 is the complexity of
Hochbaum’s parametric pseudoflow algorithm (Hochbaum
2008). This algorithm computes all the break-point scalar
values �11 0 0 0 1 �k and the associated break-point solutions
x11 0 0 0 1 xk for problem UPL4p − �a5. Once these break-
points are obtained, problem CP4Ut5 can be solved to
obtain x̄t in O4n5 for each t ∈ 11 0 0 0 1 T . �
Algorithm 1 (The critical multiplier algorithm (CMA)).

Inputs: A set of blocks B, where n= �B�, precedence
relationships A, a number of time periods T ,

a positive (scalar) capacity ct for each t = 11 0 0 0 1 t,
a profit vector p ∈�n, and a nonnegative
constraint vector a ∈�n.

1: Compute break-point values �1 >�2 > · · ·>�k

and corresponding break-point solutions x1 ¶ x2 ¶ · · ·

¶ xk of piecewise linear function z4�5,
where z4�5 is the optimal value of UPL4p−�a5,
as defined in Equations (1a)–(1c). For this,
use the parametric version of
Chandran and Hochbaum (2009),
or any other sensitivity analysis method.

2: for t = 1 to T do
3: Ut ←

∑t
s=1 ct .

4: u← min8i ∈ 1 0 0 0 k2 a · xi ¾Ut90
5: l ← max8i ∈ 1 0 0 0 k2 a · xi ¶Ut90
6: if u= l then
7: x̄t ← xu

8: else

9: �=
a · xu −Ut

a · xu − a · xl
0

10: x̄t ← �xl + 41 −�5xu0
11: return x̄ = 4x̄11 x̄21 0 0 0 1 x̄T 5.

3.2. Obtaining a Starting Feasible Solution:
The TopoSort Heuristic

Given a block model, we say that an ordering (or permu-
tation) of blocks 8b11 b21 0 0 0 1 bn9 defines a feasible extrac-
tion sequence if each block appearing in the sequence
is such that all its predecessors appear before it in the
sequence. For example, consider the two-dimensional rep-
resentation of a mine illustrated in Figure 2(a), and suppose
that blocks must be extracted satisfying slope-angle con-
straints of 45 degrees. The ordering

8b1a1 c1 g1d1h1 e1 i1m91

illustrated in Figure 2(b), defines a feasible extraction
sequence.

Feasible extraction sequences lead to a natural heuristic
for C-PIT. Start with the first block in the sequence. Sched-
ule this block for extraction as early as possible. That is,
make sure to schedule the block later in time than all its
predecessors, and do so in the first time period for which
there are enough resources available. Move to the next
block. Repeat until all the blocks are scheduled. Because a
feasible extraction sequence is such that all predecessors of
a block must come before it in the sequence, this heuristic
is correct and leads to a feasible solution.

Consider again the example illustrated in Figure 2.
Assume that there are only enough resources to extract
two blocks per time period. The solution associated with
ordering 8b1a1 c1 g1d1h1 e1 i1m9 would consist of extract-
ing 8b1a9 in the first time period, 8c1 g9 in the second
period, and so on. We call this type of heuristic a TopoSort
heuristic for reasons that will soon be clear. The most crit-
ical part of a TopoSort heuristic consists of obtaining a



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
Operations Research 60(3), pp. 517–528, © 2012 INFORMS 523

Figure 2. Two-dimensional representation of a mine
(a); feasible extraction sequence example (b).

a b c d e

f g h i j

k l m n o

(a)

(b)
a

(2)

b

(1)

c

(3)

d

(5)

e

(7)

f g

(4)

h

(6)

i

(8)

j

k l m

(9)

n o

Notes. In (a), a two-dimensional example where it is assumed that to
extract any block, the blocks directly above, above left, and above right
must be previously extracted. This implies that to remove block m, blocks
g, h, and i must have been removed before, while we can remove block
a in any time period. In (b), a feasible extraction sequence example: For
the mine defined in (a), the order b, a, c1 0 0 0 1m is a feasible extraction
sequence, in the sense that if we extract the blocks in this order we will
not violate the precedence requirements.

good feasible extraction sequence. We next describe sev-
eral methods by which such a sequence can be obtained.
Before doing so, we introduce some notation and formalize
the algorithm just described.

Recall the precedence graph G = 4B1A5 defined in the
introduction. In this graph, nodes correspond to blocks,
and arcs correspond to immediate precedence relationships.
That is, 4a1 b5 ∈ A if block a is an immediate predeces-
sor of block b. Assume �B� = n. Given a1b ∈ B, we say
that a→ b if there is a directed path from a to b in G, or
equivalently, if a is a predecessor of b.

Let B−4b5 denote the set of all blocks in B that
are predecessors of b. We say that an ordering of the
blocks 8b11 b21 0 0 0 1 bn9 defines a topological ordering of
B if bi → bj implies i < j , or equivalently, if B−4bi5 ⊆

8b11 0 0 0 1 bi−19 for each i1 j ∈ 11 0 0 0 1 n. Note that a sequence
is a topological ordering in B if and only if it defines a
feasible extraction sequence in the mine.

Because arcs A correspond to geometric precedence rela-
tionships, G cannot contain any directed cycles. An impor-
tant property of acyclic directed graphs is that they always
admit topological orderings (see Cook et al. 1998). Thus,
we can say that (1) the TopoSort heuristic simply reduces
to finding a topological ordering of the blocks in the mine,
and (2) such an ordering always exists.

Because a directed acyclic graph can have many differ-
ent topological orderings, we need a mechanism by which
to select good orderings. If we assume that every block b

has an associated weight wb, our heuristics will prefer those
topological orderings in which blocks with bigger weights
appear earlier in the sequence. This idea leads to the fol-
lowing definition.

Consider a topological ordering 8b11 0 0 0 1 bn9. We say that
the ordering is weighted with respect to w if every pair of
consecutive blocks bi and bi+1 satisfies either (1) bi is a
predecessor of bi+1 (i.e., bi → bi+15, or (2) wi <wj . Algo-
rithm 2 shows how it is possible to obtain a topological
sorting of the blocks in a mine. In this algorithm, given
a directed graph G4V 1E5 and u ∈ V , set �−4u5 represents
the arcs pointing to u.

Algorithm 2 (TSort4G1w5, topologically sorting the nodes
of a directed graph).

Inputs: An acyclic directed graph G= 4V 1E5, a node
cost vector w.

1: Let i ← 1 and let n← �V �.
2: while i < n do
3: u← arg max8wu2 �

−4u5= �9 (u is any min-weight
node with no incoming arcs).

4: G←G\8u9 (remove u from G and all arcs
outgoing from u).

5: vi ← u and i ← i+ 10
6: return A topological ordering v11 0 0 0 1 vn in G that is

weighted with respect to w.

Given a weighted topological ordering, it is simple to
schedule the blocks of a mine in such a way as to obtain a
feasible solution to C-PIT. This can be seen in Algorithm 3.
There is but one key issue remaining in our discussion:
how to choose an appropriate set of weights for the blocks
in the mine.

Algorithm 3 (THeur4G1w5: the TopoSort heuristic).

Inputs: An acyclic directed graph G= 4B1A5
representing blocks and precedences, a weight
wb for each block b ∈B, a number of time
periods T , a number of resources R, and for each
block b, each time period t and each resource r , the
amount of resource r required to extract block b
(represented by qrb),and the availability of resource r
available in time t (represented by crt).

1: tb ← 11 ∀b ∈B, i ← 1.
2: 8b11 0 0 0 1 bn9← TSort4G1w5.
3: while i < n do
4: Let u= bi and let i ← i+ 1.
5: tu ← max8tv2 4v1 u5 ∈E9. (block u cannot be

extracted before its predecessors).
6: tu ← max8tu1min8t2 crt ¾ qru ∀ r = 11 0 0 0 1R99.

(extract in the earliest time period following tu
with sufficient resources).

7: if tu ¶ Tmax then
8: crtu ← crtu − qru1 ∀ r = 11 0 0 0 1R. (update

available resources).
9: return A time of extraction tb for each block

b ∈B.



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
524 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

In fact, Algorithm 3 describes not just one, but rather an
entire class of heuristic algorithms for C-PIT. Different
assignments of weights lead to different feasible solutions
of the problem.

A well-known TopoSort heuristic was first proposed by
Gershon (1987a). Gershon’s heuristic corresponds to the
case in which the weight of each block is computed as

w4b5=
∑

a∈B−4b5

pa ∀b ∈B0 (7)

Another natural variant can be defined by assigning weights

w4b5= pb ∀b ∈B0 (8)

We henceforth call this the greedy heuristic.
We propose a different weight function that uses the lin-

ear programming relaxation solution of the C-PIT problem.
For each b ∈ B and t ∈ 11 0 0 0 1 T , let Pb1 t = 4x∗

b1 t − x∗
b1 t−15.

The fact that 0 ¶ xb10 ¶ xb11 ¶ 0 0 0 xb1T ¶ 1 implies 0 ¶
Pb1 t ¶ 1 for t = 11 0 0 0 1 T , and,

∑T
t=1 Pb1i ¶ 1. We can inter-

pret these two properties as the fact that the LP model is
uncertain regarding when each block should be extracted,
and that Pb1 t is the probability that block b will be extracted
in time t. We can assume that blocks not extracted by time T
will be extracted in time T + 1. This suggests defining

Eb =

T
∑

t=1

t4x∗

b1 t − x∗

b1 t−15+ 4T + 1541 − x∗

b1T 51

that is, the expected time of extraction for block b. Note
that if 4a1 b5 ∈ A, then Ea ¶ Eb. Moreover, if x∗ is the
optimal (integer) solution of C-PIT, then Eb is either equal
to the time of extraction of block b, or equal to T + 1 if
b is not extracted.

We define the expected-time (ET) TopoSort heuristic by
defining weights

wb = −Eb ∀b ∈B0

As an example, the solution obtained by applying this
heuristic to the instance depicted in Figure 2 is described
in Table 1.

3.3. Improving the Lower Bound:
A Local-Search Heuristic

We now describe a simple (and scalable) local-search
method for obtaining a sequence of improving solutions
given a starting feasible solution. This algorithm is an
enhanced version of that presented by Amaya et al. (2009).
Let xk be a feasible integral solution (henceforth the incum-
bent), and let D represent a set of blocks in B. At each
iteration, we determine if there exists a solution xk+1 of C-
PIT, having strictly better objective function value than xk,
that coincides with xk outside of D. Formally, this is equiv-
alent to

xk+1
b1 t = xk

b1 t ∀ t = 11 0 0 0 1 T 1 ∀b yD0

If no such improving solution exists, we define a new set
of blocks D and try again. Given a solution xk, obtain-
ing xk+1 reduces to solving an instance of C-PIT in which
we have a number of variables inversely proportional to
the size of D. Moreover, fixing these variables does not
change the structure of the problem. After substituting out
the fixed variables and eliminating constraints in which all
variables have been fixed, we obtain a smaller instance of
C-PIT in which certain blocks must be extracted before (or
after) some prescribed time period. Call this constrained
problem C-PIT[D]. If D is defined small enough, C-PIT[D]
becomes tractable. See §4 for details regarding an appro-
priate size of D.

Given xk, we consider three different ways of building
the neighborhood set D:

• Method 1. Choose a random block a ∈B that has been
scheduled for extraction in the incumbent solution. Add a
to D. If �B−4a5� ¾ dmax, build D so that it is a connected
subset of B−4a5 having dmax blocks, and stop. Otherwise,
add all of B−4a5 to D.

• Method 2. Choose a random block a ∈B that has been
scheduled for extraction in the incumbent solution. Add a
to D. If �B+4a5� ¾ dmax, build D so that it is a connected
subset of B+4a5 having dmax blocks, and stop. Otherwise,
add all of B+4a5 to D.

• Method 3. Choose a random block a ∈B that has been
scheduled for extraction in the incumbent solution. Assume
that t is the time in which a is extracted. Build D in such
a way that: (i) a is contained in D; (ii) all the blocks in D
are scheduled for extraction in times t − 11 t, or t + 1; and
(iii) D does not contain more than dmax blocks.

Throughout the local-search algorithm, we explore dif-
ferent neighborhoods in order to avoid local optima. For
details on how we defined the parameters such as dmax, or
how long we explored each neighborhood, see §4.

4. Implementation Details and Results
All our algorithms were developed in the C programming
language, and all our computational tests were carried out
on a Linux 2.6.9 machine with 32 GB of RAM and two
Quad-Core Intel Xeon E5420 processors.

Our computational tests have two goals in mind. Our first
goal is to compare the performance of the critical multiplier
algorithm with CPLEX LP algorithms. Our second goal is
to assess the quality of the solutions obtained by using our
proposed heuristics and the time required to obtain them.

To present our results, we adopt the following notation.
We refer to the greedy, Gershon, and expected TopoSort
heuristics as GrTS, GeTS, and ExTS, respectively. When
using CPLEX to solve a linear program, we ran the pri-
mal simplex algorithm, the dual simplex algorithm, and
the barrier algorithm, and we considered the time of the
fastest one. For each of these three runs, we used the default
CPLEX settings. We call this time CPXbest. We refer to
the critical multiplier algorithm as CMA. We refer to the



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
Operations Research 60(3), pp. 517–528, © 2012 INFORMS 525

Table 1. Solution of the example in Figure 2 for T = 5, ct = 3 ∀ t, � = 5%, weights ab and profits pb.

a b c d e f g h i j k l m n o

pb 1 1 1 −1 −1 −1 2 2 3 −1 −2 −2 5 −2 −2
ab 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

xb11
6

10
6

10
6

10
0 0 0

6
10

0 0 0 0 0 0 0 0

xb12 1 1 1
1
9

1
9

0 1
1
9

1
9

0 0 0
1
9

0 0

xb13 1 1 1
4
9

4
9

0 1
4
9

4
9

0 0 0
4
9

0 0

xb14 1 1 1
7
9

7
9

0 1
7
9

7
9

0 0 0
7
9

0 0

xb15 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0
Eb 104 104 104 3067 3067 6 104 3067 3067 6 6 6 3067 6 6
Order 1 2 3 5 6 10 4 7 8 11 12 13 9 14 15
tb 1 1 1 2 3 — 2 3 4 — — — 5 — —

Notes. We show in row Eb the expected time for each block, in row Order a topological order obtained by TSort using weights wb = −Eb , and
in row tb the time of extraction of each block obtained by the TopoSort heuristic.

local-search algorithm as LS 15 m, LS 1 h, LS 4 h, and LS
8 h, depending on if we let it run for 15 minutes, 1 hour,
4 hours, or 8 hours. When comparing objective function
values, we always present numbers divided by the upper
bound obtained with CMA. This allows us to assess the
proximity of solutions to the optimal value. For example,
if a solution objective value is presented as 0098, it can
be inferred that it is within 2% of optimality. Note, how-
ever, that this is merely a bound on how close the objective
function value of the solution is to the optimal objective
function value. Despite being presented as 0098, it could
still be an optimal solution if the LP relaxation is strictly
greater than the value of the optimal integral solution.

Before explaining the results of our experiments, we
briefly describe some important details concerning the
implementation of our algorithms.

CMA. To solve maximum-flow subproblems, we imple-
mented the highest-label push-relabel algorithm, as
described in Ahuja et al. (1993), and implemented both
global relabeling and gap relabeling heuristics as described
by Cherkassky and Goldberg (1997). To determine all
the critical multipliers, we used binary search rather than
Hochbaum’s parametric algorithm (Hochbaum and Chen
2000). Although in theory this should be less efficient, in
practice we found it worked fast enough because we are
determining only T break-points. We always started by
identifying the smallest critical multiplier first, then the sec-
ond smallest, and so on. When determining the kth smallest
critical multiplier, we made use of the previous binary-
search iterations. We also used the fact that the pit associ-
ated with the kth multiplier is contained in the pit corre-
sponding to the 4k− 15th multiplier.

LS 15 m, LS 1 h, LS 4 h, LS 8 h. In each iteration of
the local-search heuristics, we randomly chose among the
three methods proposed in §3.3 in order to build a neighbor-
hood. The probability of choosing each of the three neigh-
borhoods was one third. In all our runs, we defined dmax =

31250 blocks. To solve each instance of C-PIT[D], we used
the CPLEX 11.2 IP solver (with default settings), except
for the fact that we imposed a 200-second time limit. If the
200 seconds expired before CPLEX was able to find a feasi-
ble solution, we aborted the search of the neighborhood and
moved on to another. The selection of dmax was made to gen-
erate neighborhoods that could be solved to near-optimality
in the 200-second time limit. In each iteration, we provided
CPLEX with the value of the incumbent solution as a bound
for pruning and early termination. We also stopped the B&B
process as soon as a feasible solution with a strictly better
objective value than that provided by the incumbent solution
was found. These settings were found to work well after
testing various different options.

To test our methodology, we consider four data sets.
Marvin is a fictitious copper and gold orebody, included

in the Whittle four-X mine planning software, that has
53,668 blocks and 606,403 precedence constraints.
AmericaMine is a hard rock polymetallic mine. It has

19,320 blocks and 88,618 precedence constraints.
AsiaMine is a polymetallic orebody with a pipe shape.

The block model we use has 772,800 blocks and
49,507,796 precedence constraints.
Andina is a copper and molybdenum orebody in central

Chile. The block model we use has 4,320,480 blocks and
81,973,942 precedence constraints.

All four mines consider a time horizon of 15 years and
an annual discount rate of 10%. All mines consider two
distinct resource constraints per time period (on total ton-
nage extracted and processed each year), and precedence
constraints with all blocks immediately above and within
45 degrees.

4.1. Single Resource Constraint Computations

We first study instances of C-PIT in which we consider
only a single resource constraint per time period (i.e., when
R = 1). For this, we truncate our original data sets by



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
526 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

Table 2. Running times of CPXbest, CMA, and
ExTS on instances of C-PIT where only a sin-
gle resource constraint per time period was
considered.

Instance CMA CPXbest GrTS GeTS ExTS

Marvin 12 s 1 h 3 m <1 s 25 s <1 s
AmericaMine 4 s 19 m 26 s <1 s 11 s <1 s
AsiaMine 2 m 36 s 10d+ <1 s 3 h 33 m <1 s
Andina 1 h 44 m N/A <1 s 4 d 17 h <1 s

Notes. The time reported for ExTS does not include the
time required to obtain the LP relaxation value. In AsiaMine,
CPXbest was unable to find the optimal LP solution in 10 days. In
Andina it was impossible for us to formulate the problem because
the problem size is beyond architectural limits of the computer
(CPLEX Error 1012: problem size limits too large).

ignoring the extraction capacity constraint and keeping only
the processing capacity constraint.

In Table 2, we present the running times of CPXbest,
CMA and the topological sorting heuristics on each of
our data set instances. In the larger instances, CPXbest is
simply unable to solve the problem. On the other hand,
CMA manages to solve all LP relaxations to optimality in
minutes. GrTS is very fast and the additional amount of
time required to run the ExTS after having obtained the
optimal LP relaxation solution is negligible, even on the
Andina instance. Finally, the running time of GeTS in our
implementation is very large (4 days). This is because com-
puting the weight of each block using this method is very
time-consuming.

In Table 3, we present the objective function values
obtained using the TopoSort heuristics and the local-search
heuristics. The values obtained by GrTS and GeTS are
very poor in some of the instances, whereas the values
obtained by ExTS are very good (all within 6% of optimal-
ity). The table also shows that the local-search heuristics
do a very good job of improving the solution obtained by
ExTS. In fact, after running the ExTS and LS 1 h, all
instances were within 3%–4% of optimality.

4.2. Two Resource Constraint Computations

We next study instances of C-PIT in which we consider
two resource constraints per time period (i.e., R = 2).
That is, we consider our original data sets with both capac-
ity constraints.

Table 3. Objective function values obtained using the TopoSort heuristics and the local-search heuristics in C-PIT
instances where only a single resource constraint per time period was considered.

Instance GrTS GeTS ExTS LS 15 m LS 1 h LS 4 h LS 8 h

Marvin 00856 00867 00957 00959 00968 00983 00988
AmericaMine 00819 00905 00940 00997 00997 00999 00999
AsiaMine 00750 00861 00986 00986 00991 00992 00993
Andina 00486 00524 00977 00978 00980 00982 00983

Notes. All values have been divided by the optimal LP relaxation value of the corresponding problem and thus are less than 100. The LS 15 m,
LS 1 h, LS 4 h, and LS 8 h heuristics all start from the solution found by the ExTS heuristic.

First, recall that we cannot run algorithm CMA on
instances with two capacity constraints per time period.
However, given an instance with two constraints per time
period, if we relax one of these, we obtain a problem
whose linear programming relaxation we can solve with
CMA. This linear relaxation is still an upper bound of
the optimal solution we are seeking, and moreover, can
be used to start the ExTS heuristic. In contrast to the
CMA algorithm, the THeur algorithm runs correctly when
there are two resource constraints per time period, and is
guaranteed to yield a solution valid for the original prob-
lem (i.e., satisfying both constraints). This discussion sug-
gests proceeding as follows: run CMA twice, once for each
resource constraint. Starting from each of the fractional
solutions obtained, run the ExTS heuristic. Use the frac-
tional solution having the smallest objective function value
to compute an upper bound. Use the integer-feasible solu-
tion having the highest value to compute a lower bound.
This procedure is detailed in Algorithm 4. It is easy to see
that this procedure could be extended to any number of
resource constraints.

Algorithm 4 (ExTS heuristic for two resource constraints
(R= 2)).

1: Solve CMA using only the extraction capacity
constraint. Let x̂Ext be its solution with objective
value ẑExt.

2: Compute expected times EExt
b for each block b ∈ B

using x̂Ext.
3: Use THeur with weights wb = −EExt

b to obtain a
feasible solution x̄Ext with objective value z̄Ext.

4: Solve CMA using only processing capacity
constraint. Let x̂Proc be its solution with objective
value ẑProc.

5: Compute expected times EProc
b for each block b ∈ B

using x̂Proc.
6: Use THeur with weights wb = −EProc

b to obtain a
feasible solution x̄Proc with objective function z̄Proc.

7: ẑ∗ ← min8ẑExt1 ẑProc9.
8: if z̄Ext > z̄Proc then
9: return Feasible solution x̄Ext and upper bound ẑ∗.

10: else
11: return Feasible solution x̄Proc and upper bound ẑ∗.

All runs of the CPXbest and TopoSort heuristics include
both the processing constraint and the extraction constraint.



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
Operations Research 60(3), pp. 517–528, © 2012 INFORMS 527

Table 4. Objective function values obtained using the TopoSort heuristics and the local-search heuristics on the C-PIT
instances in which two resource constraints per time period were considered.

Instance GrTS GeTS ExTS LS 15 m LS 1 h LS 4 h LS 8 h

Marvin 00682 00897 00965 00965 00967 00971 00977
AmericaMine 00340 00823 00937 00955 00988 00989 00990
AsiaMine 00138 00840 00972 00972 00972 00972 00979
Andina 00487 00509 00953 00954 00955 00959 00960

Notes. All values have been divided by the optimal LP relaxation value of the corresponding problem and thus are less than 100. The LS 15 m,
LS 1 h, LS 4 h, and LS 8 h heuristics all start from the solution found by the ExTS heuristic.

In Table 4, we present the objective function values
obtained after using the TopoSort heuristics and the local-
search heuristics. The relative performance of our heuristics
when R = 2 is similar to that when R = 1 (see Table 3).
The most important thing to note is that the ExTS heuris-
tic obtains very good solutions, even though the LP relax-
ation solution from which it started was obtained from an
instance in which only a single-capacity constraint was con-
sidered. The same can be said of the local-search heuris-
tics. The results show that after running the ExTS and LS
15 m heuristics, all instances are within 5% of optimality.

5. Final Remarks
In this article, we have shown that it is possible to success-
fully tackle real-sized instances of the C-PIT formulation
in practical time for one or two resource capacity con-
straints per time period. We expect that this methodology
can lead to new production-scheduling systems in which
it is no longer necessary to schedule bench-phases, as is
done today. Rather, using the assignment of blocks over
time from the C-PIT solution, one could proceed with pro-
duction scheduling from this solution as though it had been
obtained otherwise.

It is important to note, however, that this is still just a
proof of concept. It is likely that the C-PIT solutions are
such that blocks scheduled in a same time period are scat-
tered throughout the mine. This might lead to schedules
that require manual intervention by mining engineers to
consider additional operational constraints. This problem,
which also occurs in more traditional mine planning meth-
ods, will likely be exacerbated by the fact that our minimal
planning units are blocks rather than bench-phases.

A natural next step would consist of extending the criti-
cal multiplier method to work explicitly with multiple side
constraints (see Johnson 1968 for a list of possible exam-
ples). Another natural extension would consist of replacing
the fixed capacity-constraint model with one in which the
capacity is variable. The second, larger jump will consist
of extending this methodology to work with multiple des-
tinations for each block (Johnson 1968). In this regard, the
recent work of Bienstock and Zuckerberg (2010) makes
important advances and should be further studied and com-
pared to this work.

Acknowledgments

Enrique Rubio thanks Codelco Chile for support through the
Mining Technology Chair and BHP Billiton for the Mine Plan-
ning Chair. The authors thank Alexandra Newman for provid-
ing the AmericaMine data set. Part of this work is included in
the master’s thesis of Renaud Chicoisne, who visited Universi-
dad Adolfo Ibañez during 2009. The authors thank IBM CPLEX
for their licensing support. This work was partially funded by the
Chilean Government [Projects FONDEF D06I1031, FONDECYT
110674 (M.G., D.E.), FONDECYT 1070749 (D.E.), ICM P05-
004F (D.E.), CMM Basal (M.G., E.M.), and ANILLO ACT-88
(M.G., E.M.)].

References
Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algo-

rithms, and Applications (Prentice Hall, Englewood Cliff, NJ).
Amaya J, Espinoza D, Goycoolea M, Moreno E, Prevost T, Rubio E

(2009) A scalable approach to optimal block scheduling. Proc.
APCOM 2009 (The Canadian Institute of Mining, Metallurgy and
Petroleum, Vancouver, British Columbia, Canada), 567–575.

Bienstock D, Zuckerberg M (2010) Solving LP relaxations of large-scale
precedence constrained problems. Proc. 14th Conf. Integer Program-
ming Combin. Optim. (IPCO). Lecture Notes in Computer Science,
Vol. 6080. (Springer-Verlag, Berlin) 1–14.

Boland N, Fricke C, Froyland G (2010) A strengthened formulation and
cutting planes for the open pit mine production scheduling problem.
Comput. Oper. Res. 37(9):1641–1647.

Boland N, Dumitrescu I, Froyland G, Gleixner AM (2009) LP-based dis-
aggregation approaches to solving the open pit mining production
scheduling problem with block processing selectivity. Comput. Oper.
Res. 36(4):1064–1089.

Caccetta L, Hill SP (2003) An application of branch and cut to open pit
mine scheduling. J. Global Optim. 27(2–3):349–365.

Chandran BG, Hochbaum DS (2009) A computational study of the
pseudoflow and push-relabel algorithms for the maximum flow prob-
lem. Oper. Res. 57(2):358–376.

Cherkassky BV, Goldberg AV (1997) On implementing the push-relabel
method for the maximum flow problem. Algorithmica 19(4):390–410.

Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1998) Com-
binatorial Optimization. Wiley-Interscience Series in Discrete Math-
ematics and Optimization (Wiley-Interscience, New York).

Dagdelen K (1985) Optimum multi-period open pit mine production
scheduling. Ph.D. thesis, Colorado School of Mines, Golden, CO.

Dagdelen K (2007) Open pit optimisation—Strategies for improving eco-
nomics of mining projects through mine planning. Orebody Mod-
elling and Strategic Mine Planning, Spectrum Ser. 14:125–128.

Dagdelen K, Johnson TB (1986) Optimum open pit mine production
scheduling by Lagrangian parameterization. 19th APCOM Sym-
pos. Soc. Mining Engineers (AIME) (Jostens Publications, State
College, PA).



Chicoisne et al.: Algorithm for Open-Pit Mine Production Scheduling Problem
528 Operations Research 60(3), pp. 517–528, © 2012 INFORMS

DataMine Software (2011) Accessed February 2011, http://www.datamine
.co.uk.

Fricke C (2006) Applications of integer programming in open pit mining.
Ph.D. thesis, Department of Mathematics and Statistics, The Univer-
sity of Melbourne, Melbourne, Australia.

Gaupp M (2008) Methods for improving the tractability of the block
sequencing problem for an open pit mine. Ph.D. thesis, Division of
Economics and Business, Colorado School of Mines, Golden, CO.

Gemcom Software (2011) Accessed February 2011, http://www.gemcom
.com.

Gershon ME (1983) Optimal mine production scheduling: Evaluation of
large scale mathematical programming approaches. Internat. J. Min-
ing Engrg. 1(4):315–329.

Gershon ME (1987a) Heuristic approaches for mine planning and produc-
tion scheduling. Internat. J. Mining and Geological Engrg. 5(1):1–13.

Gershon ME (1987b) An open-pit production scheduler: Algorithm and
implementation. AIME Trans. 282:793–796.

Hochbaum DS (2008) The pseudoflow algorithm: A new algorithm for
the maximum-flow problem. Oper. Res. 56(4):992–1009.

Hochbaum DS, Chandran BG (2009) A computational study of the
pseudoflow and push-relabel algorithms for the maximum flow prob-
lem. Oper. Res. 57(2):358–376.

Hochbaum DS, Chen A (2000) Performance analysis and best implemen-
tations of old and new algorithms for the open-pit mining problem.
Oper. Res. 48(6):894–914.

Hustrulid W, Kuchta K, eds. (2006) Open Pit Mine Planning and Design
(Taylor and Francis, London).

Hustrulid WA, Carter MK, Van Zyl DJA, eds. (2000) Slope Stability in
Surface Mining (Society for Mining, Metallurgy, and Exploration,
Inc., Littleton, CO).

Isaaks EH, Srivastava RM (1989) Applied Geostatistics (Oxford University
Press, New York).

Johnson TB (1968) Optimum open pit mine production scheduling. Ph.D.
thesis, Operations Research Department, University of California,
Berkeley, Berkeley.

Johnson TB (1969) Optimum open-pit mine production scheduling.
Weiss A, ed. A Decade of Digital Computing in the Mining Industry,
Chapter 4 (AIME, New York), 539–562.

Journel AG, Huidbregts CJ (1978) Mining Geostatics (Academic Press,
San Diego).

King BM (2001) Optimal mine scheduling policies. Ph.D. thesis, Royal
School of Mines, Imperial College London, London.

Lane K (1988) The Economic Definition of Ore: Cutoff Grade in Theory
and Practice (Mining Journal Books Limited, London).

Lerchs H, Grossmann IF (1965) Optimum design of open-pit mines.
Transactions LXVIII:17–24.

Maptek Software (2011) Accessed February 2011, http://www.maptek
.com.

Matheron G (1975a) Le paramétrage des contours optimaux. Technical
Report 403, Centre de Géostatistiques, Fontainebleau, France.

Matheron G (1975b) Le paramétrage technique des réserves. Technical
Report 453, Centre de Géostatistiques, Fontainebleau, France.

Newman A, Rubio E, Caro R, Weintraub A, Eurek K (2010) A review of
operations research in mine planning. Interfaces 40(3):222–245.

Osanloo M, Gholamnejad J, Karimi B (2008) Long-term open pit mine
production planning: A review of models and algorithms. Internat.
J. Mining, Reclamation and Environ. 22(1):3–35.

Ramazan S, Dimitrakopoulos R (2004) Recent applications of operations
research and efficient MIP formulations in open pit mining. Soc. Min-
ing, Metallurgy and Exploration Meeting Trans. 316:73–78.

Ramazan S, Dagdelen K, Johnson TB (2005) Fundamental tree algorithm
in optimising production scheduling for open pit mine design. Mining
Technology (Trans. Inst. Min. Metallurgy A) 114:45–54.

Strategy Optimisation (2011) Accessed February 2011, http://www.stops
.com.au.

Whittle J (1999) Four-x Strategic Planning Software for Open Pit
Mines. Reference manual (Whittle Programming Pty Ltd., Victoria,
Australia).

Renaud Chicoisne is a Ph.D. student in operations
research in the Department of Industrial Engineering of the
Universidad de Chile, Santiago, Chile. His research focuses
on combinatorial optimization, linear and integer program-
ming, and graph theory, with application within the areas
of open-pit mining and transportation.
Daniel Espinoza is an assistant professor in the Indus-

trial Engineering Department at the Universidad de Chile,
Santiago, Chile. His research focuses on combinatorial
optimization, mixed-integer programming, stochastic pro-
gramming, and large-scale optimization problems.
Marcos Goycoolea is associate professor of operations

research at the Universidad Adolfo Ibañez School of Busi-
ness. His research interests are mostly on computational
aspects of mixed-integer programming, specifically on cut-
ting plane methods, decomposition methods, and natural
resource management applications.
Eduardo Moreno is an associate professor in the Fac-

ulty of Engineering and Sciences at the Universidad Adolfo
Ibañez, Santiago, Chile. His research focuses on combi-
natorial optimization, linear and integer programming, and
graph theory, with application within the areas of mining,
transportation, and telecommunications.
Enrique Rubio is chairman of the Delphos Mine Plan-

ning Laboratory at the University of Chile and director of
Technology Transfer of the Advanced Mining Technology
Center (AMTC). He also directs research and development
of the recently created CSIRO-Chile mining center. His
research is related to the application and development of
operations research models in mine planning to support
strategic, tactical, and operational decisions in mining.


