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Abstract

The L2- and H1-approximate controllability and homogenization of a semilinear elliptic
boundary-value problem is studied in this paper. The principal term of the state equation has rapidly
oscillating coefficients and the control region is locally distributed. The observation region is a subset
of codimension 1 in the case diiz-approximate controllability or is locally distributed in the case
of H1-approximate controllability. By using the classical Fenchel-Rockafellar's duality theory, the
existence of an approximate control of minimal norm is established by means of a fixed point
argument. We consider its asymptotic behavior as the rapidly oscillating coeffi¢ientsverge.

We prove its convergence to an approximate control of minimal norm for the homogenized problem.
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1. Introduction
1.1. Setting of the problem

In this paper, we consider a nonperiodic, nonlinear homogenization problem where
the control is distributed in a relatively compact subdomain. Our goal is to study the
approximate controllability of this problem when the operators in the state equation (given
by a second order elliptic boundary-value problem) and in the cost functional (involving a
Dirichlet type integral of the state function) both have rapidly oscillating coefficients.

Let £2 be a connected bounded open seRih, N > 2, with a smooth boundarys?.

We consider two nonempty subdomainss®fwhich are the observable regienand the
region where the error between the obtained and the desired state is minimized, that we
denote bys.

For given constants @ «;, < oy, we denote byM (a,,, ayr) the set of allN x N
matricesA = A(x) such that

A e L®(2)N*N, (1.1)
aml <A(x) and |[A()E|<aylé| V&R, andfora.ex e £2, (1.2)
wherel is the N x N identity matrix. (It is well-known that ifA is symmetric, then the

second condition in (1.2) is equivalent#gx) < oy !.)
For eache > 0, we consider a matrid, € M (o, y) and the state equation

{ —div(A;Vye () + f(ye(v)) = x v in L2,
ye(v) =0 o0nas2,

wherey,, is the characteristic function af, v is the control, ang. (v) the associated state.
Here f is a real-valued continuous function for which we assume that
f(s)

f©=0 and 3y>0. 0<=—<y VsecR\(0). (1.4)

(1.3)

There are two possible locations of the observation zbrieat allow different kinds
of approximate controllability. One is the case whéres an open subset a2 which is
compactly contained im. In this case thed -approximate controllability is studied. The
other case occurs when the observation z®fea smooth subset a2 of codimension 1
nonintersecting the control zore In this case thd.?-approximate controllability can be
considered.

The study of theH L-approximate controllability involves a more general analysis and
we will consider it in this paper. The analysis of tiié-approximate controllability is
simpler, and we have included a number of remarks at each step of the paper with the
necessary changes to recover ftfecase from the71-case.

Given y; € HY(S), a constantr > 0, and asymmetric positive definit@atrix B, our
aim is to find a controb, € L?(w) such that

Hys(vs) _.YlHB)Sgoh (1.5)

where, by definition,
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Hys(ve) - ylHB,S dZef(/ BV(.W(”&) - y1) : V(Y£(U6) - y1) dx
S

1/2
+/|yg(vs)—y1|2dx> -
S

This means that the error betweern(v.) andy1 is bounded from above by when using
a norm equivalent to th&/1-norm and defined in terms of the matix

Remark 1.1. In the case of the.?-approximate controllability, the corresponding error
condition is obtained by taking, € L?(S) and theZ?-norm||- ||o.s in (1.5), which formally
corresponds to the cage=0.

Notice that the case = 0O is the extreme situation of exact controllability. In this paper,
we will just be concerned bgpproximatecontrollability, that ise > 0.

Remark 1.2. If S cC w, then the case of.2-approximate controllability can be treated
as theH'-case. Conversely, i§ N @ = ¥ and S is an nonempty open set, we can show
by contradiction that thé.2-approximate controllability is not possible. Indeed, take

a relatively compact open subset fand definey; =01in S\ & andy; =1 ino. The
approximate controllability of the problem

Lot oz @o
implies that, for each € N, there exists, € L?(£2) such that

[y (vn) — 1||0!0 <1/n and ||y(vn)||0’s\5 <1/n. (1.7)
From this we derive that(v,) — y* strongly inL2(S), where

y*=1 inoc and y*=0 inS\a. (1.8)

We write (1.6) forv = v, and we take the restriction  Passing to the limit, we derive
—Ay*=0 inS (1.9)

which contradicts (1.8).
1.2. Presentation of the main results

Our aim is to establish the approximate controllability for each 0 and to study
the H-convergence of minimal norm controls to an approximate control linked to
homogenized problems.

We notice that problem (1.3), (1.5) does not generally have a unique solution. We are
therefore interested in the optimal contoflwhich minimizes, over alb € L?(w), the cost
functional
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1 i _
oG | s e
In order to do so, we first develop the fixed point strategy introduced by Fabre et al. [1].
Secondly, we pass to the limit as— 0 using H-convergence methods (see Murat and
Tartar [6] or Tartar [8]). Our main results are Theorems 2.5 and 3.2 below.

Remark 1.3. All the results of Sections 2 and 3 (including Lemma 2.3, Theorems 2.5
and 3.2) are also valid in the case of thé-approximate controllability and under the
following hypothesis:

(i) Each pointonS can be connected by an arc includedrto some point inv» without
intersectings.

(i) The coefficients ofA, are of classC1(£2) or L*°(£2) under some geometrical
restrictions that allow a certain unique continuation property (see Remark 2.4).

To adapt the results and proofs to this case, it suffices to take all the variables with
subindex 1 (likey1, 1) in L2(S), to replace] - llz.s and(-, -)g.s by the usual nornfj - [|o.s
and inner product , -)o,s in L2(S) (thatis with B = 0), and to replacg s by a Dirac mass
ons.

2. Existence of an optimal control
2.1. The linearized problem

For technical reasons, and without loss of generality, we assumeftkael(R).
(Otherwise, we can argue by density, approximafirizy a sequence of smooth functions.)
This allows us to introduce the function

def | f(s)/s ifs#0,

The assumptions ofi imply
g€CoR) and 0<g(s)<y VseR. (2.2)

We associate witlg the linear problem

—diV(AcVye(z,v) + g(2)ye (2, V) = xov  IN L2, (2.3)
ve(z,v) =0 0nas2, '
wherez is a given function in.?(s2). We consider the cost functional
defl o 0 if[lye(z.v)ls — yillzs <
IZ = _ { & ) DX W, 24
e @) 2”””0’“’ Tloo otherwise (2.4)

By classical linear control theory (see, e.g., Lions [4]), it is well-known that for any given
z € L%(2) there exists a unique minimal norm contodlz) such that

IN (v:(z)) = err;l?w) IF(v) < +o0. (2.5)

v
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We denote by* = y. (z, v¥(z)) the corresponding state.
With the help of the minimal norm controf (z), we introduce the operator

FeiL3(2)— L(2), z+ y(z, v} (). (2.6)

Our goal is to find a fixed point af, which will obviously solve problem (1.3).
2.2. Adjoint problem and dual formulation

It is useful to work with the adjoint problem in a dual formulation. To this end, we
introduce the operatat defined by
L:L%@) — HYS), v ye(z,v)ls, 2.7)
wherey,(z, v) is the solution of (2.3). Its adjoirtt* is given by
L*:HYS) > L% (@), 91> ¢e(2)lo, (2.8)
whereg, is the solution of the so-called adjoint problem, which is obtained by solving the
following Dirichlet problem

—div('A; V. (z, 1) + g(2)¢s(z, 91) = —div(xsBV@1) + xse1  in £2, 2.9)
ve(z,01) =0 0noag2, )

which definesp, (z, ¢1) uniquely.

Remark 2.1. In this paper, we are concerned with approximate controllability in the sense
of inequality (1.5). There is an alternative approach to approximate controllability which
consists in proving that the sét.(z, v) | v € L%(w)} is dense inH1(S). An equivalent
condition to establish this density is to prove that #en = 0. In our present case, this
can be proved as follows. Givene H~1(£2), let us introducep; € Hy(£2), the unique
solution of

—div(BVg1) +p1=h in £,
¢1=0 onoas.

Clearly
{pils |he HTX(2)} = HY(S).

Therefore, if L*(¢1) = 0 in L?(w), using as test functions € H}(S) and& € Hi(w)
successively in (2.9), we obtain

{ —div(BVe1) +91=0 inS,

JysBVg1-nEds =0 V& e Hi(w), (2.10)

sinceS CC w. Heren denotes the unit outward normal to both boundaries that ahd
that of S. It follows thatBVg1 -n =0 0naS, and hencg1 =0in S.

Remark 2.2. In the case of ar.2-approximate controllability, the corresponding defini-
tions (2.7) and (2.8) of. andL* respectively can be given witH1(S) replaced byL.2(S).
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The corresponding adjoint problem is the same as in (2.10) takiad) and replacings

by a Dirac mass concentrated SnA direct proof of the approximate controllability can

be done as in the previous remark under the geometrical hypothesis mentioned before in
Remark 1.3 (see [7]).

The approximate controllability of the nonlinear problem (1.3) is obtained here by using
a more constructive approach, which provides an explicit method to find a control of
minimal norm. This method was introduced by Lions [5] (see also Osses and Puel [7]),
and is based on the classical Fenchel-Rockafellar's duality theory.

We can write down the functiondf under the form

IF(v)=F@)+ G(Lv) (2.12)
with
1 0 if|[Lv—y1llps<a
Fv) = = |v|? — yillps S «, _
(v) 2||v||0’w and G(Lv) { otherwise (2.12)

Denoting byF* andG* the conjugate functions df andG respectively, the duality theory
states that

inf IZv)=— inf Ji(gp1)=-— inf JE(p1e), (2.13)
vel2(w) p1eHL(S) heH™1($2),
¢1 solution of (2.10)
where
JE(@1e) = F* (L 91) + G*(—91e),
F*(L*¢1) = 31192 (2, 91) 113 (2.14)
G*(L*p1e) = all@1ellB,s + (@16, Y1) B,S»
that is
Z 1 2
(1) = 5 lee(z, 010 |5, + @026l B,s = (@16, YD) B.5- (2.15)

The following lemma, whose proof is given below in Section 2.4, summarizes the main
properties of/?.

Lemma 2.3 (Coercivity property of/7). For eacha > 0 and y1 € H(S), the functional

JZ defined in(2.14)is continuous, strictly convex, and satisfies

JZ
I B (p1) >
lgrllp,s—+oo |l@1llB.s

(2.16)

Let us denote byfl",g(z) e HY(S) the unique optimal element which minimiz&s(¢1)
overH(s) and letp; be the corresponding element defined by (2.9). It is well-known that
the duality theory provides extremal relations that the optimal controls satisfy, namely

{ F(vg(2)) + F*(L*97 (2)) — (L*¢7 .(2), v (2))0w =0,

G(Lv}(2)) 4+ G*(—¢} () + (95 ,(2). Lv} (2))p.s = 0. (2.17)



C. Conca et al. / J. Math. Anal. Appl. 285 (2003) 17-36 23

From the first of these relations, we derive the following explicit formula for the minimal
norm control:

V() = ¢e (2. 901 ()], (2.18)

Remark 2.4. The proof of Lemma 2.3 is based on the following unique continuation prop-
erty: if the solution of problem (2.9) is zero inthen it is zero in the whole of2. In the

case ofH 1-approximate controllability, this property is quite easy to prove under the regu-
larity hypothesis (1.1) sincé CC . In the case of.2-approximate controllabilitys does

not intersecw and the result is a Holmgren’s unique continuation property [2]. This re-
quires more regularity in the coefficients #f (at leastC!) and an additional geometrical
hypothesis as mentioned in Remark 1.3. Nevertheless, if the coefficiemtsaoé onlyL>°

but piecewiseC1, the unique continuation property remains valid because of transmission
conditions on the discontinuity interfaces.

2.3. Fixed point strategy

Thanks to this dual formulation, we are now in a position to develop our fixed point
strategy forF;. It consists in three steps. First, we establish the continuitf.ofrom
L?(£2) into itself. Next, we prove that it maps the wholelot(£2) into a bounded subset
of L?(£2). Last, we check thaF, is compact, and using Schauder’s fixed point theorem,
we conclude the existence of a solution of problem (1.3). More precisely, we have

Theorem 2.5. For a givene > 0, let A, be a matrix inM(«,,, apr). Assume that the real-
valued functiory satisfies conditiofil.4). Then there exists at least an elemgnt L2(£2)
which is a fixed point of the operataF. defined by(2.6). This element satisfies the
equationz, = y*(Ze, v} (Z¢)), Wherey*(z., v} (z.)) is the state solution of probleiti.3)
andv = v} (z,) is the optimal control of the functiond} (see(1.10))

The remaining part of Section 2 is entirely devoted to the proof of the above theorem.

Step 1. Continuity of-,
Let z, be any converging sequenceliR(£2), say

Zn — z0 strongly inL?(£2). (2.19)

Denoteg; , = ¢: (z4, 1) the solution of (2.9) corresponding to= z,,. Takinge; , as a
test function in the adjoint problem (2.9), we obtain (using (2.10))

”‘Ps,n”l,!) < C”(ﬂls”B,S <C,

where, here and in the following; denotes different constants independent ahdn.
Hence, up to a subsequence still denotedie have

@en — ge0  Weakly in H}($2) and strongly inL2(£2). (2.20)
Letg € L2(£2). We have
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/g(zn)%,ncpdx —/g(zo)cps,ocpdx

2 2

< /g(zn)((pe,n — @, 0@ dx

2

+ /(8(Zn) — 8(z0))ge,00dx

2

< lIgllooll@en — @s0llo,2llello,e + . (2.21)

/ (8(zn) — 8(20))@s,00 dx

2

The first term in the right-hand side tends to zero by (2.20). Besides, by (2.19), up to a
subsequence, we have

zn — zo0 fora.ex eR;

hence, by (2.2), up to another subsequence, we also have

g(zn) — g(zo) weakly* in L*(£2).

Therefore, the second term in the right-hand side of (2.21) tends to zero by virtue of
Lebesgue’s dominated convergence theorem. Hence, up to a subsequence,

2(zn)pen —— g(zo)ps0 weakly inL?(2) and strongly ind ~1(2).  (2.22)

n—-+00

Let us now pass to the limit in the adjoint problem (2.9) writtengpande; ,. Using a test
functiong € H&(.Q), integrating by parts if2 and passing to the limit using convergence
(2.20), (2.22), we deduce

—div('A: Ve 0) + g(z0)¢s.0 = — div(xs BVp1) + xse1 i £2, (2.23)
9:0=0 o0nos2. )

This means that

@e.0 = ¢e (20, 91)- (2.24)
Let us now prove that the convergence in (2.20) is actually a strong one, that is
e (Zn. 1) 757z ¢e(z0. 1) strongly inH*(£2). (2.25)

In fact, multiplying (2.9) (written forp. ,) by ¢ », integrating by parts iif2, and passing
to the limit, we obtain

n—00
2

lim /IASV(ps,n : V(ps,n dx

=~ [ o) ol dx + (- divixs BV + 1591, 60), (2.26)
2
where the bracket is the classical duality pairing betwgert (£2) and Hol(Q). On the

other hand, multiplying (2.23) by: o, integrating by parts it2 and comparing with (2.26),
we deduce
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n—00
2 2

lim /’ASV%,n Ve ndx :/’ASV%,O Ve odx. (2.27)

Since the mapping — [, ‘A:Vg - Vo dx defines a norm irH(}(.Q) which is equivalent
to the one induced by the usud*-topology, we conclude the strong convergence (2.25)
from (2.27).

We now prove that the sequence of optimal elem@ﬁ§(zn) remains bounded in
H(S) ase — 0 andn — oco. More precisely, we have

Lemma 2.6. Assume that, satisfieq2.19) Then there exists a constafit, independent
of n, such that

let @ ps<Ce VneN. (2.28)

Proof. We argue by contradiction. Assume that there exists a subsequence, which we will
still denote byn, such that

H‘pis(Z")Hl,Bg,,,s — 00 asn — oo. (2.29)
Sincegs , (zx) minimizesJ<", we have
T2 (95 o(zn)) S JZ(91) Vo1 € HX(S). (2.30)
But
Zn _ 1 2
I o) =5 lpe(zns 00 ||, +llerlis.s — (91, yD) 5.5

Thanks to (2.24), (2.25)" (¢1) converges, when — oo, to

I (p1) = %H(ﬂo(zw ®1) ng +alleills.s — (91, ¥1)B.5-
Then, combining this result with (2.30), for ady- 0 and forn large enough, we have
T (91 o (2n)) < J22(g1) + 6,
which obviously contradicts the coercivity property of Lemma 2.81
From (2.28), up to a subsequence, there exists a limiting fungtien1(S) such that
¢1@nls s &  weakly in H1(S) and strongly inL2(S). (2.31)

Arguing as in the proof of (2.25), we deduce from (2.31)
e (2, 0F o (20)) 757 92 (20, &) strongly inHg (£2). (2.32)
Our next step consists in proving that

e = ¢1 £ (20), (2.33)

which is the optimal element minimizing®, that is
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J3OE) < JP(p1) Vere HY(S). (2.34)
Sinceyy , (zn) minimizesJ<", we have

T2 (95 o (2n)) < JZ(91) V1€ HX(S),
which implies

liminf /7" (¢ . (zn)) < lim_J" (p1) = JE(p1). (2.35)
Therefore, to prove (2.34), it suffices to show that

JE0(E) < liminf 17" (¢ , (2n)).- (2.36)

Using convergence (2.31) and the definition/gf, we have

o oo (1
liminf 7~ (01 o (zn)) = |Inrglor<1)f<§H<ﬂe (zn. ¢I,€(Zn))Hg’w> +allé:ll,s — (&, y1)B,s-

Combining with (2.32), we conclude (2.36), which completes the proof of (2.33). Hence
(2.32) becomes

e (2n. 9% o (2n)) — @¢(20. 95 ,(z0))  strongly in Hg (£2). (2.37)
Using the explicit formula (2.18) for the optimal contrgi of problem (2.3), we have

Ve (2n) = @ (20, 97 ¢ (20) o,
v; (20) = @¢ (20, 97 (20)) |-

Therefore, from (2.37), we derive
v (zn) = vi(z0) strongly inH(w). (2.38)

Finally, arguing as we did for the adjoint problem, we can pass to the limit in problem (2.3)
using convergence (2.38), and we obtain

Ve (zn, v} (zn)) = (20, v} (z0))  strongly inH*(£2). (2.39)
This ends the proof of the continuity &f.
Remark 2.7. In the particular case whepy is defined on the whole a2 by (2.10), it is

worthwhile to notice that it is merely the restrictign|s of ¢1 to S which plays a role in
the proof of Theorem 2.5.

Step 2. F.(L?(£2)) is bounded in.?($2)
Since for allz € L2(£2) we havel|g(z)|ls < ¥, then

loe 2 00 |, o < Cligtlls,s,

with C independent of ande. This implies the existence of a const&ht= C(¢1) such
that

Ji(91:) < Clp1) Vo1 e HYS).
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In particular, for the optimal elemepf ,, we have

Ji (07 () < Clp1) Vo1 e HXS).
This holds in particular fop; = 0, thus
Ji(ei () <C,
with C independent of ande.
Using again the coercivity ofy (see Lemma 2.3), we prove thipy  (2)ll1,5,,s is
bounded independently aefand ofe. Thus we have
lee (e 01 @) o <C

with C independent of and ofe. This clearly implies that botb} (z) andy. (z, v} (z)) are
bounded in their corresponding spaces, i.e., there exigtdependent of ande such that

i@, <C (2.40)

and

[ye(z, 07 @) g0 < 36z w2 @) |10 <€, (2.42)
which concludes the second step.

Step 3. F, is compact

In the second step, a stronger result than the one announced was proved. Indeed, from
(2.41), we see thaF, maps the whole oL.2(£2) into a bounded subset df1(£2), and
hence into a relatively compact subsetiof(s2). This proves the compactness 8,
and hence completes the proof of Theorem 2.5, provided the coercivity Lemma 2.3 is
established. O

2.4. Proof of Lemma 2.3

To simplify matters, in this subsection we drop the indér the notation fokp;. From
(2.14), forg; € H1(S) andg; # 0, we have

JZ 1 2
e (71) = /|<ﬂs(z,<ﬂ1)| dx+06—/BV( 7 )-VyldX-
leillz,s  2lleils,s J el B.s

w

Let g1, € HY(S) be a sequence such that

lo1,.1lB,s st X

and
JZ L. JZ
JeGrn) g T (2.42)
n—o0 |l@1.llB.s  lleills.s—oo |l1llB.s

We introduce the following normalizations:
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. . Z
G = P1n Gomn = ©e.n(2, 91,0) ' (2.43)
lo1,nllB,s lo1nll1,B,s
Then we have
Ji(p1a) 1 . X
e ot Zlgallss / |Genl?dx — / BV§1,- Vyidx. (2.44)
llo1,.11B,s 2 J
w

Also, since|¢1.,]8.s = 1, usingee , as a test function in the adjoint problem (2.9), we
deduce

l@enllt.e <C (Cindependent of andn). (2.45)

Therefore, up to a subsequence, we have

{ $1n— ¢1 weakly inL2(S), (2.46)

@en — @ weakly in H1(£2) and strongly inL?(£2).
Let us distinguish various cases.
Case(i). Assume that

liry /|¢7£,n|2dx (—/|¢g|2dx> >0,
n—00
w w

then the second term in the right-hand side of (2.44) tends to infinity while the third term
has a limit. Hence (2.16) holds in this case.
Case(ii). If

lir /|¢78,n|2dx (——/I(Z)glzdx) =0,
n—o0
w w

theng, = 0 in w. From the smoothness hypothesis on the coefficients of the mgat(isee
(1.1)), sinceS cC w, we have an homogeneous problem (2.2pily » with homogeneous
Dirichlet boundary conditions, and this implies tigat= 0 in £2. Thereforgp; = 0, and so

Jg (@1,0)

> o + liminf ||§01,n||B,S/|¢£,n|2dx >a >0,
n—>00 ||@1.nllB,s n—>00
)

which ends the proof of Lemma 2.3 and therefore that of Theorem 215.

3. Homogenization of the approximate controllability problem

Our goal in this section is to pass to the limit in problem (1.3) whenv} is the optimal
control constructed in Section 2.

To this general end, we begin by considering a sequence of matricesM («,, apr)
and the corresponding state equations

{ —div(A:Vy:(v) + f(y:(V) = xov in£2,

ye(v) =0 o0nas2, (3.1)
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wherev € L2(w). The main additional assumption in this section is that

A, H-convergestiig (3.2)

(see [6,8] for details about -convergence). It is well-known thaty € M (c;y,, a,zw/am).
3.1. Homogenization of the state equation for a fixed control

In this section, we assume that the conirds a fixed element i.2(w). We prove the
following homogenization result:

Proposition 3.1. Assume that the hypotheses of Theogemhold and thatA, satisfies
(3.2). Then, up to a subsequence, there exigts) such that

{yg(v) — yo(v) weakly inHg (), (3.3)
A:Vy:(v) = AgVyo(v) weakly inL2(2)V. '
Moreover,yp(v) satisfies the homogenized state equation
—div(AeVyo(v)) + f(yo(v)) = xwv in £2, (3.4)
yo(v) =0 o0nag2. )

Proof. Since f satisfies (1.4), the first convergence in (3.3) is straightforward. We now
wish to establish a convergence resultfy, (v)). For allg € L2(£2), we have

/(f()’e(v)) — f(vo(w)))pdx| < /g(yg(v))(ys(u) — yo(v)) g dx
2 2
[ (600@) ~ g00)) ot

2
Arguing as we did in Section 2.3 to establish (2.22), we prove that, up to a subsequence,

f(ye) = f(vo(v)) weakly inL?(£2) and strongly ind ~1(£2). (3.5)

We are now in a position to pass to the limit in problem (3.1). Thanks to (3.5)f#&nd
convergence properties, we end the proof of Proposition 3:1.

3.2. Homogenization of the state equation for an optimal control

Denotez, the fixed point ofF, constructed in Section 2 using Schauder’s theorem.
Since the constant in (2.40) is independent @inde, the sequence of optimal controls
v} (z¢) remains bounded in2(w) ase — 0. Thus, up to a subsequence, there exists
vo € L%(w) such that

{ v (Ze) = vo weakly in L?(w) and strongly ind ~(w), (3.6)

X0Vl (Ze) = Xxovo weakly inL2(£2) and strongly inH ~1(£2).
As in Section 2, the estimate (2.40) implies that the solutibe= y. (z¢, v} (z¢)) of prob-
lem (1.3) satisfies
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Iyillo.e < llygllue <C,

where C is independent ot. Hence there existgg € Hol(Q) such that, up to a sub-
sequence,

yi = yo(vo) Wweakly in Hg (£2). (3.7)
Clearly, as in Section 3.1, we derive from (3.2), (3.6), (3.7), thtbo) is solution of the
homogenized problem

(3.8)

—div(AoVyo(vo)) + f (yo(v0)) = xwvo N £2,
yo(vg) =0 o0nos2.

Our aim is to prove thatg satisfies the following approximate controllability inequality:

|yo(o)ls — y1 5 ¢ e

Furthermore, we will prove thatp is optimal in the sense that it minimizes, over all
v € L%(w), the cost functional

def 1 0 if V)]s — <a,
o) 31013, +{ et s < (3.9)

whereyg(v) is the solution of (3.8) corresponding to the control
To reach this aim, we begin by writing down the fixed point identity

Ze = e (Zs, U:(Zs)) = y:-
Thus, from (3.7) there existg < Hol(Q) such that, up to a subsequence,
Ze —z0 weakly in H(£2) and strongly in.%(s2). (3.10)

For any given controb € L2(w), let yo(zo, v) be the solution of the homogenized
linearized problem

—div(AoVyo(zo, v)) + g(20, V) = xov In £2, (3.11)
vo(zo,v) =0 0nas2. '
To this state equation, we associate the cost functional
1 0 if yo(zo, v)Is — yillp,s < e
150 _ = 2 [ Yo va S —YilB,s X &, 3.12
o W=3Il60+ o otherwise (3.12)

By classical linear control theory and Proposition 3.1 there exists a unique optimal control
vg(z0) such that

I5° (v§(z0)) = UET;?@ 15°(v) < 400. (3.13)

We denote by} = yo(zo, v§(z0)) the corresponding state.
We are now in a position to prove our main result, namely
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Theorem 3.2. We make the hypotheses of Theo&Band we also assume thié-con-
vergence(3.2) of A, to Ag. Let vg be the limit of the optimal controls defined (8.6).
Then

vo = v5(20), (3.14)
wherevg (zo) is the optimal control of the linearized problegi@.11) (3.13)

Proof. We proceed in several steps.

Step 1. Existence of the optimal contrglzo)

We use again the classical Fenchel-Rockafellar's duality theory which provides an
explicit control of minimal norm. Giveg; € H1(S), we introducepo(zo, ¢1), the solution
of

—div(*AoVo(zo, 1)) + g(z0)¢po(z0, 1)
= —div(xsBVg1) + xsp1 in £2, (3.15)
0o(z0, 1) =0 0nas2.

By duality, as in Section 2, we have

inf I°()=— inf J%4), (3.16)
veL2(w) p1eHL(S)
where
20 1 2
Jo"(pD) =3 lpo(zo, 1) g, +@llerlls,s — (@1, YD B.s- (3.17)

Itis also well-known, from the extremal relations for the above optimization problem, that

v6(z0) = @o(z0. 91 (20)) (3.18)

»’
whereg; (zo) € HL(S) is the unique optimal element which minimizﬁ? over H1(S).
Step 2. Passage to the limit in the adjoint problem

From system (2.9) and convergence (3.10), we derive easily that there exists a function
@o such that, up to a subsequence

0e(Ze, 1) = @0 weakly in H3(£2). (3.19)

By H-convergence results, we pass to the limit in (2.9) and we deducesghiat the
solution of

—div('AoV@o) + g(z0)go = —div(xsBV¢1) + xse1  in £2,
o0=0 onas,

that is (compare with (3.15))

%0 = ®0(z0, $1)- (3.20)
We are now in a position to pass to the Iimitjﬁf defined by (2.14). Recall that
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3 1 _ 2 2
I en) =3 leeGe, 0, +o | (xsBV@L- Vo1 + xsle1l?) dx
2

_/XSBV(Pl‘V)&dX'
2

To pass to the limit, we use convergence (3.19). We obtain
lim J&*(p1) = Jg°(p1) Vg € HX(S). (3.21)
E—

From (3.21), we derive that between the optimal elemefitSz.) and¢j (z0), we have
the following relation:

T2 (¢f o Ge)) = min JZ (p1) — minJg (g1) = J5° (¢} <0)). (3.22)

Step 3. Convergence of the optimal controls for the state equation

Using the uniform coercivity property of the functional$® (see Lemma 2.3) and
arguing as in the proof of Lemma 2.6, we deduce the existence of a co@statependent
of ¢ such that

le1eGolly s, s <C-

Since the matriceB, are equi-coercive, we derive the existence of an elegieatH1(S)
such that, up to a subsequence,

0% (Ze) ~ £* weakly in HY(S). (3.23)
This implies that, up to another subsequence,

e (Zer 9 o (Z6)) — po(z0,£%)  weakly in HJ (£2). (3.24)
Our next aim is to prove that" is equal top] (zo), the unique minimizer oﬁéo, that is

JPE) <o) Vere HY(S). (3.25)
Sincecpis(zg) minimizesjff, we have

I (07 .(Ze)) < JE (1) Vo1 € HY(S).
Thanks to (3.21), we deduce that

liminf J (01 ,(ze)) < lim Jg* (p1) = Jo (1)
Therefore, to prove (3.25), it suffices to show that

Jo*&) <liminf 15 (p] . 0). (3.26)

Using the definition of7*, we have
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liminf /7 (¢ o Zo))
(1 - -2
= !i“o(i | e (ze. 010 Ee)) Ho,w> +allE* s — (€, yD)B,s = JOE),

which proves (3.26) and hence (3.25). Thus (3.23), (3.24) become

k(5N ok H 1
{(pl,s(ZS) % (z0) weakly in HL(S), 327)

e (Ze, 95 ,(Z0)) = @o(z0, ¢ (z0))  Weakly in Hy(£2).

To conclude, let us write the explicit formula (2.18) to£ z,:

v:(ZS) = (/78 (287 (pI,g(ZS)) |w

From (3.6), the left-hand side convergesig and from (3.27), the right-hand side
converges t@o(zo, ¢3 (z0))lw- Then, combining with (3.18), we deduce

vo = ¢0(20. ¢1(20))|,, = v$(z0),

which completes the proof of Theorem 3.20

4. Homogenization of a cost functional with rapidly oscillating coefficients.
Open questions

Our aim in this section is to study the same problems when the fixed symmetric Batrix
is replaced by an-dependent symmetric matr®; € M (a,,, apr) With rapidly oscillating
coefficients.

The approximate controllability inequality (1.5) is now replaced by

i‘)’s(v)_yli‘BS’S<Ol~ (41)

Since in Section 2 the parameterwas fixed, all the results therein hold true in this
new framework. Our goal is to pass to the limitas> 0 and to see how the results of
Section 3 are modified or can be generalized. We still assume that (3.2) holds as well as
a H-convergence result fag,, namely

B. H-converges tdy. 4.2)

In what follows, we will need some kind of limiting matrigysB)# whose definition
requires the introduction of three auxiliary functions, nam#ly, Y/, ¥, which are
defined by

X{—~0 weaklyinH(£2), (4.3)
div(A, V(= X§ +xx)) — div(Ager)  strongly inH1(£2), '
Yf =0 weakly inHY(£2), (4.4)
div(B. V(—X¢ + xx)) — div(Boex) strongly inH (), '
yE—y? weakly in H1(£2), (4.5)
div(AsVY§ + BeV(=X{ +x1) =0 in Q. '
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Here,e, € RY is thekth standard basis vector amddenotes the function mappings RV
to its kth coordinate.
The matrix(xsB)# is defined by means of the following formula:

(Xs B)sex = xsBo+ lim (‘AcVy —"AoVyy) + xs lim (B (Y = X;).  (4.6)

The following proposition, whose proof can be found in Kesavan and Saint Jean Paulin [3],
summarizes the main properties(afs B)#.

Proposition 4.1. The matrix (xsB)# is symmetric and there existg, > 0 such that
(xsB)# € M(am, am).

We use this matriXxsB)# in order to pass to the limit in the adjoint problem (2.9),
which we now rewrite in a slightly different form. Givene H=1(2), let ¢, € H(}(.Q)
be the unique solution of

—div(A, V1) =h in £,

91 =0 o0nos2. 4.7)

The adjoint state. = ¢, (z, 1) is defined as the unique solution of

—div(A.Ve(z, p10) — (XsBe)Vp1e)
= —g(2)e (2, 1) + X591 N £2, (4.8)
0e(z,01.) =0 0Na3L2.

Of course, Proposition 3.1 still holds true. Furthermoreyifdenotes the weak limit of

the optimal controle}(z;) (see (3.6)), then we still have (3.7), (3.8). This means that
the state equation can be homogenized as in the easier case of a constanBmglrix
homogenization of the adjoint equation is not so easy and it requires the rafdy.
Precisely, from systems (4.7), (4.8) and convergence (3.10), we derive easily that there
exist functionsp; andggp such that, up to a subsequence,

{ p1e = p1 weakly in H}(£2), “.9)
0e(Ze, 01e) — @0 weakly in H3 (). :
Of course, byH -convergence results, it is clear thatis the unique solution of
—div(AgVe1) =h in$2,
{golzo onjs. (4.10)

Besides, the right-hand side of (4.8) satisfies, up to a subsequence,
—8(Ze)Pe (Ze, 916) + X591 — —8(20)P0 + XsP1
weakly in L?(£2) and strongly ind ~1(£2).

Therefore, a slight generalization of Theorem 3.1 in [3] allows us to pass to the limit in
(4.8) and to deduce tha is the solution of

—div('AoV@o — (xsB)#Ve1) = —g(zo)go+ xse1 in £2,
o0=0 onas,
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that is

@0 = ¢(20, ¥1), (4.11)

wherep(zo, ¢1) is defined as the solution of a new homogenized adjoint problem analogous
to (3.15) withxs B replaced by(xsB)x#. )
Our next step would be to pass to the limit in the sequefitgp; , (z)) whereg} | is

the minimizer of/&*. This is the main open question of this section. Of course the desired
result would be to prove that

lim J:* (g1 . Ze)) = J5° (@D, (4.12)

wheregp} is the minimizer of the homogenized functional

1 2
Jo%p1) = > lo(zo. 1) HO,w +alleillsByss — (@1, Y1) (xsB)s. S -

This implies that Theorem 3.2 would also be true in the present case. However, we have
a strong doubt about the validity of (4.12). Indeed, it is not difficult to check (using [3,
Theorem 3.3]) that

lim JZ (p1) = Jg(p1) V1€ HY(S).
e—
where
- 1 5
Jo (1) = > lo(zo., 1) HO,w +alloillsrus — (@1, yD 5 g

(compare with (3.21)). Here is another kind of limiting matrix, similar tox s B)x which
can be explicitly constructed using. and the first correctors terms associated with the
H-convergence sequenge.
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