
a

ptic
rapidly
subset
se
y, the

point

blem.

cs.
E

J. Math. Anal. Appl. 285 (2003) 17–36

www.elsevier.com/locate/jma

Approximate controllability and homogenization
of a semilinear elliptic problem✩

Carlos Conca,a Axel Osses,a,∗ and Jeannine Saint Jean Paulinb

a Centro de Modelamiento Matemático, UMR 2071 CNRS-Uchile, and
Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas,

Universidad de Chile, Casilla 170/3—Correo 3, Santiago, Chile
b UFR Mathématiques-Mécanique-Informatique, Département de Mathématiques,

Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France

Received 24 April 2001

Submitted by L. Chen

Dedicated to the memory of Jeannine Saint Jean Paulin

Abstract

The L2- and H1-approximate controllability and homogenization of a semilinear elli
boundary-value problem is studied in this paper. The principal term of the state equation has
oscillating coefficients and the control region is locally distributed. The observation region is a
of codimension 1 in the case ofL2-approximate controllability or is locally distributed in the ca
of H1-approximate controllability. By using the classical Fenchel–Rockafellar’s duality theor
existence of an approximate control of minimal norm is established by means of a fixed
argument. We consider its asymptotic behavior as the rapidly oscillating coefficientsH -converge.
We prove its convergence to an approximate control of minimal norm for the homogenized pro
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1. Introduction

1.1. Setting of the problem

In this paper, we consider a nonperiodic, nonlinear homogenization problem w
the control is distributed in a relatively compact subdomain. Our goal is to stud
approximate controllability of this problem when the operators in the state equation (
by a second order elliptic boundary-value problem) and in the cost functional (involv
Dirichlet type integral of the state function) both have rapidly oscillating coefficients.

LetΩ be a connected bounded open set inR
N , N � 2, with a smooth boundary∂Ω .

We consider two nonempty subdomains ofΩ which are the observable regionω and the
region where the error between the obtained and the desired state is minimized, t
denote byS.

For given constants 0< αm � αM , we denote byM(αm,αM) the set of allN × N
matricesA=A(x) such that

A ∈ L∞(Ω)N×N , (1.1)

αmI �A(x) and
∣∣A(x)ξ ∣∣� αM |ξ | ∀ξ ∈ R

N, and for a.e.x ∈Ω, (1.2)

whereI is theN × N identity matrix. (It is well-known that ifA is symmetric, then the
second condition in (1.2) is equivalent toA(x)� αMI .)

For eachε > 0, we consider a matrixAε ∈ M(αm,αM) and the state equation{−div(Aε∇yε(v))+ f (yε(v))= χωv in Ω,

yε(v)= 0 on∂Ω,
(1.3)

whereχω is the characteristic function ofω, v is the control, andyε(v) the associated stat
Heref is a real-valued continuous function for which we assume that

f (0)= 0 and ∃γ > 0, 0 � f (s)

s
� γ ∀s ∈ R \ {0}. (1.4)

There are two possible locations of the observation zoneS that allow different kinds
of approximate controllability. One is the case whereS is an open subset ofΩ which is
compactly contained inω. In this case theH 1-approximate controllability is studied. Th
other case occurs when the observation zoneS is a smooth subset ofΩ of codimension 1
nonintersecting the control zoneω. In this case theL2-approximate controllability can b
considered.

The study of theH 1-approximate controllability involves a more general analysis
we will consider it in this paper. The analysis of theL2-approximate controllability is
simpler, and we have included a number of remarks at each step of the paper w
necessary changes to recover theL2-case from theH 1-case.

Given y1 ∈ H 1(S), a constantα � 0, and asymmetric positive definitematrix B, our
aim is to find a controlvε ∈ L2(ω) such that∥∥yε(vε)− y1

∥∥
B,S

� α, (1.5)

where, by definition,
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∥∥yε(vε)− y1
∥∥
B,S

def=
(∫
S

B∇(yε(vε)− y1
) · ∇(yε(vε)− y1

)
dx

+
∫
S

∣∣yε(vε)− y1
∣∣2dx

)1/2

.

This means that the error betweenyε(vε) andy1 is bounded from above byα when using
a norm equivalent to theH 1-norm and defined in terms of the matrixB.

Remark 1.1. In the case of theL2-approximate controllability, the corresponding er
condition is obtained by takingy1 ∈L2(S) and theL2-norm‖·‖0,S in (1.5), which formally
corresponds to the caseB = 0.

Notice that the caseα = 0 is the extreme situation of exact controllability. In this pap
we will just be concerned byapproximatecontrollability, that isα > 0.

Remark 1.2. If S ⊂⊂ ω, then the case ofL2-approximate controllability can be treate
as theH 1-case. Conversely, ifS ∩ ω = ∅ andS is an nonempty open set, we can sh
by contradiction that theL2-approximate controllability is not possible. Indeed, takeσ
a relatively compact open subset ofS and definey1 = 0 in S \ σ andy1 = 1 in σ . The
approximate controllability of the problem{−∆y(v)= χωv inΩ,

y(v)= 0 on∂Ω
(1.6)

implies that, for eachn ∈ N, there existsvn ∈ L2(Ω) such that∥∥y(vn)− 1
∥∥

0,σ � 1/n and
∥∥y(vn)∥∥0,S\σ � 1/n. (1.7)

From this we derive thaty(vn)→ y∗ strongly inL2(S), where

y∗ = 1 in σ and y∗ = 0 in S \ σ . (1.8)

We write (1.6) forv = vn and we take the restriction toS. Passing to the limit, we derive

−∆y∗ = 0 in S (1.9)

which contradicts (1.8).

1.2. Presentation of the main results

Our aim is to establish the approximate controllability for eachε > 0 and to study
the H -convergence of minimal norm controls to an approximate control linke
homogenized problems.

We notice that problem (1.3), (1.5) does not generally have a unique solution. W
therefore interested in the optimal controlv∗

ε which minimizes, over allv ∈L2(ω), the cost
functional
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Iε(v)
def= 1

2
‖v‖2

0,ω +
{

0 if ‖yε(v)|S − y1‖B,S � α,
∞ otherwise.

(1.10)

In order to do so, we first develop the fixed point strategy introduced by Fabre et a
Secondly, we pass to the limit asε → 0 usingH -convergence methods (see Murat a
Tartar [6] or Tartar [8]). Our main results are Theorems 2.5 and 3.2 below.

Remark 1.3. All the results of Sections 2 and 3 (including Lemma 2.3, Theorems
and 3.2) are also valid in the case of theL2-approximate controllability and under th
following hypothesis:

(i) Each point onS can be connected by an arc included inΩ to some point inω without
intersectingS.

(ii) The coefficients ofAε are of classC1(Ω) or L∞(Ω) under some geometric
restrictions that allow a certain unique continuation property (see Remark 2.4).

To adapt the results and proofs to this case, it suffices to take all the variable
subindex 1 (likey1, ϕ1) in L2(S), to replace‖ · ‖B,S and(· , ·)B,S by the usual norm‖ · ‖0,S
and inner product(· , ·)0,S in L2(S) (that is withB = 0), and to replaceχS by a Dirac mass
onS.

2. Existence of an optimal control

2.1. The linearized problem

For technical reasons, and without loss of generality, we assume thatf ∈ C1(R).
(Otherwise, we can argue by density, approximatingf by a sequence of smooth function
This allows us to introduce the function

g(s)
def=
{
f (s)/s if s �= 0,
f ′(0) if s = 0.

(2.1)

The assumptions onf imply

g ∈ C0(R) and 0� g(s)� γ ∀s ∈ R. (2.2)

We associate withg the linear problem{−div(Aε∇yε(z, v))+ g(z)yε(z, v)= χωv in Ω,
yε(z, v)= 0 on∂Ω,

(2.3)

wherez is a given function inL2(Ω). We consider the cost functional

I zε (v)
def= 1

2
‖v‖2

0,ω +
{

0 if ‖yε(z, v)|S − y1‖B,S � α,
∞ otherwise.

(2.4)

By classical linear control theory (see, e.g., Lions [4]), it is well-known that for any g
z ∈ L2(Ω) there exists a unique minimal norm controlv∗

ε (z) such that

I zε
(
v∗
ε (z)

)= min
2
I zε (v) <+∞. (2.5)
v∈L (ω)
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We denote byy∗
ε = yε(z, v∗

ε (z)) the corresponding state.
With the help of the minimal norm controlv∗

ε (z), we introduce the operator

Fε :L2(Ω)→ L2(Ω), z �→ y∗
ε

(
z, v∗

ε (z)
)
. (2.6)

Our goal is to find a fixed point ofFε, which will obviously solve problem (1.3).

2.2. Adjoint problem and dual formulation

It is useful to work with the adjoint problem in a dual formulation. To this end,
introduce the operatorL defined by

L :L2(ω)→H 1(S), v �→ yε(z, v)|S, (2.7)

whereyε(z, v) is the solution of (2.3). Its adjointL∗ is given by

L∗ :H 1(S)→ L2(ω), ϕ1 �→ ϕε(z)|ω, (2.8)

whereϕε is the solution of the so-called adjoint problem, which is obtained by solving
following Dirichlet problem{−div(tAε∇ϕε(z,ϕ1))+ g(z)ϕε(z,ϕ1)= −div(χSB∇ϕ1)+ χSϕ1 inΩ,

ϕε(z,ϕ1)= 0 on∂Ω,
(2.9)

which definesϕε(z,ϕ1) uniquely.

Remark 2.1. In this paper, we are concerned with approximate controllability in the s
of inequality(1.5). There is an alternative approach to approximate controllability w
consists in proving that the set{yε(z, v) | v ∈ L2(ω)} is dense inH 1(S). An equivalent
condition to establish this density is to prove that Ker(L∗) = 0. In our present case, th
can be proved as follows. Givenh ∈ H−1(Ω), let us introduceϕ1 ∈ H 1

0 (Ω), the unique
solution of{−div(B∇ϕ1)+ ϕ1 = h inΩ,

ϕ1 = 0 on∂Ω.

Clearly{
ϕ1|S

∣∣ h ∈H−1(Ω)
}=H 1(S).

Therefore, ifL∗(ϕ1) = 0 in L2(ω), using as test functionsξ ∈ H 1
0 (S) and ξ ∈ H 1

0 (ω)

successively in (2.9), we obtain{−div(B∇ϕ1)+ ϕ1 = 0 in S,∫
∂S
B∇ϕ1 · nξ ds = 0 ∀ξ ∈H 1

0 (ω),
(2.10)

sinceS ⊂⊂ ω. Heren denotes the unit outward normal to both boundaries that ofω and
that ofS. It follows thatB∇ϕ1 · n= 0 on∂S, and henceϕ1 = 0 in S.

Remark 2.2. In the case of anL2-approximate controllability, the corresponding defi
tions (2.7) and (2.8) ofL andL∗ respectively can be given withH 1(S) replaced byL2(S).
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The corresponding adjoint problem is the same as in (2.10) takingB = 0 and replacingχS
by a Dirac mass concentrated onS. A direct proof of the approximate controllability ca
be done as in the previous remark under the geometrical hypothesis mentioned be
Remark 1.3 (see [7]).

The approximate controllability of the nonlinear problem (1.3) is obtained here by
a more constructive approach, which provides an explicit method to find a cont
minimal norm. This method was introduced by Lions [5] (see also Osses and Pue
and is based on the classical Fenchel–Rockafellar’s duality theory.

We can write down the functionalI zε under the form

I zε (v)= F(v)+G(Lv) (2.11)

with

F(v)= 1

2
‖v‖2

0,ω and G(Lv)=
{

0 if ‖Lv − y1‖B,S � α,
∞ otherwise.

(2.12)

Denoting byF ∗ andG∗ the conjugate functions ofF andG respectively, the duality theor
states that

inf
v∈L2(ω)

I zε (v)= − inf
ϕ1∈H1(S)

J zε (ϕ1)= − inf
h∈H−1(Ω),

ϕ1 solution of(2.10)

J zε (ϕ1ε), (2.13)

where

J zε (ϕ1ε)= F ∗(L∗ϕ1ε)+G∗(−ϕ1ε),

F ∗(L∗ϕ1ε)= 1
2‖ϕε(z,ϕ1ε)‖2

0,ω,

G∗(L∗ϕ1ε)= α‖ϕ1ε‖B,S + (ϕ1ε, y1)B,S,

(2.14)

that is

J zε (ϕ1ε)= 1

2

∥∥ϕε(z,ϕ1ε)
∥∥2

0,ω + α‖ϕ1ε‖B,S − (ϕ1ε, y1)B,S. (2.15)

The following lemma, whose proof is given below in Section 2.4, summarizes the
properties ofJ zε .

Lemma 2.3 (Coercivity property ofJ zε ). For eachα > 0 andy1 ∈ H 1(S), the functional
J zε defined in(2.14)is continuous, strictly convex, and satisfies

lim inf‖ϕ1‖B,S→+∞
J zε (ϕ1)

‖ϕ1‖B,S � α. (2.16)

Let us denote byϕ∗
1,ε(z) ∈H 1(S) the unique optimal element which minimizesJ zε (ϕ1)

overH 1(S) and letϕ∗
ε be the corresponding element defined by (2.9). It is well-known

the duality theory provides extremal relations that the optimal controls satisfy, name{
F(v∗

ε (z))+ F ∗(L∗ϕ∗
1,ε(z))− (L∗ϕ∗

1,ε(z), v
∗
ε (z))0,ω = 0,

G(Lv∗(z))+G∗(−ϕ∗ (z))+ (ϕ∗ (z),Lv∗(z)) = 0.
(2.17)
ε 1,ε 1,ε ε B,S
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From the first of these relations, we derive the following explicit formula for the min
norm control:

v∗
ε (z)= ϕε

(
z,ϕ∗

1,ε(z)
)∣∣
ω
. (2.18)

Remark 2.4. The proof of Lemma 2.3 is based on the following unique continuation p
erty: if the solution of problem (2.9) is zero inω then it is zero in the whole ofΩ . In the
case ofH 1-approximate controllability, this property is quite easy to prove under the r
larity hypothesis (1.1) sinceS ⊂⊂ ω. In the case ofL2-approximate controllability,S does
not intersectω and the result is a Holmgren’s unique continuation property [2]. This
quires more regularity in the coefficients ofAε (at leastC1) and an additional geometric
hypothesis as mentioned in Remark 1.3. Nevertheless, if the coefficients ofAε are onlyL∞
but piecewiseC1, the unique continuation property remains valid because of transmi
conditions on the discontinuity interfaces.

2.3. Fixed point strategy

Thanks to this dual formulation, we are now in a position to develop our fixed p
strategy forFε. It consists in three steps. First, we establish the continuity ofFε from
L2(Ω) into itself. Next, we prove that it maps the whole ofL2(Ω) into a bounded subse
of L2(Ω). Last, we check thatFε is compact, and using Schauder’s fixed point theor
we conclude the existence of a solution of problem (1.3). More precisely, we have

Theorem 2.5. For a givenε > 0, letAε be a matrix inM(αm,αM). Assume that the rea
valued functionf satisfies condition(1.4). Then there exists at least an elementz̄ε ∈L2(Ω)

which is a fixed point of the operatorFε defined by(2.6). This element satisfies th
equationz̄ε = y∗

ε (z̄ε, v
∗
ε (z̄ε)), wherey∗

ε (z̄ε, v
∗
ε (z̄ε)) is the state solution of problem(1.3)

andv = v∗
ε (z̄ε) is the optimal control of the functionalIε (see(1.10)).

The remaining part of Section 2 is entirely devoted to the proof of the above theo

Step 1. Continuity ofFε
Let zn be any converging sequence inL2(Ω), say

zn → z0 strongly inL2(Ω). (2.19)

Denoteϕε,n = ϕε(zn,ϕ1) the solution of (2.9) corresponding toz = zn. Takingϕε,n as a
test function in the adjoint problem (2.9), we obtain (using (2.10))

‖ϕε,n‖1,Ω � C‖ϕ1ε‖B,S � C,

where, here and in the following,C denotes different constants independent ofz andn.
Hence, up to a subsequence still denotedn, we have

ϕε,n ⇀ ϕε,0 weakly inH 1
0 (Ω) and strongly inL2(Ω). (2.20)

Let ϕ ∈ L2(Ω). We have
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∣∣∣∣∣
∫
Ω

g(zn)ϕε,nϕ dx −
∫
Ω

g(z0)ϕε,0ϕ dx

∣∣∣∣∣
�
∣∣∣∣∣
∫
Ω

g(zn)(ϕε,n − ϕε,0)ϕ dx
∣∣∣∣∣+

∣∣∣∣∣
∫
Ω

(
g(zn)− g(z0)

)
ϕε,0ϕ dx

∣∣∣∣∣
� ‖g‖∞‖ϕε,n − ϕε,0‖0,Ω‖ϕ‖0,Ω +

∣∣∣∣∣
∫
Ω

(
g(zn)− g(z0)

)
ϕε,0ϕ dx

∣∣∣∣∣. (2.21)

The first term in the right-hand side tends to zero by (2.20). Besides, by (2.19), u
subsequence, we have

zn → z0 for a.e.x ∈ R;
hence, by (2.2), up to another subsequence, we also have

g(zn) ⇀ g(z0) weakly∗ in L∞(Ω).

Therefore, the second term in the right-hand side of (2.21) tends to zero by virt
Lebesgue’s dominated convergence theorem. Hence, up to a subsequence,

g(zn)ϕε,n n→+∞ g(z0)ϕε,0 weakly inL2(Ω) and strongly inH−1(Ω). (2.22)

Let us now pass to the limit in the adjoint problem (2.9) written forzn andϕε,n. Using a test
functionϕ ∈H 1

0 (Ω), integrating by parts inΩ and passing to the limit using convergen
(2.20), (2.22), we deduce{−div(tAε∇ϕε,0)+ g(z0)ϕε,0 = −div(χSB∇ϕ1)+ χSϕ1 in Ω,

ϕε,0 = 0 on∂Ω.
(2.23)

This means that

ϕε,0 = ϕε(z0, ϕ1). (2.24)

Let us now prove that the convergence in (2.20) is actually a strong one, that is

ϕε(zn,ϕ1) n→+∞ ϕε(z0, ϕ1) strongly inH 1(Ω). (2.25)

In fact, multiplying (2.9) (written forϕε,n) by ϕε,n, integrating by parts inΩ , and passing
to the limit, we obtain

lim
n→∞

∫
Ω

tAε∇ϕε,n · ∇ϕε,n dx

= −
∫
Ω

g(z0) |ϕε,0|2dx + 〈−div(χSB∇ϕ1)+ χSϕ1, ϕε,0
〉
, (2.26)

where the bracket is the classical duality pairing betweenH−1(Ω) andH 1
0 (Ω). On the

other hand, multiplying (2.23) byϕε,0, integrating by parts inΩ and comparing with (2.26)
we deduce
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lim
n→∞

∫
Ω

tAε∇ϕε,n · ∇ϕε,n dx =
∫
Ω

tAε∇ϕε,0 · ∇ϕε,0dx. (2.27)

Since the mappingϕ �→ ∫
Ω
tAε∇ϕ · ∇ϕ dx defines a norm inH 1

0 (Ω) which is equivalen
to the one induced by the usualH 1-topology, we conclude the strong convergence (2
from (2.27).

We now prove that the sequence of optimal elementsϕ∗
1,ε(zn) remains bounded in

H 1(S) asε→ 0 andn→ ∞. More precisely, we have

Lemma 2.6. Assume thatzn satisfies(2.19). Then there exists a constantCε , independen
of n, such that∥∥ϕ∗

1,ε(zn)
∥∥
B,S

� Cε ∀n ∈ N. (2.28)

Proof. We argue by contradiction. Assume that there exists a subsequence, which w
still denote byn, such that∥∥ϕ∗

1,ε(zn)
∥∥

1,Bεn,S
→ ∞ asn→ ∞. (2.29)

Sinceϕ∗
1,ε(zn) minimizesJ znε , we have

J znε
(
ϕ∗

1,ε(zn)
)
� J znε (ϕ1) ∀ϕ1 ∈H 1(S). (2.30)

But

J znε (ϕ1)= 1

2

∥∥ϕε(zn,ϕ1)
∥∥2

0,ω + α‖ϕ1‖B,S − (ϕ1, y1)B,S.

Thanks to (2.24), (2.25),J znε (ϕ1) converges, whenn→ ∞, to

J z0ε (ϕ1)= 1

2

∥∥ϕ0(z0, ϕ1)
∥∥2

0,ω + α‖ϕ1‖B,S − (ϕ1, y1)B,S.

Then, combining this result with (2.30), for anyδ > 0 and forn large enough, we have

J znε
(
ϕ∗

1,ε(zn)
)
� J z0ε (ϕ1)+ δ,

which obviously contradicts the coercivity property of Lemma 2.3.✷
From (2.28), up to a subsequence, there exists a limiting functionξε ∈H 1(S) such that

ϕ∗
1,ε(zn)|S n→+∞ ξε weakly inH 1(S) and strongly inL2(S). (2.31)

Arguing as in the proof of (2.25), we deduce from (2.31)

ϕε
(
zn,ϕ

∗
1,ε(zn)

)
n→+∞ ϕε(z0, ξε) strongly inH 1

0 (Ω). (2.32)

Our next step consists in proving that

ξε = ϕ∗
1,ε(z0), (2.33)

which is the optimal element minimizingJ z0ε , that is



26 C. Conca et al. / J. Math. Anal. Appl. 285 (2003) 17–36

ence

(2.3)
J z0ε (ξε)� J z0ε (ϕ1) ∀ϕ1 ∈H 1(S). (2.34)

Sinceϕ∗
1,ε(zn) minimizesJ znε , we have

J znε
(
ϕ∗

1,ε(zn)
)
� J znε (ϕ1) ∀ϕ1 ∈H 1(S),

which implies

lim inf
n→∞ J znε

(
ϕ∗

1,ε(zn)
)
� lim
n→∞J

zn
ε (ϕ1)= J z0ε (ϕ1). (2.35)

Therefore, to prove (2.34), it suffices to show that

J z0ε (ξε)� lim inf
n→∞ J znε

(
ϕ∗

1,ε(zn)
)
. (2.36)

Using convergence (2.31) and the definition ofJ
zn
ε , we have

lim inf
n→∞ J znε

(
ϕ∗

1,ε(zn)
)
� lim inf

n→∞

(
1

2

∥∥ϕε(zn,ϕ∗
1,ε(zn)

)∥∥2
0,ω

)
+ α‖ξε‖B,S − (ξε, y1)B,S.

Combining with (2.32), we conclude (2.36), which completes the proof of (2.33). H
(2.32) becomes

ϕε
(
zn,ϕ

∗
1,ε(zn)

)→ ϕε
(
z0, ϕ

∗
1,ε(z0)

)
strongly inH 1

0 (Ω). (2.37)

Using the explicit formula (2.18) for the optimal controlv∗
ε of problem (2.3), we have{

v∗
ε (zn)= ϕε(zn,ϕ∗

1,ε(zn))|ω,
v∗
ε (z0)= ϕε(z0, ϕ∗

1,ε(z0))|ω.
Therefore, from (2.37), we derive

v∗
ε (zn)→ v∗

ε (z0) strongly inH 1(ω). (2.38)

Finally, arguing as we did for the adjoint problem, we can pass to the limit in problem
using convergence (2.38), and we obtain

yε
(
zn, v

∗
ε (zn)

)→ yε
(
z0, v

∗
ε (z0)

)
strongly inH 1(Ω). (2.39)

This ends the proof of the continuity ofFε.

Remark 2.7. In the particular case whenϕ1 is defined on the whole ofΩ by (2.10), it is
worthwhile to notice that it is merely the restrictionϕ1|S of ϕ1 to S which plays a role in
the proof of Theorem 2.5.

Step 2. Fε(L2(Ω)) is bounded inL2(Ω)

Since for allz ∈ L2(Ω) we have‖g(z)‖∞ � γ , then∥∥ϕε(z,ϕ1)
∥∥

1,Ω � C‖ϕ1‖B,S,
with C independent ofz andε. This implies the existence of a constantC = C(ϕ1) such
that

J zε (ϕ1ε)� C(ϕ1) ∀ϕ1 ∈H 1(S).
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2.3 is
In particular, for the optimal elementϕ∗
1,ε, we have

J zε
(
ϕ∗

1,ε(z)
)
� C(ϕ1) ∀ϕ1 ∈H 1(S).

This holds in particular forϕ1 = 0, thus

J zε
(
ϕ∗

1,ε(z)
)
� C,

with C independent ofz andε.
Using again the coercivity ofJ zε (see Lemma 2.3), we prove that‖ϕ∗

1,ε(z)‖1,Bε,S is
bounded independently ofz and ofε. Thus we have∥∥ϕε(z,ϕ∗

1,ε(z)
)∥∥

1,Ω � C

with C independent ofz and ofε. This clearly implies that bothv∗
ε (z) andyε(z, v∗

ε (z)) are
bounded in their corresponding spaces, i.e., there existsC independent ofz andε such that∥∥v∗

ε (z)
∥∥

0,ω �C (2.40)

and ∥∥yε(z, v∗
ε (z)

)∥∥
0,Ω �

∥∥yε(z, v∗
ε (z)

)∥∥
1,Ω � C, (2.41)

which concludes the second step.

Step 3. Fε is compact
In the second step, a stronger result than the one announced was proved. Indee

(2.41), we see thatFε maps the whole ofL2(Ω) into a bounded subset ofH 1(Ω), and
hence into a relatively compact subset ofL2(Ω). This proves the compactness ofFε,
and hence completes the proof of Theorem 2.5, provided the coercivity Lemma
established. ✷
2.4. Proof of Lemma 2.3

To simplify matters, in this subsection we drop the indexε in the notation forϕ1. From
(2.14), forϕ1 ∈H 1(S) andϕ1 �= 0, we have

J zε (ϕ1)

‖ϕ1‖B,S = 1

2‖ϕ1‖B,S
∫
ω

∣∣ϕε(z,ϕ1)
∣∣2dx + α −

∫
S

B∇
(

ϕ1

‖ϕ1‖B,S
)

· ∇y1dx.

Let ϕ1,n ∈H 1(S) be a sequence such that

‖ϕ1,n‖B,S n→+∞ ∞
and

lim
n→∞

J zε (ϕ1,n)

‖ϕ1,n‖B,S = lim inf‖ϕ1‖B,S→∞
J zε (ϕ1)

‖ϕ1‖B,S . (2.42)

We introduce the following normalizations:
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we
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s

ϕ̂1,n = ϕ1,n

‖ϕ1,n‖B,S and ϕ̂ε,n = ϕε,n(z,ϕ1,n)

‖ϕ1,n‖1,B,S
. (2.43)

Then we have

J zε (ϕ1,n)

‖ϕ1,n‖B,S = α + 1

2
‖ϕ1,n‖B,S

∫
ω

|ϕ̂ε,n|2dx −
∫
S

B∇ϕ̂1,n · ∇y1dx. (2.44)

Also, since‖ϕ̂1,n‖B,S = 1, usingϕε,n as a test function in the adjoint problem (2.9),
deduce

‖ϕ̂ε,n‖1,Ω � C (C independent ofε andn). (2.45)

Therefore, up to a subsequence, we have{
ϕ̂1,n ⇀ ϕ̃1 weakly inL2(S),

ϕ̂ε,n ⇀ ϕ̃ε weakly inH 1(Ω) and strongly inL2(Ω).
(2.46)

Let us distinguish various cases.
Case(i). Assume that

lim
n→∞

∫
ω

|ϕ̂ε,n|2dx
(

=
∫
ω

|ϕ̃ε|2dx
)
> 0,

then the second term in the right-hand side of (2.44) tends to infinity while the third
has a limit. Hence (2.16) holds in this case.

Case(ii). If

lim
n→∞

∫
ω

|ϕ̂ε,n|2dx
(

=
∫
ω

|ϕ̃ε|2dx
)

= 0,

thenϕ̃ε = 0 inω. From the smoothness hypothesis on the coefficients of the matrixAε (see
(1.1)), sinceS ⊂⊂ω, we have an homogeneous problem (2.9) inΩ \ω with homogeneou
Dirichlet boundary conditions, and this implies thatϕ̃ε = 0 inΩ . Thereforeϕ̃1 = 0, and so

lim
n→∞

J zε (ϕ1,n)

‖ϕ1,n‖B,S � α + lim inf
n→∞

(
‖ϕ1,n‖B,S

∫
ω

|ϕ̂ε,n|2dx
)

� α > 0,

which ends the proof of Lemma 2.3 and therefore that of Theorem 2.5.✷

3. Homogenization of the approximate controllability problem

Our goal in this section is to pass to the limit in problem (1.3) whenv = v∗
ε is the optimal

control constructed in Section 2.
To this general end, we begin by considering a sequence of matricesAε ∈ M(αm,αM)

and the corresponding state equations{−div(Aε∇yε(v))+ f (yε(v))= χωv in Ω,
y (v)= 0 on∂Ω,

(3.1)

ε
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wherev ∈ L2(ω). The main additional assumption in this section is that

Aε H -converges toA0 (3.2)

(see [6,8] for details aboutH -convergence). It is well-known thatA0 ∈ M(αm,α
2
M/αm).

3.1. Homogenization of the state equation for a fixed control

In this section, we assume that the controlv is a fixed element inL2(ω). We prove the
following homogenization result:

Proposition 3.1. Assume that the hypotheses of Theorem2.5 hold and thatAε satisfies
(3.2). Then, up to a subsequence, there existsy0(v) such that{

yε(v)⇀ y0(v) weakly inH 1
0 (Ω),

Aε∇yε(v)⇀A0∇y0(v) weakly inL2(Ω)N.
(3.3)

Moreover,y0(v) satisfies the homogenized state equation{−div(A0∇y0(v))+ f (y0(v))= χωv inΩ,
y0(v)= 0 on∂Ω.

(3.4)

Proof. Sincef satisfies (1.4), the first convergence in (3.3) is straightforward. We
wish to establish a convergence result onf (yε(v)). For allϕ ∈ L2(Ω), we have∣∣∣∣∣

∫
Ω

(
f
(
yε(v)

)− f (y0(v)
))
ϕ dx

∣∣∣∣∣�
∣∣∣∣∣
∫
Ω

g
(
yε(v)

)(
yε(v)− y0(v)

)
ϕ dx

∣∣∣∣∣
+
∣∣∣∣∣
∫
Ω

(
g
(
yε(v)

)− g(y0(v)
))
y0(v)ϕ dx

∣∣∣∣∣.
Arguing as we did in Section 2.3 to establish (2.22), we prove that, up to a subseque

f
(
yε(v)

)
⇀f

(
y0(v)

)
weakly inL2(Ω) and strongly inH−1(Ω). (3.5)

We are now in a position to pass to the limit in problem (3.1). Thanks to (3.5) anH -
convergence properties, we end the proof of Proposition 3.1.✷
3.2. Homogenization of the state equation for an optimal control

Denotez̄ε the fixed point ofFε constructed in Section 2 using Schauder’s theor
Since the constant in (2.40) is independent ofz andε, the sequence of optimal contro
v∗
ε (z̄ε) remains bounded inL2(ω) as ε → 0. Thus, up to a subsequence, there ex
v0 ∈ L2(ω) such that{

v∗
ε (z̄ε) ⇀ v0 weakly inL2(ω) and strongly inH−1(ω),

χωv
∗
ε (z̄ε)⇀ χωv0 weakly inL2(Ω) and strongly inH−1(Ω).

(3.6)

As in Section 2, the estimate (2.40) implies that the solutiony∗
ε = yε(z̄ε, v∗

ε (z̄ε)) of prob-
lem (1.3) satisfies
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ontrol
‖y∗
ε ‖0,Ω � ‖y∗

ε ‖1,Ω � C,

whereC is independent ofε. Hence there existsy0 ∈ H 1
0 (Ω) such that, up to a sub

sequence,

y∗
ε ⇀ y0(v0) weakly inH 1

0 (Ω). (3.7)

Clearly, as in Section 3.1, we derive from (3.2), (3.6), (3.7), thaty0(v0) is solution of the
homogenized problem{−div(A0∇y0(v0))+ f (y0(v0))= χωv0 inΩ,

y0(v0)= 0 on∂Ω.
(3.8)

Our aim is to prove thatv0 satisfies the following approximate controllability inequality∥∥y0(v0)|S − y1
∥∥
B,S

� α.

Furthermore, we will prove thatv0 is optimal in the sense that it minimizes, over
v ∈L2(ω), the cost functional

I0(v)
def= 1

2
‖v‖2

0,ω +
{

0 if ‖y0(v)|S − y1‖B,S � α,
+∞ otherwise,

(3.9)

wherey0(v) is the solution of (3.8) corresponding to the controlv.
To reach this aim, we begin by writing down the fixed point identity

z̄ε = yε
(
z̄ε, v

∗
ε (z̄ε)

)= y∗
ε .

Thus, from (3.7) there existsz0 ∈H 1
0 (Ω) such that, up to a subsequence,

z̄ε ⇀ z0 weakly inH 1
0 (Ω) and strongly inL2(Ω). (3.10)

For any given controlv ∈ L2(ω), let y0(z0, v) be the solution of the homogenize
linearized problem{−div(A0∇y0(z0, v))+ g(z0, v)= χωv inΩ,

y0(z0, v)= 0 on∂Ω.
(3.11)

To this state equation, we associate the cost functional

I
z0
0 (v)=

1

2
‖v‖2

0,ω +
{

0 if ‖y0(z0, v)|S − y1‖B,S � α,
∞ otherwise.

(3.12)

By classical linear control theory and Proposition 3.1 there exists a unique optimal c
v∗

0(z0) such that

I
z0
0

(
v∗

0(z0)
)= min

v∈L2(ω)
I
z0
0 (v) <+∞. (3.13)

We denote byy∗
0 = y0(z0, v

∗
0(z0)) the corresponding state.

We are now in a position to prove our main result, namely
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Theorem 3.2. We make the hypotheses of Theorem2.5 and we also assume theH -con-
vergence(3.2) of Aε to A0. Let v0 be the limit of the optimal controls defined in(3.6).
Then

v0 = v∗
0(z0), (3.14)

wherev∗
0(z0) is the optimal control of the linearized problem(3.11), (3.13).

Proof. We proceed in several steps.

Step 1. Existence of the optimal controlv∗
0(z0)

We use again the classical Fenchel–Rockafellar’s duality theory which provid
explicit control of minimal norm. Givenϕ1 ∈H 1(S), we introduceϕ0(z0, ϕ1), the solution
of 


−div(tA0∇ϕ0(z0, ϕ1))+ g(z0)ϕ0(z0, ϕ1)

= −div(χSB∇ϕ1)+ χSϕ1 inΩ,
ϕ0(z0, ϕ1)= 0 on∂Ω.

(3.15)

By duality, as in Section 2, we have

inf
v∈L2(ω)

I
z0
0 (v)= − inf

ϕ1∈H1(S)
J
z0
0 (ϕ1), (3.16)

where

J
z0
0 (ϕ1)= 1

2

∥∥ϕ0(z0, ϕ1)
∥∥2

0,ω + α‖ϕ1‖B,S − (ϕ1, y1)B,S. (3.17)

It is also well-known, from the extremal relations for the above optimization problem

v∗
0(z0)= ϕ0

(
z0, ϕ

∗
1(z0)

)∣∣
ω
, (3.18)

whereϕ∗
1(z0) ∈H 1(S) is the unique optimal element which minimizesJ z00 overH 1(S).

Step 2. Passage to the limit in the adjoint problem
From system (2.9) and convergence (3.10), we derive easily that there exists a fu

ϕ̄0 such that, up to a subsequence

ϕε(z̄ε, ϕ1) ⇀ ϕ̄0 weakly inH 1
0 (Ω). (3.19)

By H -convergence results, we pass to the limit in (2.9) and we deduce thatϕ̄0 is the
solution of{−div(tA0∇ϕ̄0)+ g(z0)ϕ̄0 = −div(χSB∇ϕ1)+ χSϕ1 in Ω,

ϕ̄0 = 0 on∂Ω,

that is (compare with (3.15))

ϕ̄0 = ϕ0(z0, ϕ1). (3.20)

We are now in a position to pass to the limit inJ z̄εε defined by (2.14). Recall that
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d
t

J z̄εε (ϕ1)= 1

2

∥∥ϕε(z̄ε, ϕ1)
∥∥2

0,ω + α
∫
Ω

(
χSB∇ϕ1 · ∇ϕ1 + χS |ϕ1|2

)
dx

−
∫
Ω

χSB∇ϕ1 · ∇y1dx.

To pass to the limit, we use convergence (3.19). We obtain

lim
ε→0

J z̄εε (ϕ1)= J z00 (ϕ1) ∀ϕ1 ∈H 1(S). (3.21)

From (3.21), we derive that between the optimal elementsϕ∗
1,ε(z̄ε) andϕ∗

1(z0), we have
the following relation:

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)= min

ϕ1
J z̄εε (ϕ1)→ min

ϕ1
J
z0
0 (ϕ1)= J z00

(
ϕ∗

1(z0)
)
. (3.22)

Step 3. Convergence of the optimal controls for the state equation
Using the uniform coercivity property of the functionalsJ z̄εε (see Lemma 2.3) an

arguing as in the proof of Lemma 2.6, we deduce the existence of a constantC independen
of ε such that∥∥ϕ∗

1,ε(z̄ε)
∥∥

1,Bε,S
� C.

Since the matricesBε are equi-coercive, we derive the existence of an elementξ∗ ∈H 1(S)

such that, up to a subsequence,

ϕ∗
1,ε(z̄ε) ⇀ ξ∗ weakly inH 1(S). (3.23)

This implies that, up to another subsequence,

ϕε
(
z̄ε, ϕ

∗
1,ε(z̄ε)

)
⇀ϕ0(z0, ξ

∗) weakly inH 1
0 (Ω). (3.24)

Our next aim is to prove thatξ∗ is equal toϕ∗
1(z0), the unique minimizer ofJ z00 , that is

J
z0
0 (ξ

∗)� J z00 (ϕ1) ∀ϕ1 ∈H 1(S). (3.25)

Sinceϕ∗
1,ε(z̄ε) minimizesJ z̄εε , we have

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)
� J z̄εε (ϕ1) ∀ϕ1 ∈H 1(S).

Thanks to (3.21), we deduce that

lim inf
ε→0

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)
� lim
ε→0

J z̄εε (ϕ1)= J z00 (ϕ1).

Therefore, to prove (3.25), it suffices to show that

J
z0
0 (ξ

∗)� lim inf
ε→0

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)
. (3.26)

Using the definition ofJ z̄εε , we have
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e

trix

is
of
well as
lim inf
ε→0

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)

= lim
ε→0

(
1

2

∥∥ϕε(z̄ε, ϕ∗
1,ε(z̄ε)

)∥∥2
0,ω

)
+ α‖ξ∗‖B,S − (ξ∗, y1)B,S = J z00 (ξ

∗),

which proves (3.26) and hence (3.25). Thus (3.23), (3.24) become{
ϕ∗

1,ε(z̄ε) ⇀ ϕ∗
1(z0) weakly inH 1(S),

ϕε(z̄ε, ϕ
∗
1,ε(z̄ε))⇀ ϕ0(z0, ϕ

∗
1(z0)) weakly inH 1

0 (Ω).
(3.27)

To conclude, let us write the explicit formula (2.18) forz= z̄ε :
v∗
ε (z̄ε)= ϕε

(
z̄ε, ϕ

∗
1,ε(z̄ε)

)∣∣
ω
.

From (3.6), the left-hand side converges tov0 and from (3.27), the right-hand sid
converges toϕ0(z0, ϕ

∗
1(z0))|ω. Then, combining with (3.18), we deduce

v0 = ϕ0
(
z0, ϕ

∗
1(z0)

)∣∣
ω

= v∗
0(z0),

which completes the proof of Theorem 3.2.✷

4. Homogenization of a cost functional with rapidly oscillating coefficients.
Open questions

Our aim in this section is to study the same problems when the fixed symmetric maB
is replaced by anε-dependent symmetric matrixBε ∈ M(αm,αM) with rapidly oscillating
coefficients.

The approximate controllability inequality (1.5) is now replaced by∥∥yε(v)− y1
∥∥
Bε,S

� α. (4.1)

Since in Section 2 the parameterε was fixed, all the results therein hold true in th
new framework. Our goal is to pass to the limit asε → 0 and to see how the results
Section 3 are modified or can be generalized. We still assume that (3.2) holds as
aH -convergence result forBε , namely

Bε H -converges toB0. (4.2)

In what follows, we will need some kind of limiting matrix(χSB)# whose definition
requires the introduction of three auxiliary functions, namelyXεk,Y

ε
k ,ψ

ε
k , which are

defined by{
Xεk ⇀ 0 weakly inH 1(Ω),

div(Aε∇(−Xεk + xk))→ div(A0ek) strongly inH−1(Ω),
(4.3)

{
Y εk ⇀ 0 weakly inH 1(Ω),

div(Bε∇(−Xεk + xk))→ div(B0ek) strongly inH−1(Ω),
(4.4){

ψεk ⇀ψ0
k weakly inH 1(Ω),

div(tA ∇ψε +B ∇(−Xε + x ))= 0 inΩ.
(4.5)
ε k ε k k
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Here,ek ∈ R
N is thekth standard basis vector andxk denotes the function mappingx ∈ R

N

to its kth coordinate.
The matrix(χSB)# is defined by means of the following formula:

(χSB)# ek = χSB0 + lim
ε→0

(
tAε∇ψεk − tA0∇ψ0

k

)+ χS lim
ε→0

(
Bε
(
Y εk −Xεk

))
. (4.6)

The following proposition, whose proof can be found in Kesavan and Saint Jean Pau
summarizes the main properties of(χSB)#.

Proposition 4.1. The matrix (χSB)# is symmetric and there exists̃αM > 0 such that
(χSB)# ∈ M(αm, α̃M).

We use this matrix(χSB)# in order to pass to the limit in the adjoint problem (2.
which we now rewrite in a slightly different form. Givenh ∈ H−1(Ω), let ϕ1ε ∈ H 1

0 (Ω)

be the unique solution of{−div(Aε∇ϕ1ε)= h inΩ,
ϕ1ε = 0 on∂Ω.

(4.7)

The adjoint stateϕε = ϕε(z,ϕ1ε) is defined as the unique solution of


−div(tAε∇ϕε(z,ϕ1ε)− (χSBε)∇ϕ1ε)

= −g(z)ϕε(z,ϕ1ε)+ χSϕ1ε inΩ,
ϕε(z,ϕ1ε)= 0 on∂Ω.

(4.8)

Of course, Proposition 3.1 still holds true. Furthermore, ifv0 denotes the weak limit o
the optimal controlsv∗

ε (z̄ε) (see (3.6)), then we still have (3.7), (3.8). This means
the state equation can be homogenized as in the easier case of a constant matrixB. The
homogenization of the adjoint equation is not so easy and it requires the matrix(χSB)#.
Precisely, from systems (4.7), (4.8) and convergence (3.10), we derive easily tha
exist functionsϕ1 andϕ̄0 such that, up to a subsequence,{

ϕ1ε ⇀ ϕ1 weakly inH 1
0 (Ω),

ϕε(z̄ε, ϕ1ε)⇀ ϕ̄0 weakly inH 1
0 (Ω).

(4.9)

Of course, byH -convergence results, it is clear thatϕ1 is the unique solution of{−div(A0∇ϕ1)= h inΩ,
ϕ1 = 0 on∂Ω.

(4.10)

Besides, the right-hand side of (4.8) satisfies, up to a subsequence,

−g(z̄ε)ϕε(z̄ε, ϕ1ε)+ χSϕ1ε ⇀−g(z0)ϕ̄0 + χSϕ1

weakly inL2(Ω) and strongly inH−1(Ω).

Therefore, a slight generalization of Theorem 3.1 in [3] allows us to pass to the lim
(4.8) and to deduce thatϕ̄0 is the solution of{−div(tA0∇ϕ̄0 − (χSB)#∇ϕ1)= −g(z0)ϕ̄0 + χSϕ1 in Ω,
ϕ̄0 = 0 on∂Ω,
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artielles,
that is

ϕ̄0 = ϕ(z0, ϕ1), (4.11)

whereϕ(z0, ϕ1) is defined as the solution of a new homogenized adjoint problem analo
to (3.15) withχSB replaced by(χSB)#.

Our next step would be to pass to the limit in the sequenceJ
z̄ε
ε (ϕ

∗
1,ε(z̄ε)) whereϕ∗

1,ε is

the minimizer ofJ z̄εε . This is the main open question of this section. Of course the de
result would be to prove that

lim
ε→0

J z̄εε
(
ϕ∗

1,ε(z̄ε)
)= J z00 (ϕ

∗
1), (4.12)

whereϕ∗
1 is the minimizer of the homogenized functional

J
z0
0 (ϕ1)= 1

2

∥∥ϕ0(z0, ϕ1)
∥∥2

0,ω + α‖ϕ1‖(χSB)#,S − (ϕ1, y1)(χSB)#,S .

This implies that Theorem 3.2 would also be true in the present case. However, w
a strong doubt about the validity of (4.12). Indeed, it is not difficult to check (usin
Theorem 3.3]) that

lim
ε→0

J z̄εε (ϕ1)= J̃ z00 (ϕ1) ∀ϕ1 ∈H 1(S),

where

J̃
z0
0 (ϕ1)= 1

2

∥∥ϕ0(z0, ϕ1)
∥∥2

0,ω + α‖ϕ1‖(χSB)#,S − (ϕ1, y1)B̃,S

(compare with (3.21)). Here,̃B is another kind of limiting matrix, similar to(χSB)# which
can be explicitly constructed usingBε and the first correctors terms associated with
H -convergence sequenceAε.
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