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1. Introduction

This work is about macroscopic behavior of ¯ne periodic structures with small period

denoted by ". It is well-known that (see Ref. 3) the homogenization of these struc-

tures leads to the ¯rst macroscopic quantity, namely the homogenized matrix q
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associated with the periodic structure. We will recall in Sec. 2 the de¯nition of the

homogenization problem and the formula for q. It is also known (see Ref. 8) that the

spectral approach to the homogenization problem using Bloch waves naturally leads

to other macroscopic quantities apart from q. One such quantity is what was called

the dispersion tensor d in Refs. 5 and 7. Its de¯nition is recalled in Sec. 2. While q

arises in the homogenization of elliptic problems in periodic structures (see Ref. 3), it

was noted in Ref. 5 that both (q, d) are required in hyperbolic problems describing

propagation of short acoustic waves in such structures. This paper focuses on certain

properties of the tensor d.

Inside the class of periodicmedia, let us consider thosewith twophases f�0; �1gwith
a given volume fraction �. The arrangement of the phases inside the domain is what

constitutes a microstructure. In general, both (q, d) depend on the microstructure in a

fairly complicated manner. It is extraordinary to know that q does not depend on the

microstructure in one space dimension. (We will recall the relevant formula (2.5)

below.) However, in higher dimension, q does vary with the microstructure and a

celebrated theorem ofMurat and Tartar10 describes its variation. The discovery in this

paper is that the behavior of d even in one space dimension is complicated and it varies

with the microstructure as does q in higher dimension. The purpose of this work is to

study this dependence and point out the di®erence in behavior between q and d.

Motivated by applications, let us now consider general optimization problems

involving microstructures. It is well-known that a solution does not exist in general

and a relaxation procedure is usually followed to overcome this di±culty. What is

needed in the description of the relaxed problem is the precise set which contains all

the values of q or d as we vary the microstructure. The theorem of Murat and Tartar

which uses compensated compactness theory, states that the set of homogenized

matrices q, as microstructure varies, is dense in a convex set K� (see Refs. 10 and 1,

p. 96). In this paper, we initiate the program of deriving analogous results for the

macro quantity d. As a ¯rst step, we consider the one-dimensional case here. Higher-

dimensional problem is more complicated as it involves new phenomena (cf. Conca

et al., article in preparation). Contrary to expectation, d exhibits a continuous vari-

ation unlike q, as microstructure varies. More precisely, our result Theorem 3.2 shows

that d ¯lls up (not merely dense) a bounded interval I ¼ Ið�0; �1; �Þ whose end

points depend only on �0; �1, and �, but otherwise are independent of the micro-

structure. At this time, it is worth to mention the phenomenon of size e®ect in

composites. Size of the specimen of the material being tested has no e®ect on q,

whereas d exhibits size e®ect. This was proved in Ref. 7. Roughly speaking, when we

introduce a large number of interfaces/defects in the microstructure, d decreases and

tends to zero as the number of interfaces becomes large. This property lies at the root

cause of the above di®erence in the behavior between q and d. Our construction in

Sec. 5 exploits this property. Yet another di®erence between q and d is as follows: the

sets K� put together as � varies in the interval (0, 1) is a convex region, whereas the

union of the intervals Ið�0; �1; �Þ as � varies is not convex.

1744 C. Conca et al.
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Anticipating future applications, we compute explicitly the end points of I and

characterize corresponding microstructures (Theorem 3.1). For this purpose, we

exploit the integral representation of d obtained in Ref. 5. Task of ¯nding end points

gives rise to a minimization and maximization problem with microstructures.

Relaxation method (Sec. 4.1) guarantees existence of optimizers without altering

optimal values. Relaxed solutions correspond to generalized microstructures in gen-

eral. It turns out that minimizer is unique and is a generalized microstructure. Sur-

prisingly, maximizer corresponds to a classical microstructure. Its uniqueness holds in

a certain sense (Sec. 4.3.4). Since relaxed problem involves a convex quadratic

functional and convex constraints, minimization problem is straightforward, whereas

maximization problem is not. The latter problem is studied in Sec. 4.3. Information is

gained about maximizers by deriving ¯rst-order optimality conditions (Sec. 4.3.1).

This allows us to get a new expression for the maximum value of the functional

(Sec. 4.3.2) and leads to computation of its exact value (Sec. 4.3.3). At this point, we

have proved that the values of the dispersion coe±cient are included in the interval

I ¼ Ið�0; �1; �Þ: To complete our study, in the last step, we prove the reverse

inclusion, namely, speci¯c periodic microstructures are constructed to show that all

points in the interval I are realized as dispersion coe±cients (Sec. 5).

2. Preliminaries

Let us introduce some notations adopted in this work. We denote by Y the reference

cell ð0; 2�Þ and for any real number � 2 ½0; 1�, we consider measurable subsets T of

Y such that

jT j
jY j ¼ �:

We consider the operator

A ¼def� d

dy
�ðyÞ d

dy

� �
; y 2 R;

where the coe±cient � 2 L1
# ðY Þ, i.e. � ¼ �ðyÞ is a Y-periodic bounded measurable

function de¯ned on R, and in the reference cell is given by

�ðyÞ ¼ �0�T C ðyÞ þ �1�T ðyÞ; y 2 Y ;

with �0; �1 > 0; �0 6¼ �1. If �0 and �1 are equal, the medium will be homogeneous

and there is nothing to do. Here �T ðyÞ denotes the characteristic function of T. For

each " > 0, we consider also the "Y -periodic operator A" de¯ned by

A" ¼def� d

dx
�"ðxÞ d

dx

� �
with �"ðxÞ ¼def � x

"

� �
; x 2 R:

In homogenization theory, it is usual to refer to x and y the slow and the fast

variables, respectively. They are related by y ¼ x
" .

Optimal Bounds on Dispersion Coe±cient 1745
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Macro quantities (q, d) are de¯ned in terms of Bloch waves  associated with the

operator A which we introduce now. Let us consider the following spectral problem

parametrized by � 2 R: ¯nd � ¼ �ð�Þ 2 R and  ¼  ðy; �Þ (not identically zero) such

that

A ð�; �Þ ¼ �ð�Þ ð�; �Þ in R;  ð�; �Þ is ð�;Y Þ-periodic; i:e:
 ðyþ 2�m; �Þ ¼ e2�im� ðy; �Þ 8m 2 Z; y 2 R:

(
ð2:1Þ

Next, by the Floquet theory, we de¯ne �ðy; �Þ ¼ e�iy� ðy; �Þ and (2.1) can be

rewritten in terms of � as follows:

Að�Þ� ¼ �� in R; � is Y -periodic: ð2:2Þ

Here, the operator Að�Þ is called the translated operator and is de¯ned by

Að�Þ ¼ e�iy�Aeiy�:

It is well-known (see Refs. 3 and 6) that for each � 2 Y 0 ¼ ½� 1
2 ;

1
2Þ, the above spectral

problem (2.2) admits a discrete sequence of eigenvalues �mð�Þ and their eigenfunc-

tions �mðy; �Þ (referred to as Bloch waves ) enable us to describe the spectral resol-

ution of A (as an unbounded self-adjoint operator in L2ðRÞ) in the orthogonal basis

feiy��mðy; �Þ : m � 1; � 2 Y 0g.
Let us introduce Bloch waves at the "-scale:

�"mð�Þ ¼ "�2�mð�Þ; �"mðx; �Þ ¼ �mðy; �Þ;  "
mðx; �Þ ¼  mðy; �Þ;

where the variables ðx; �Þ and ðy; �Þ are related by y ¼ x
" and � ¼ "�. Observe that

�"mðx; �Þ is "Y -periodic (with respect to x) and "�1Y 0-periodic with respect to �. In the

same manner,  "
mð�; �Þ is ð�; "Y Þ-periodic because of the relation  "

mðx; �Þ ¼
eix��"mðx; �Þ. Note that the dual cell at "-scale is "�1Y 0 and hence we take � to vary in

"�1Y 0.
We consider a sequence fu"g bounded in H 1ðRÞ and f 2 L2ðRÞ satisfying

A"u" ¼ f in R: ð2:3Þ
We assume that u" * u weakly in H 1ðRÞ. The homogenization problem consists of

passing to the limit, as "! 0; in the previous equation and obtain the equation

satis¯ed by u, namely,

Qu ¼def�q
d2u

dx2
¼ f in R; ð2:4Þ

where q is a constant known as the homogenized coe±cient (see Ref. 3).

Simple relation linking q with Bloch waves is the following: q ¼ 1
2 �

ð2Þ
1 ð0Þ (see

Ref. 4). At this point, it is appropriate to recall that derivatives of the ¯rst eigenvalue

and eigenfunction at � ¼ 0 exist thanks to the regularity property established in

Ref. 8. In fact, we know that there exists 	0 > 0 such that the ¯rst eigenvalue �1ð�Þ
is an analytic function on B	0 ¼ f� : j�j < 	0g; and there is a choice of the ¯rst

1746 C. Conca et al.
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eigenvector �1ðy; �Þ satisfying

� 7!�1ð�; �Þ 2 H 1
#ðY Þ is analytic on B	0 ; �1ðy; 0Þ ¼ jY j�1=2 ¼ 1

ð2�ÞN=2 :

To see how d arises, let us consider wave propagation problem in the periodic

structure governed by the operator @tt þA" with appropriate initial conditions. If we

consider short waves of low energy with wave number satisfying "2j�j4 ¼ Oð1Þ and
"4j�j6 ¼ oð1Þ then a simpli¯ed description is obtained with the operator

@tt þQþ "2D, where D is the fourth-order operator whose symbol is 1
4! �

ð4Þ
1 ð0Þ�4.

This was noted in Ref. 5. Important tensor d ¼ 1
4! �

ð4Þ
1 ð0Þ; which captures dispersive

e®ects on such waves, represents a corrector to the periodic medium. It was studied in

Ref. 5 and in particular, a physical space representation for it was obtained. We recall

it, in the one-dimensional case in the result below:

Proposition 2.1. We have the relations

�1ð0Þ ¼ 0; �
ð1Þ
1 ð0Þ ¼ 0;

1

2!
�
ð2Þ
1 ð0Þ ¼ q;

1

3!
�
ð3Þ
1 ð0Þ ¼ 0;

1

4!
�
ð4Þ
1 ð0Þ ¼ d;

where q can be explicitly expressed

1

q
¼ �

�1

þ 1� �

�0

: ð2:5Þ

Moreover, the dispersion coe±cient d admits the following representation:

d ¼ � q

jY j
Z
Y

ðXðT ÞÞ2; ð2:6Þ

with test function XðT Þ de¯ned by the following cell problem:

� dXðT Þ
dy

¼ 1� q
�T

�1

þ 1� �T

�0

� �
in R;

XðT Þ 2 H 1
#ðY Þ; 1

jY j
Z
Y

XðT ÞðyÞdy ¼ 0:

8>>><
>>>:

ð2:7Þ

Remark 2.1. The formula (2.5) shows that q does not depend on the micro-

structure. Moreover, the following useful identities hold:

1

q
� 1

�0

¼ �
1

�1

� 1

�0

� �
; ð2:8Þ

1

�1

� 1

q
¼ ð1� �Þ 1

�1

� 1

�0

� �
: ð2:9Þ

On the other hand, formulae (2.6) and (2.7) show explicitly how the dispersion

coe±cient d depends on the microstructure through the characteristic function �T .

Optimal Bounds on Dispersion Coe±cient 1747
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3. Main Results

The purpose of this section is to present our main results concerning the set in which

the dispersion coe±cient d lies, as the microstructure varies preserving the volume

proportion �. Let us ¯rst observe that if � 2 f0; 1g, the dispersion coe±cient d is equal

to 0. For this reason, we take � 2 ð0; 1Þ in the sequel.

We introduce some notations. Let us denote by CharðY Þ the set of all charac-

teristic functions of measurable subsets of Y, i.e.

CharðY Þ ¼ f� : Y ! f0; 1g measurableg:
Moreover, for any � 2 CharðY Þ we denote by T ð�Þ ¼ fy 2 Y : �ðyÞ ¼ 1g. For a given
� 2 ð0; 1Þ, let us consider the set C� of classical microstructures de¯ned by

C� ¼ � 2 CharðY Þ : jT ð�Þj ¼ �jY jf g
and for any � 2 CharðY Þ, we de¯ne the functional J0ð�Þ as follows

J0 : CharðY Þ ! R

� 7! J0ð�Þ ¼def 1

jY j
Z
Y

ðXðT ð�ÞÞÞ2;

where XðT ð�ÞÞ is the solution of Eq. (2.7).

Using these notations, the dispersion coe±cient can be rewritten as follows

dð�T Þ ¼ �qJ0ð�T Þ
and therefore, it is obvious that

�q sup
�2C�

J0ð�Þ � dð�T Þ � �q inf
�2C�

J0ð�Þ 8�T 2 C�:

In order to ¯nd the exact values of the previous supremum and in¯mum, we

proceed to the relaxation of the minimization and maximization problems. To do

this, for any � 2 ð0; 1Þ, let us consider the set D� of generalized microstructures

de¯ned by

D� ¼ 
 2 L1
# ðY ; ½0; 1�Þ :� ð
Þ ¼ �

� �
;

where� ðfÞ denotes the average of the function f over Y, that is,

� ðfÞ ¼ 1

jY j
Z
Y

fðyÞdy:

Recall that 
ðyÞ represents local volume proportion of the material �1 at y in the

generalized microstructure. Moreover, we de¯ne the extension of the functional J0
over L1

#ðY ; ½0; 1�Þ, denoted by Jð
Þ, as follows
J : L1

# ðY ; ½0; 1�Þ ! R


 7! Jð
Þ ¼def� ðX
Þ2ð Þ;

1748 C. Conca et al.
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where X
 is the solution of the following relaxed version of the problem (2.7):

� dX


dy
¼ 1� qð� ð
ÞÞ 


�1

þ 1� 


�0

� �
in R;

X
 2 H 1
#ðY Þ; � ðX
Þ ¼ 0

8><
>: ð3:1Þ

and qð�Þ is de¯ned by

1

qð�Þ ¼
�

�1

þ 1� �

�0

: ð3:2Þ

Remark 3.1. Let us observe that

qð� ð
ÞÞ ¼ qð�Þ ¼ q 8 
 2 D�;

where q is de¯ned in (2.5).

Thus the dispersion coe±cient d, which is a priori de¯ned for microstructures in

C�, can be extended to generalized microstructures in D� .

We now state our ¯rst main result, which computes the optimal lower and upper

bounds of dð�T Þ, as the microstructure �T varies such that jT j ¼ �jY j.
Theorem 3.1. For any � 2 ð0; 1Þ, we have that

inf
�2C�

J0ð�Þ ¼ min

2D�

Jð
Þ; sup
�2C�

J0ð�Þ ¼ max

2D�

Jð
Þ; ð3:3Þ

min

2D�

Jð
Þ ¼ 0; ð3:4Þ

max

2D�

Jð
Þ ¼ 1

12
q2� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

: ð3:5Þ

Moreover, there exists a unique generalized microstructure 
�min 2 D� minimizer for

the problem (3.4). There is a classical microstructure 
�max 2 C� which is maximizer

for the problem (3.5). The maximizer is also unique up to a translation.

With regard to the above result, let us note that the functional J is convex and

quadratic. Further, we have convex and linear constraints in our problem. Mini-

mization is thus straightforward; however maximization is not. As a direct con-

sequence of Theorem 3.1 we obtain the following result:

Corollary 3.1. For any � 2 ð0; 1Þ, the following inclusion holds:

dð�Þ : � 2 C�
� � � � 1

12
q3� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

; 0

� �
:

For � 2 f0; 1g, we have dð�Þ ¼ 0 8� 2 C� .
Theorem 3.1 and its Corollary 3.1 give the optimal bounds on the dispersion

coe±cient dð�Þ for all microstructures � 2 C�. In the sequel, we go further and we

Optimal Bounds on Dispersion Coe±cient 1749
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prove that for any real number D0 2 ½� 1
12 q

3� 2ð1� �Þ2jY j2ð 1
�1

� 1
�0
Þ2; 0Þ, there

exists a composite material de¯ned by a characteristic function � 2 C� such that

dð�Þ ¼ D0: That is, the dispersion coe±cient ¯lls up the above interval. This second

main result is stated in the following theorem:

Theorem 3.2. For any � 2 ð0; 1Þ, the following equality holds:

fdð�Þ : � 2 C�g ¼ � 1

12
q3� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

; 0

� �
:

Here we see a behavior of d di®erent from that of homogenized matrix in multi-

dimension. As periodic microstructure varies, the set of homogenized matrices is

dense but does not ¯ll up the region K�.

Remark 3.2. Let us consider the dispersion coe±cient as a function in terms of the

data �0; �1; and � and let us denote it by dð�0; �1; �; �T Þ. Using the state equation

(2.7) and the de¯nition of q, we have

dð�0; �1; �; �T Þ ¼ dð�1; �0; 1� �; �T C Þ:
If we denote by dminð�0; �1; �Þ ¼ inf

�T2C�
dð�0; �1; �; �T Þ, using the previous identity we

obtain

dminð�0; �1; �Þ ¼ dminð�1; �0; 1� �Þ:
The bounds that are established in Theorem 3.1 ful¯ll the above symmetry.

4. Proof of First Main Result

In this section, we prove Theorem 3.1 in several steps.

4.1. Relaxation

When dealing with minimization and maximization problems involving microstruc-

tures, of the form

inf
�2C�

J0ð�Þ and sup
�2C�

J0ð�Þ;

it is known that they do not in general admit solutions within the class of classical

microstructures. To overcome this, the proposed way is relaxation which amounts to

passage from classical to generalized microstructures. The purpose of this subsection

is to relax the above minimization and maximization problems and prove the iden-

tities (3.3) of Theorem 3.1. Thus relaxation procedure does not alter the optimal

values, a fact well-known in the literature. For the sake of completeness, we brie°y

recall the arguments.

We ¯rst remark that the set C� is dense in D� and D� is a compact subset of

L1
# ðY Þ, with the weak* topology of L1ðY Þ (see Proposition 4 and Remark 7 in

Ref. 10). Because of this, using Proposition 2 in Ref. 10, it is enough to prove that for

1750 C. Conca et al.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
09

.1
9:

17
43

-1
76

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 C
H

IL
E

 S
IS

T
E

M
A

 D
E

 S
E

R
V

IC
IO

S 
D

E
 I

N
FO

R
M

A
C

IO
N

 Y
 B

IB
L

IO
T

E
C

A
S 

(S
IS

IB
) 

on
 0

3/
18

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



any sequence of characteristic functions f�ng � C� weak� convergent to 
 2 D� in

L1ðY Þ, we have

J0ð�nÞ ! Jð
Þ;
i.e. the functional J is weak� continuous.

Let us verify that this property holds. In fact, we consider a sequence of charac-

teristic functions f�ng � C� that weak� converges to 
 2 D� in L1ðY Þ. Using

Eq. (2.7), we deduce that the sequence fXðT ð�nÞÞg is bounded in W 1;1ðY Þ, and so

there exists X 2 H 1
#ðY Þ such that

XðT ð�nÞÞ * X weakly in H 1
#ðY Þ:

Hence, due to Rellich's theorem we get

XðT ð�nÞÞ ! X strongly in L2
#ðY Þ:

With this strong convergence, we obtain

J0ð�nÞ !� ðX 2Þ:
Finally, passing to the limit in Eq. (2.7) written for T ð�nÞ, it follows that the limit X

satis¯es Eq. (3.1) because q ¼ qð� ð
ÞÞ. Therefore,� ðX 2Þ ¼ Jð
Þ and we conclude

that the equalities (3.3) hold.

4.2. Minimization problem on D°

In this subsection, we prove the equality (3.4) of Theorem 3.1. First of all, it is clear

that for all 
 2 D� we have Jð
Þ � 0. Now, let us prove that there exists 
�min 2 D�

such that Jð
�minÞ ¼ 0, i.e. X
 �
min

¼ 0. More precisely, using (3.1), we are looking for


�min 2 D� such that

q

�minðyÞ
�1

þ 1� 
�minðyÞ
�0

� �
¼ 1;

that is,


�minðyÞ ¼
1
q � 1

�0

1
�1

� 1
�0

:

Since (2.8) holds, we ¯nd


�minð�Þ 	 �:

Thus, the minimizer is unique and it is a generalized microstructure given by the rule

that local volume proportion of the �1-material is constant throughout the

microstructure.

4.3. Maximization problem on D°

In this subsection, we prove the equality (3.5) of Theorem 3.1. We divide the proof in

several steps.
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4.3.1. Optimality condition

First of all, since D� is compact with respect to weak� topology on L1ðY Þ and J is

continuous (as seen above), maximizers for J over D� do exist. To get information on

them, since our problem has the structure of an optimal control problem with control

constraints, we are inspired by the existing treatment of such problems. However, one

should note that our problem is ill-posed in the sense that we are dealing with

maximization (instead of minimization) of a quadratic, convex functional over a

convex set with an equality constraint. It is then natural to dualize the equality

constraint� ð
Þ ¼ � by means of a Lagrange multiplier � and introduce a Lagran-

gian Lð
; �Þ as follows
Lð
; �Þ ¼ Jð
Þ þ �ð� ð
Þ � �Þ 8 
 2 L1

# ðY ; ½0; 1�Þ; 8 � 2 R: ð4:1Þ
Generally, optimality condition at a maximizer is expressed in terms of derivative

of L at maximizer. As a ¯rst step, we proceed to compute the derivative via the

introduction of adjoint state.

For a given 
0 2 D�, let us compute the derivative D
Lð
0; �Þð
� 
0Þ. Using the

de¯nition (4.1), we get

D
Lð
0; �Þð
� 
0Þ ¼� 2X
0D
X
ð
0Þð
� 
0Þ
� 	þ �� ð
� 
0Þ: ð4:2Þ

In order to compute the derivative of X
, let us introduce the following notation

	X
 ¼ D
X
ð
0Þð
� 
0Þ:

We di®erentiate Eqs. (3.1) and (3.2) with respect to 
 and we use Remark 3.1. Then,

we get

� d

dy
ð	X
Þ ¼ �q 0ð� ð
0ÞÞ� ð
� 
0Þ


0
�1

þ 1� 
0
�0

� �

� q
1

�1

� 1

�0

� �
ð
� 
0Þ in R;

	X
 2 H 1
#ðY Þ; � ð	X
Þ ¼ 0;

8>>>>>><
>>>>>>:

ð4:3Þ

with

q 0ð� ð
0ÞÞ ¼ �q2
1

�1

� 1

�0

� �
: ð4:4Þ

Now, to compute the term� ð2X
0	X
Þ appearing in the right-hand side of the

identity (4.2), we introduce the following adjoint state equation: for all 
 2
L1

# ðY ; ½0; 1�Þ, let P
 be the solution of the problem

� dP

dy

¼ 2q
1

�1

� 1

�0

� �
X
 in R;

P
 2 H 1
#ðY Þ; � ðP
Þ ¼ 0:

8><
>: ð4:5Þ
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Using this adjoint state equation with 
 ¼ 
0 and integrating by parts, we obtain that

� ð2X
0	X
Þ ¼ �� dP
0
dy

1

qð 1
�1

� 1
�0
Þ 	X


 !
¼� P
0

qð 1
�1

� 1
�0
Þ

d

dy
ð	X
Þ

 !
:

Then, due to Eqs. (4.3) and (4.4), it follows that

� ð2X
0	X
Þ ¼� P
0ð
� 
0Þ � q
1

�1

� 1

�0

� �
P
0 
0� ð
� 
0Þ

� �
:

Therefore, the identity (4.2) gives that for all 
 2 L1
# ðY ; ½0; 1�Þ and for all � 2 R;

D
Lð
0; �Þð
� 
0Þ ¼ � ðP
0ð
� 
0ÞÞ

þ �� q
1

�1

� 1

�0

� �
� ðP
0 
0Þ

� 

� ð
� 
0Þ: ð4:6Þ

Having computed the derivative, let us now prove the following optimality

condition:

Proposition 4.1. For each 
� 2 D� such that Jð
�Þ ¼ max

2D�

Jð
Þ, we have:

(i) There exists �� 2 R such that

D
Lð
�; ��Þð
� 
�Þ � 0 8 
 2 L1
# ðY ; ½0; 1�Þ: ð4:7Þ

(ii) There exists p� 2 R such that the following optimality condition holds:


� 2 ½0; 1� a:e: in A ð
�; p�Þ;

� ¼ 1 a:e: in Bð
�; p�Þ;

� ¼ 0 a:e: in C ð
�; p�Þ;

8>><
>>: ð4:8Þ

where the sets A ð
�; p�Þ, Bð
�; p�Þ and C ð
�; p�Þ are de¯ned by

A ð
�; p�Þ ¼ fy 2 R : P
 � ðyÞ ¼ p�g; ð4:9Þ
Bð
�; p�Þ ¼ fy 2 R : P
 � ðyÞ > p�g; ð4:10Þ
C ð
�; p�Þ ¼ fy 2 R : P
 � ðyÞ < p�g: ð4:11Þ

Remark 4.1. Point (i) of the above result says that the principle of Lagrange

multiplier holds in the present problem. Usually the required Lagrange multiplier ��

is obtained from a saddle point for L at 
�. Such a structure is missing here because 
�

is a maximizer for the convex functional J : The proof shows how to get around this

di±culty to get ��. Point (ii) describes the generalized microstructure de¯ned by the

maximizer 
� in terms of the associated adjoint state. While (i) presents an average

property of 
�, point (ii) which is deduced from (i) gives a pointwise property of 
�.
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Proof. Let us prove (i). Using the identity (4.6), for each 
� 2 D� such that

Jð
�Þ ¼ max

2D�

Jð
Þ, we have that for all 
 2 L1
# ðY ; ½0; 1�Þ and � 2 R,

D
Lð
�; �Þð
� 
�Þ ¼ � P
 � ð
� 
�Þð Þ

þ �� q
1

�1

� 1

�0

� �
� ðP
 �
�Þ

� 

� ð
� 
�Þ: ð4:12Þ

In order to estimate the ¯rst term of the previous expression, let us introduce the

function G de¯ned as follows:

G : L1
# ðY ; ½0; 1�Þ ! R


 7! Gð
Þ ¼def� ðP
 �
Þ:

Since the function Gð�Þ is continuous with respect to L1-weak� topology, there exists
~

� 2 D� such that Gð~
 �Þ ¼ max


2D�

Gð
Þ. Let us consider the Lagrangian Mð
; �Þ
associated with the above maximization problem for Gð
Þ:

Mð
; �Þ ¼ Gð
Þ � �� ð
� �Þ 8 
 2 L1
# ðY ; ½0; 1�Þ; 8 � 2 R:

There exists ~� � 2 R such that

Mð
; ~� �Þ � Mð~
 �; ~� �Þ � Mð~
 �; �Þ 8 
 2 L1
# ðY ; ½0; 1�Þ; 8 � 2 R ð4:13Þ

(see Ref. 9, p. 173). It is worth to remark that such a saddle point structure was
absent with (J, L) whereas it is available with (G, M ).

Due to the de¯nitions of G and M and the fact that ~

� 2 D�, the ¯rst inequality

yields

� P
 � ð
� ~

�Þ� 	 � ~� �

� ð
� �Þ: ð4:14Þ

Let us observe that if we consider the particular case 
 ¼ ~

�
in Eq. (4.12), we get

D
Lð
�; �Þð~
 � � 
�Þ ¼� P
 � ð~
 � � 
�Þ� 	
:

On the other hand, since ~

� 2 D�, we have that D
Lð
�; �Þð~
 � � 
�Þ ¼

D
Jð
�Þð~
 � � 
�Þ; and therefore

D
Jð
�Þð~
 � � 
�Þ ¼� P
 � ð~
 � � 
�Þ� 	
: ð4:15Þ

Adding and subtracting the function ~

�
, the Eq. (4.12) can be rewritten as follows

D
Lð
�; �Þð
� 
�Þ ¼ � P
 � ð~
 � � 
�Þ� 	þ� P
 � ð
� ~

�Þ� 	

þ �� q
1

�1

� 1

�0

� �
� ðP
 �
�Þ

� 

� ð
� 
�Þ:
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Then, using the inequality (4.14) and the identity (4.15) in the above relation, we

deduce that

D
Lð
�; �Þð
� 
�Þ � D
Jð
�Þð~
 � � 
�Þ

þ ~� � þ �� q
1

�1

� 1

�0

� �
� ðP
 �
�Þ

� 

� ð
� 
�Þ: ð4:16Þ

Let us now choose

�� ¼def � ~� � þ q
1

�1

� 1

�0

� �
� ðP
�
�Þ: ð4:17Þ

With this choice, (4.16) becomes

D
Lð
�; ��Þð
� 
�Þ � D
Jð
�Þð~
 � � 
�Þ:
Hence, the inequality (4.7) is a direct consequence of the fact that the maximum in

D� of the functional J is attained in 
�.
Let us now prove (ii). Using (4.12), the inequality (4.7) yieldsZ

Y

P
 � ðyÞ � p�ð Þð
ðyÞ � 
�ðyÞÞdy � 0 8 
 2 L1
# ðY ; ½0; 1�Þ; ð4:18Þ

where

p� ¼ ��� þ q
1

�1

� 1

�0

� �
� ðP
�
�Þ: ð4:19Þ

From the integral inequality (4.18), we now deduce some pointwise information on


�. In the sequel, we prove that 
� ¼ 1 almost everywhere in Bð
�; p�Þ \ Y . To this

end, we de¯ne the set

E ¼ y 2 Bð
�; p�Þ \ Y : 
�ðyÞ < 1f g

and the function


EðyÞ ¼
1 if y 2 E;


�ðyÞ if y 2 Y nE:

(

Using this test function in inequality (4.18), we obtainZ
E

ðP
 � ðyÞ � p�Þð1� 
�ðyÞÞdy � 0:

Since ðP
� ðyÞ � p�Þð1� 
�ðyÞÞ > 0 for all y 2 E, we deduce that E is a null set and so


� ¼ 1 almost everywhere in Bð
�; p�Þ \ Y .

Analogously, one can prove 
� ¼ 0 almost everywhere in C ð
�; p�Þ \ Y . Hence, by

periodicity we get (4.8) and so proposition is proved.
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4.3.2. New expression of J

Let us denote by �� the set of all 

� 2 D� where the optimality condition (4.8) holds,

that is,

�� ¼ f
� 2 D� : there exists p� 2 R such that ð4:8Þ holdsg: ð4:20Þ

Note that maximizers lie in this set.

In the next result, we describe the structure of the sets A ð
�; p�Þ, Bð
�; p�Þ, and
C ð
�; p�Þ de¯ned in (4.9)�(4.11). Here one-dimensional nature of the problem is

exploited.

Lemma 4.1. For any ð
�; p�Þ 2 �� 
 R such that (4.8) holds, the following

properties are true:

(i) A ð
�; p�Þ 6¼ ;.
(ii) @Bð
�; p�Þ [ @C ð
�; p�Þ � A ð
�; p�Þ.
(iii) For a given yA 2 A ð
�; p�Þ there exist two collections of disjoint open intervals

fðai; biÞgNB
i¼1 and fðcj; djÞgNC

j¼1 such that

Bð
�; p�Þ \ ðyA þ Y Þ ¼
[NB

i¼1

ðai; biÞ ð4:21Þ

and

C ð
�; p�Þ \ ðyA þ Y Þ ¼
[NC

j¼1

ðcj; djÞ; ð4:22Þ

where NB;NC 2 N [ fþ1g and ai; bi; cj; dj 2 A ð
�; p�Þ for all i 2 f1; . . . ;NBg,
j 2 f1; . . . ;NC g. Moreover, we have:

XNB

i¼1

ðbi � aiÞ � �jY j ð4:23Þ

and

XNC

j¼1

ðdj � cjÞ � ð1� �ÞjY j: ð4:24Þ

Proof. In order to prove (i) we proceed by contradiction and we suppose that

A ð
�; p�Þ ¼ ;. With this, we deduce that Bð
�; p�Þ ¼ R or C ð
�; p�Þ ¼ R because

P
� ð�Þ is a continuous function. Hence, we obtain� ð
�Þ ¼ 1 or� ð
�Þ ¼ 0 (see

the optimality condition (4.8)), which is a contradiction with the fact that

� ð
�Þ ¼ � 2 ð0; 1Þ.
Let us now prove (ii). To this end, we ¯rst consider an arbitrary y 2 @Bð
�; p�Þ.

Then, there exist fxngn2N � Bð
�; p�Þ and fyngn2N � RnBð
�; p�Þ ¼ A ð
�; p�Þ [

1756 C. Conca et al.
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C ð
�; p�Þ such that

xn ! y and yn ! y; as n ! 1:

Using the fact that P
 � is a continuous function, we obtain

P
 � ðxnÞ ! P
 � ðyÞ and P
 � ðynÞ ! P
 � ðyÞ; as n ! 1: ð4:25Þ

On the other hand, using de¯nitions (4.9)�(4.11) of the sets A ð
�; p�Þ; Bð
�; p�Þ,
and C ð
�; p�Þ, we get that

P
 � ðxnÞ > p� and P
 � ðynÞ � p� for all n 2 N: ð4:26Þ

Combining (4.25) and (4.26), we obtain P
 � ðyÞ ¼ p�, i.e. y 2 A ð
�; p�Þ and thus

@Bð
�; p�Þ � A ð
�; p�Þ.
Analogously, one can prove @C ð
�; p�Þ � A ð
�; p�Þ.
Let us now prove (iii). The existence of two collections of disjoint open intervals

fðai; biÞgNB
i¼1 and fðcj; djÞgNC

j¼1 such that (4.21) and (4.22) hold, with ai; bi 2
@ðBð
�; p�Þ \ ðyA þ Y ÞÞ for all i 2 f1; . . . ;NBg, and cj; dj 2 @ðC ð
�; p�Þ \ ðyA þ
Y ÞÞ for all j 2 f1; . . . ;NC g is a direct consequence of the fact that the setsBð
�; p�Þ \
ðyA þ Y Þ and C ð
�; p�Þ \ ðyA þ Y Þ are open (see for instance, Ref. 2). Moreover,

using (ii) and the fact that @ðyA þ Y Þ ¼ fyA ; yA þ jY jg � A ð
�; p�Þ, we get ai; bi;

cj; dj 2 A ð
�; p�Þ for all i 2 f1; . . . ;NBg, j 2 f1; . . . ;NC g.
It remains to show (4.23) and (4.24). Since � ð
�Þ ¼ �, the function 
� is

Y-periodic and the optimality condition (4.8) holds, we have

�jY j ¼
Z
Y


� ¼
Z
yA þY


� �
Z
Bð
 �;p �Þ\ðyA þY Þ


� ¼ jBð
�; p�Þ \ ðyA þ Y Þj

and

ð1� �ÞjY j ¼
Z
Y

ð1� 
�Þ ¼
Z
yA þY

ð1� 
�Þ

�
Z
C ð
 �;p �Þ\ðyA þY Þ

ð1� 
�Þ ¼ jC ð
�; p�Þ \ ðyA þ Y Þj:

Thanks to the decomposition given in Lemma 4.1, we can now give a new

expression for J on the set �� :

Proposition 4.2. For any ð
�; p�Þ 2 �� 
 R such that (4.8) holds and yA 2
A ð
�; p�Þ, we have the expression

Jð
�Þ ¼ q2

12jY j
1

�1

� 1

�0

� �
2

ð1� �Þ2
XNB

i¼1

ðbi � aiÞ3 þ � 2
XNC

j¼1

ðdj � cjÞ3
" #

; ð4:27Þ

where ai; bi; cj; dj;NB andNC are given in Lemma 4.1. In particular, above expression

is valid at maximizers 
�.
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Proof. Let us ¯rst multiply Eq. (4.5) by X
 � , then we integrate by parts. We have

Jð
�Þ ¼� ðX
 � Þ2ð Þ ¼ � 1

2qð 1
�1

� 1
�0
Þ�

dP
 �

dy
X
 �

� �

¼ 1

2qð 1
�1

� 1
�0
Þ� P
 �

dX
 �

dy

� �
:

Now, due to Eq. (3.1) and the fact that� ðP
 � Þ ¼ 0, we obtain

Jð
�Þ ¼ 1

2
� P
 � 


�ð Þ:

Adding and subtracting p�, we get

Jð
�Þ ¼ 1

2
� ðP
 � � p�Þ
�ð Þ þ p��½ �:

Since� ðP
 � Þ ¼ 0, one can rewrite p� as follows:

p� ¼ �� ðP
 � � p�Þ;

which yields

Jð
�Þ ¼ 1

2
� ðP
 � � p�Þð
� � �Þð Þ:

Using the de¯nitions of the sets A ð
�; p�Þ, Bð
�; p�Þ, and C ð
�; p�Þ; the optim-

ality condition (4.8) and the fact that P
 � ð�Þ is Y-periodic, the previous expression of

Jð
�Þ becomes

Jð
�Þ ¼ 1

2jY j ð1� �Þ
Z
Bð
 �;p �Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy
"

� �

Z
C ð
 �;p �Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy
#
: ð4:28Þ

Using the decompositions (4.21) and (4.22) of the sets Bð
�; p�Þ \ ðyA þ Y Þ and
C ð
�; p�Þ \ ðyA þ Y Þ, we have

Z
Bð
 �;p �Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy ¼
XNB

i¼1

Z bi

ai

ðP
 � ðyÞ � p�Þdy

and

Z
C ð
 �;p �Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy ¼
XNC

j¼1

Z dj

cj

ðP
 � ðyÞ � p�Þdy;

respectively.
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In each interval ðai; biÞ and ðcj; djÞ (with i 2 f1; . . . ;NBg; j 2 f1; . . . ;NC g) we

di®erentiate Eq. (4.5), then using (3.1), for all y 2 ðai; biÞ [ ðcj; djÞ we get

� d2P
 � ðyÞ
dy2

¼ �2q
1

�1

� 1

�0

� �
þ 2q2

1

�1

� 1

�0

� �

�ðyÞ
�1

þ 1� 
�ðyÞ
�0

� �
:

Now, due to the optimality condition (4.8) we obtain

� d2P
 � ðyÞ
dy2

¼
2q2

1

�1

� 1

�0

� �
1

�1

� 1

q

� �
8 y 2 ðai; biÞ;

2q2
1

�1

� 1

�0

� �
1

�0

� 1

q

� �
8 y 2 ðcj; djÞ:

8>>><
>>>:

Then, since the identities (2.8) and (2.9) hold, we can write

� d2P
 � ðyÞ
dy2

¼
2ð1� �Þq2 1

�1

� 1

�0

� �
2

8 y 2 ðai; biÞ;

�2�q2
1

�1

� 1

�0

� �
2

8 y 2 ðcj; djÞ:

8>>><
>>>:

ð4:29Þ

Since ai; bi; cj; dj 2 A ð
�; p�Þ, we have the following boundary conditions:

P
 � ðyÞ � p� ¼ 0 8 y 2 fai; bi; cj; djg:
Now, we integrate Eq. (4.29) and use the above boundary conditions to obtain

P
 � ðyÞ � p� ¼
ð1� �Þq2 1

�1

� 1

�0

� �
2

ðy� aiÞðbi � yÞ 8 y 2 ðai; biÞ;

��q2 1

�1

� 1

�0

� �
2

ðy� cjÞðdj � yÞ 8 y 2 ðcj; djÞ;

8>>><
>>>:

and hence, Z bi

ai

ðP
 � ðyÞ � p�Þdy ¼ ð1� �Þq2 1

�1

� 1

�0

� �
2 ðbi � aiÞ3

6
;

Z dj

cj

ðP
 � ðyÞ � p�Þdy ¼ ��q2 1

�1

� 1

�0

� �
2 ðdj � cjÞ3

6
:

Now, summing over i, and then over J, we getZ
Bð
 �;p �Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy ¼ ð1� �Þ
6

q2
1

�1

� 1

�0

� �
2XNB

i¼1

ðbi � aiÞ3

and Z
C ð
 �;p�Þ\ðyA þY Þ

ðP
 � ðyÞ � p�Þdy ¼ � �

6
q2

1

�1

� 1

�0

� �
2XNC

j¼1

ðdj � cjÞ3:
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The result (4.27) is a direct consequence of the previous two expressions and the

identity (4.28).

4.3.3. Maximum of J

Let us now prove the identity (3.5) and the last assertion given in Theorem 3.1. To

this end, we ¯rst use Proposition 4.2 in order to rewrite Jð
�Þ, 
� 2 �� as follows:

Jð
�Þ ¼ q2

12
jY j2 1

�1

� 1

�0

� �
2

ð1� �Þ2� 3
XNB

i¼1

bi � ai
�jY j

� �
3

"

þ � 2ð1� �Þ3
XNC

j¼1

dj � cj
ð1� �ÞjY j
� �

3
#
: ð4:30Þ

Then, due to inequalities (4.23) and (4.24) from Lemma 4.1, we deduce the following

bound for all 
� 2 ��:

Jð
�Þ � q2

12
� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

�
XNB

i¼1

bi � ai
�jY j þ ð1� �Þ

XNC

j¼1

dj � cj
ð1� �ÞjY j

" #
;

ð4:31Þ

which implies

Jð
�Þ � q2

12
� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

8 
� 2 ��: ð4:32Þ

Let us now prove that there exists maximizer 
�max 2 �� such that

Jð
�maxÞ ¼
q2

12
� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

: ð4:33Þ

For this purpose, we consider the function 
�max de¯ned as follows


 �maxðyÞ ¼
1 if y 2 ½0; �jY j�;
0 if y 2 ð�jY j; jY jÞ:

(
ð4:34Þ

Being a characteristic function, clearly 
�max 2 C� . Many objects introduced above

(such as the state X
 �
max

, the adjoint state P
 �
max

, etc.) can now be computed explicitly.

In fact, integrating Eqs. (3.1) and (4.5), we get

X
 �
max

ðyÞ ¼ q
1

�1

� 1

�0

� �
�

ð1� �Þ y� �

2
jY j

� �
in ½0; �jY j�;

�
ð1þ �Þ

2
jY j � y

� �
in ½�jY j; jY j�;

8>><
>>:
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and

P
 �
max

ðyÞ ¼ q2
1

�1

� 1

�0

� �
2

�

�ð1� �Þð1� 2�Þ
6

jY j2

þ ð1� �Þyð�jY j � yÞ 8 y 2 ½0; �jY j�;
�ð1� �Þð1� 2�Þ

6
jY j2

� �ðy� �jY jÞðjY j � yÞ 8 y 2 ½�jY j; jY j�:

8>>>>>>>>><
>>>>>>>>>:

Note that the state associated with the maximizer 
�max is piecewise linear and the

adjoint state is piecewise quadratic. Taking

p�
max ¼ q2

1

�1

� 1

�0

� �
2 �ð1� �Þð1� 2�Þ

6
jY j2;

it is clear that the optimality condition (4.8) holds. Hence, we deduce that 
�max 2 �� .

Let us now evaluate Jð
�maxÞ using Proposition 4.2 with the choice yA ¼ 0, NB ¼
NC ¼ 1, a1 ¼ 0, b1 ¼ c1 ¼ �jY j, and d1 ¼ jY j. We get

Jð
�maxÞ ¼
q2

12jY j
1

�1

� 1

�0

� �
2

ð1� �Þ2� 3jY j3 þ � 2ð1� �Þ3jY j3� �
:

Then, we conclude that 
�max satis¯es (4.33).

Using (4.32) and (4.33) we obtain

max

 �2��

Jð
�Þ ¼ 1

12
q2� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

:

Let us remember that all maximizers of J over D� must be inside �� as a con-

sequence of optimality condition (4.8) and so max

2D�

Jð
Þ ¼ max

 �2��

Jð
�Þ. Thus, we get

(3.5).

It is surprising to ¯nd a classical microstructure 
�max as a maximizer. It follows

that Jð
�maxÞ ¼ J0ð
�maxÞ ¼ 1
12 q

2� 2ð1� �Þ2jY j2ð 1
�1

� 1
�0
Þ2.

4.3.4. Uniqueness of maximizer

We have seen in Sec. 4.2 that minimizer is unique. Regarding maximizer, we can

assert that all maximizers are equal to 
 �max modulo a translation given by yA .

Indeed, if 
� is any maximizer, then 
� 2 �� and equality holds in (4.31). This means

that we must have NB ¼ NC ¼ 1 and b1 � a1 ¼ �jY j and d1 � c1 ¼ ð1� �ÞjY j: (See
passage from (4.30) to (4.31).) Then (4.21) and (4.22) become

Bð
�; p�Þ \ ðyA þ Y Þ ¼ ða1; b1Þ and C ð
�; p�Þ \ ðyA þ Y Þ ¼ ðc1; d1Þ:
Recalling the optimality condition (4.8), we obtain 
� ¼ 1 in ða1; b1Þ and 
� ¼ 0 in

ðc1; d1Þ. Thus, 
� is a Y-periodic characteristic function of an interval of length �jY j.
This proves our assertion.
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5. Proof of Second Main Result

In this section, we prove Theorem 3.2. First of all, using the fact that the charac-

teristic function 
 �max, de¯ned in (4.34), belongs to the set C� , it is clear that

� 1

12
q3� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

¼ �qJð
�maxÞ 2 dð�Þ : � 2 C�
� �

:

Therefore, it is enough to prove that

� 1

12
q3� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

; 0

� �
� dð�Þ : � 2 C�
� �

: ð5:1Þ

To this end, the idea is to reproduce the structure of the maximizer given by (4.34) at

¯ner scales. Microstructure behind the maximizer was somewhat simple whereas this

is not the case with other points of the interval I ¼ Ið�0; �1; �Þ. The construction

depends on parameters n 2 N� and 	 2 ð0; 1Þ. First, we consider a regular partition of

the interval Y formed by n intervals Ik ¼ k�1
n jY j; knjY j� �

, with k 2 f1; . . . ;ng. Each
interval Ik is partitioned into two subintervals whose lengths are ð1�	Þ

n jY j and 	
njY j,

respectively. Each of these subintervals is, in turn, partitioned into two subintervals

of lengths ð� ð1�	Þ
n jY j; ð1� �Þ ð1�	Þ

n jY jÞ; and ð� 	
njY j; ð1� �Þ 	njY jÞ: This process divides

Ik into four subintervals: Ik ¼ ½a2k�1; b2k�1� [ ½c2k�1; d2k�1� [ ½a2k; b2k� [ ½c2k; d2k� with
endpoints de¯ned by the following real numbers (see Fig. 1):

a2k�1 ¼
k� 1

n
jY j; b2k�1 ¼ c2k�1 ¼ a2k�1 þ

�ð1� 	Þ
n

jY j;

d2k�1 ¼ a2k ¼
k� 	

n
jY j; b2k ¼ c2k ¼ a2k þ

�	

n
jY j; d2k ¼

k

n
jY j:

Using these notations, let us de¯ne a characteristic function 
�n;	 by


�n;	ðyÞ ¼
1 if y 2

[2n
i¼1

½ai; bi�;

0 if y 2
[2n
j¼1

ðcj; djÞ:

8>>>><
>>>>:

ð5:2Þ

Fig. 1. Subdivision of interval Ik ¼ k�1
n jY j; knjY j� �

.
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It is clear that 
�n;	 2 C� . In order to compute the functional Jð
 �n;	Þ using Prop-

osition 4.2, ¯rst we prove that 
 �n;	 2 �� . For this purpose, we integrate Eqs. (3.1)

and (4.5) to obtain the state, the adjoint state, etc.:

X
 �
n;	
ðyÞ ¼ q

1

�1

� 1

�0

� �
�

ð1� �Þ y� ai þ bi
2

� �
in ðai; biÞ; i 2 f1; . . . ; 2ng;

�
cj þ dj

2
� y

� �
in ðcj; djÞ; j 2 f1; . . . ; 2ng;

8>><
>>:

and

P
 �
n;	
ðyÞ ¼ q2

1

�1

� 1

�0

� �
2 �ð1� �Þð1� 2�Þ

6n2
ð1� 3	þ 3	2ÞjY j2

þ q2
1

�1

� 1

�0

� �
2

�
ð1� �Þðy� aiÞðbi � yÞ in ðai; biÞ; i 2 f1; . . . ; 2ng;
��ðy� cjÞðdj � yÞ in ðcj;djÞ; j 2 f1; . . . ; 2ng:

(

Once again, observe the following facts: the state is piecewise linear and the adjoint

state is piecewise quadratic albeit in smaller intervals. Taking

p�
n;	 ¼ q2

1

�1

� 1

�0

� �
2 �ð1� �Þð1� 2�Þ

6n2
ð1� 3	 þ 3	2ÞjY j2;

we see that the optimality condition (4.8) holds for ð
�n;	; p�
n;	Þ. Hence, 
�n;	 2 ��.

Let us now use Proposition 4.2 in the particular case NB ¼ NC ¼ 2n and we

obtain

Jð
�n;	Þ ¼ 1� 3	 þ 3	2

n2
max

2D�

Jð
Þ:

This formula shows that ¯xing n 2 N�, and varying 	 2 ð0; 1Þ, the following identity

holds:

Jð
�n;	Þ : 	 2 ð0; 1Þ� � ¼ 1

4n2
max

2D�

Jð
Þ; 1

n2
max

2D�

Jð
Þ
� �

:

Now, if we vary n 2 N�, we get

Jð
�n;	Þ : n 2 N
�; 	 2 ð0; 1Þ� � ¼ 0; max


2D�

Jð
Þ
� �

;

that is,

dð
 �n;	Þ : n 2 N�; 	 2 ð0; 1Þ� � ¼ �qmax

2D�

Jð
Þ; 0
� �

¼ � 1

12
q3� 2ð1� �Þ2jY j2 1

�1

� 1

�0

� �
2

; 0

� �
:

Since fdð
�n;	Þ : n 2 N�; 	 2 ð0; 1Þg � fdð�Þ : � 2 C�g; we get the inclusion (5.1) and

by consequence, we conclude the proof of Theorem 3.2.
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