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Abstract. The classical problem of homogenization of elliptic operators with periodically os-
cillating coefficients is revisited in this paper. As is well known, the homogenization process in a
classical framework is concerned with the study of asymptotic behavior of solutions uε of boundary
value problems associated with such operators when the period ε > 0 of the coefficients is small. In
a previous work by C. Conca and M. Vanninathan [SIAM J. Appl. Math., 57 (1997), pp. 1639–1659],
a new proof of weak convergence as ε → 0 towards the homogenized solution was furnished using
Bloch wave decomposition.

Following the same approach here, we go further and introduce what we call Bloch approximation,
which will provide energy norm approximation for the solution uε. We develop several of its main
features. As a simple application of this new object, we show that it contains both the first and
second order correctors. Necessarily, the Bloch approximation will have to capture the oscillations
of the solution in a sharper way. The present approach sheds new light and offers an alternative for
viewing classical results.
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1. Introduction. In this paper, the classical problem of homogenization of el-
liptic operators with periodically oscillating coefficients is revisited. As is well known,
the homogenization process is concerned with the study of the behavior of solutions
uε of boundary value problems associated with such operators when the coefficients
are periodic with small period ε > 0. For an excellent introduction to this subject,
the reader is referred to the book of A. Bensoussan, J.-L. Lions, and G. Papanico-
laou [5]. In a previous work by C. Conca and M. Vanninathan [11], a new proof
of weak convergence of uε towards the homogenized solution u∗ was furnished using
Bloch wave decomposition. Following the same approach, we go further and introduce
what we call Bloch approximation of the solution uε. As a simple application of this
new object, we treat the problem of correctors in homogenization. At this point, it
is worthwhile to remark that the homogenized solution u∗ is merely the weak limit
of solutions uε as ε → 0. The idea behind introducing correctors is to look for terms
(called first order correctors) which, when added to the homogenized solution, pro-
vide an approximation in the energy norm for all ε sufficiently small. Second order
correctors yield an error estimate in the energy norm of order O(ε). The main feature
of Bloch approximation is that it contains both the first and second order corrector
terms. Another important feature is that it is easily computable in principle.
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BLOCH APPROXIMATION 1167

Historically, a classical way of obtaining such correctors is to work in the physical
space and use multiscale expansion of the solution, which was first introduced in the
basic book just cited. As we will see, the method of Bloch waves sheds new light
and offers an alternative for viewing the classical results. This method naturally
leads us to work in the Fourier space, and thus in a framework dual to the one
used in L. Tartar [21], whose method is very general and justifies, in particular, the
first term obtained via the multiscale expansion. (There are also other methods
of justification based on the analysis in physical space; cf. G. Nguetseng [17] and
G. Allaire [1].) However, it is important to mention that the Bloch wave method
does not presuppose any multiscale structure of the solution; on the contrary, such
a structure of the solution will be a consequence of the present method. Although
correctors are generally not unique, our approach yields a posteriori the same ones as
those obtained in [5].

Bloch waves and their applications are not by any means new. It is a classical tool
which has been in use in solid state physics since the pioneering paper of F. Bloch [6].
However, the basic idea was introduced in the mathematical literature much earlier
by G. Floquet [13]. For later developments, let us cite the works of F. Odeh and
J. Keller [18] and M. Reed and B. Simon [19]. A deep analysis concerning the par-
tial regularity of the spectrum of Schrödinger’s equation with periodic potential was
carried out by C. Wilcox [22]. Our point of view regards periodic medium as a per-
turbation of homogeneous ones. In this context, the book by T. Kato [15] provides
excellent analysis when the parameter of perturbation is a scalar. We end this rather
incomplete list by citing G. Allaire and C. Conca [2], [3], and P. Gérard et al. [14].
We feel it is also appropriate to cite a recent work by M. Avellaneda, L. Berlyand,
and J.-F. Clouet [4], in which the Bloch–Floquet approach is used to provide new ho-
mogenization results and handles the boundary layer terms for frequency dependent
problems. To conclude, let us refer the reader to C. Conca [8] for a more complete
general survey on Bloch waves.

Before proceeding further, we mention a word about the notations adopted in
what follows. Unless mentioned explicitly, the usual summation convention with
respect to the repeated indices is understood. The constants appearing in various
estimates independent of ε are generically denoted by c, c1, c2, etc. Apart from the
usual norms in Sobolev spaces H1, H2, we will also use the following seminorms:

|v|
H1

=


N∑
j=1

∥∥Djv
∥∥2

L2


1
2

, |v|
H2

=


N∑

j,k=1

∥∥D2
j,kv

∥∥2

L2


1
2

.

Now let us introduce the problem to be studied in this work. We consider the
operator

A
def
= − ∂

∂yk

(
ak�(y)

∂

∂y�

)
, y ∈ R

N ,(1.1)

where the coefficients satisfy
ak� ∈ L∞

# (Y ), where Y =]0, 2π[N , i.e., each ak� is a

Y -periodic bounded measurable function defined on R
N , and

∃α > 0 such that ak�(y)ηkη� ≥ α|η|2 ∀η ∈ R
N , y ∈ Y a.e.,

ak� = a�k ∀k, � = 1, . . . , N.

(1.2)D
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1168 C. CONCA, R. ORIVE, AND M. VANNINATHAN

For each ε > 0, we consider also the operator Aε, where

Aε def
= − ∂

∂xk

(
aεk�(x)

∂

∂x�

)
with aεk�(x) = ak�

(x
ε

)
, x ∈ R

N .(1.3)

In homogenization theory, it is usual to refer to x and y, the slow and the fast variables,
respectively. They are related by y = x

ε . Associated with Aε, let us consider the
boundary value problem

Aεuε = f in Ω, uε ∈ H1
0 (Ω),(1.4)

which is posed in an arbitrary bounded domain Ω in R
N and where f is a given

element in L2(Ω). It is classical that the above problem admits one and only one
solution.

From the classical work [5], it is known that one can associate to Aε a homogenized
operator A∗ given by

A∗ def
= − ∂

∂xk

(
qk�

∂

∂x�

)
.(1.5)

The homogenized coefficients qk� are constants and their definition is given below.
The solution uε of (1.4) converges weakly in H1

0 (Ω) to the so-called homogenized
solution u∗ characterized by

A∗u∗ = f in Ω, u∗ ∈ H1
0 (Ω).(1.6)

In the present paper, we do not consider the effects of boundaries, postponing
them to a subsequent article [9]. In the case of R

N , it is natural to replace the
operator Aε by (Aε + I). In that case, if wε satisfies{

(Aε + I)wε = g in R
N ,

wε ⇀ w∗ in H1(RN )-weak,
(1.7)

where g is a given function in L2(RN ), then it can be seen that (see Proposition 6.1
below)

wε → w∗ in L2(RN )-strong.(1.8)

In view of the above result, there is no concentration of L2-energy at infinity, and
therefore throughout this paper we will consider a sequence uε and a function f ∈
L2(RN ) satisfying 

Aεuε = f in R
N ,

uε ⇀ u∗ in H1(RN )-weak,

uε → u∗ in L2(RN )-strong.

(1.9)

The central issue in the analysis of the first order correctors is to obtain functions
uε

1 ∈ H1(RN ), which can be easily constructed and have the following characteristic
property:

‖uε − u∗ − εuε
1‖H1(RN )

→ 0 as ε → 0.(1.10)
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BLOCH APPROXIMATION 1169

By definition, second order correctors uε
2 ∈ H1(RN ) will enjoy the property

‖uε − u∗ − εuε
1 − ε2uε

2‖H1(RN )
≤ cε.(1.11)

One of the purposes of this article is to carry out a more general construction than
the classical one for correctors, namely, Bloch approximation θε, which contains all
the above correctors and justifies the procedure. Apart from this, θε contains a lot
of information about the periodic medium which will be amply demonstrated in this
paper.

1.1. Survey of the previous results. In the classical book [5] the authors
obtain an asymptotic expansion (with y = x

ε ) of the form

uε(x) = u∗(x) + ε

{
χ
k
(y)

∂u∗

∂xk
(x) + ũ1(x)

}
+ ε2

{
χ
k�
(y)

∂2u∗

∂xkx�
(x) + χ

�
(y)

∂ũ1

∂x�
(x) + ũ2(x)

}
+ · · · .

(1.12)

Here, χ
k
is the unique solution of the cell problem


Aχ

k
=

∂ak�
∂y�

in R
N ,

χ
k
∈ H1

#(Y ), MY (χk
)

def
=

1

|Y |
∫
Y

χ
k
dy = 0.

(1.13)

The function χ
k�

is characterized as the unique solution of
Aχ

k�
=ak�+akm

∂χ�

∂ym
− ∂

∂ym
(amkχ�

)−MY (ak�)−MY

(
akm

∂χ�

∂ym

)
in R

N ,

χ
k�

∈ H1
#(Y ), MY (χk�

) = 0.

(1.14)

Further, ũ1(x), ũ2(x), . . . are independent of ε and satisfy equations of the typeA
∗ũj =

g̃j in R
N , where, for instance, g̃1(x) = bjk�D

3
jk�u

∗, where bjk� are constants:

bjk� = MY

(
ajm

∂χk�

∂ym
+ ak�χj

)
∀j, k, � = 1, . . . , N.

With these notations, the classical formula of the homogenized coefficients is as fol-
lows:

qk� = MY

(
ak� + akm

∂χ�

∂ym

)
∀k, � = 1, . . . , N.

(Another characterization of qk� is given in Proposition 1.5 below.) Using the above
expansion, the first order corrector term is obtained in [5]. More precisely, we have
the following.
Theorem 1.1. We assume that the coefficients ak� satisfy assumptions (1.2),

f ∈ L2(RN ), and the solution χ
k
∈ W 1,∞(Y ), k = 1, . . . , N . Then the first order

corrector is defined by

uε
1(x) = χ

k

(x
ε

) ∂u∗

∂xk
(x),
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1170 C. CONCA, R. ORIVE, AND M. VANNINATHAN

which means that

‖uε − u∗ − εuε
1‖H1(RN )

→ 0 as ε → 0.

In this paper, we obtain a more general result using a different approach intro-
duced in [11]. The basic tool of this new approach is Bloch waves ψ associated with
A which we define now. Let us consider the following spectral problem parameterized
by η ∈ R

N : find λ = λ(η) ∈ R and ψ = ψ(y; η) (not identically zero) such that{
Aψ(·; η) = λ(η)ψ(·; η) in R

N , ψ(·; η) is (η;Y )-periodic, i.e.,

ψ(y + 2πm; η) = e2πim·ηψ(y; η) ∀m ∈ Z
N , y ∈ R

N .
(1.15)

Next, we define φ(y; η) = e−iy·ηψ(y; η), and (1.15) can be rewritten in terms of φ as
follows:

A(η)φ = λφ in R
N , φ is Y -periodic.(1.16)

Here, the operator A(η) is defined by

A(η)
def
= −

(
∂

∂yk
+ iηk

)[
ak�(y)

(
∂

∂y�
+ iη�

)]
,(1.17)

which can be rewritten as

A(η) = A+ iηkCk + ηkη�ak�(y)(1.18)

with

Ckφ
def
= − akj(y)

∂φ

∂yj
− ∂

∂yj
(akj(y)φ).(1.19)

It is clear from (1.15) that the (η, Y ) periodicity condition is unaltered if we
replace η by (η + q) with q ∈ Z

N , and η can therefore be confined to the dual
cell η ∈ Y ′ = [− 1

2 ,
1
2 [

N . It is well known (C. Conca, J. Planchard, and M. Van-
ninathan [10]) that for each η ∈ Y ′, the above spectral problem admits a discrete
sequence of eigenvalues with the following properties:{

0 ≤ λ1(η) ≤ · · · ≤ λm(η) ≤ · · · → ∞
∀m ≥ 1, λm(η) is a Lipschitz function of η ∈ Y ′.

Besides, the corresponding eigenfunctions denoted by ψm(·; η) and φm(·; η) form or-
thonormal bases in the spaces of all L2

loc(R
N )-functions which are (η;Y )-periodic and

Y -periodic, respectively; these spaces are denoted by L2
#(η;Y ) and L2

#(Y ). It is

worthwhile to remark that these eigenfunctions in fact belong to the spaces H1
#(η;Y )

and H1
#(Y ), respectively, where

H1
#(η;Y ) =

{
ψ ∈ L2

#(η;Y )
∣∣∣ ∂ψ

∂yk
∈ L2

#(η;Y ) ∀k = 1, . . . , N

}
,

H1
#(Y ) =

{
φ ∈ L2

#(Y )
∣∣∣ ∂φ

∂yk
∈ L2

#(Y ) ∀k = 1, . . . , N

}
.
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BLOCH APPROXIMATION 1171

The functions ψm(·; η) and φm(·; η) (referred to as Bloch waves) introduced above
enable us to describe the spectral resolution of A (an unbounded self-adjoint operator
in L2(RN )) in the orthogonal basis {eiy·ηφm(y; η)|m ≥ 1, η ∈ Y ′}. More precisely, we
have the following.
Theorem 1.2. Let g ∈ L2(RN ). The mth Bloch coefficient of g is defined as

follows:

(Bmg)(η) =

∫
RN

g(y)e−iy·ηφ̄m(y; η)dy ∀m ≥ 1, η ∈ Y ′.

Then the following inverse formula holds:

g(y) =

∫
Y ′

∞∑
m=1

(Bmg)(η)eiy·ηφm(y; η)dη.

Further, we have Parseval’s identity:∫
RN

|g(y)|2dy =

∫
Y ′

∞∑
m=1

|(Bmg)(η)|2dη.

Finally, for all g in the domain of A, we have

Ag(y) =

∫
Y ′

∞∑
m=1

λm(η)(Bmg)(η)eiy·ηφm(y; η)dη.

To obtain the spectral resolution of Aε in an analogous manner, let us introduce
Bloch waves at the ε-scale:

λε
m(ξ) = ε−2λm(η), φε

m(x; ξ) = φm(y; η), ψε
m(x; ξ) = ψm(y; η),

where the variables (x, ξ) and (y, η) are related by y = x
ε and η = εξ. Observe that

φε
m(x; ξ) is εY -periodic (in x) and ε−1Y ′-periodic with respect to ξ. In the same

manner, ψε
m(·; ξ) is (εξ; εY )-periodic because of the relation ψε

m(x; ξ) = eix·ξφε
m(x; ξ).

Note that the dual cell at ε-scale is ε−1Y ′ and hence we take ξ to vary in ε−1Y ′ in what
follows. With these notations, we have the following result analogous to Theorem 1.2.
Theorem 1.3. Let g ∈ L2(RN ). The mth Bloch coefficient of g at the ε-scale is

defined as follows:

(Bε
mg)(ξ) =

∫
RN

g(x)e−ix·ξφ̄ε
m(x; ξ)dx ∀m ≥ 1, ξ ∈ ε−1Y ′.

Then the following inverse formula and Parseval’s identity hold:

g(x) =

∫
ε−1Y ′

∞∑
m=1

(Bε
mg)(ξ)eix·ξφε

m(x; ξ)dξ,

∫
RN

|g(x)|2dx =

∫
ε−1Y ′

∞∑
m=1

|(Bε
mg)(ξ)|2dξ.

Finally, for all g in the domain of Aε, we get

Aεg(x) =

∫
ε−1Y ′

∞∑
m=1

λε
m(ξ)(Bε

mg)(ξ)eix·ξφε
m(x; ξ)dξ.D
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1172 C. CONCA, R. ORIVE, AND M. VANNINATHAN

Using the above theorem, the classical homogenization result was deduced in
[11]. Let us recall the main steps. The first one consists of considering a sequence
uε ∈ H1(RN ) satisfying (1.9). We can express the equation Aεuε = f in R

N in the
equivalent form

λε
m(ξ)(Bε

muε)(ξ) = (Bε
mf)(ξ) ∀m ≥ 1, ξ ∈ ε−1Y ′.(1.20)

In the homogenization process, one can neglect all the relations for m ≥ 2. More
precisely, it is proved in [11] that the following result holds.
Proposition 1.4. Let

vε(x) =

∫
ε−1Y ′

∞∑
m=2

(Bε
muε)(ξ)eix·ξφε

m(x; ξ)dξ.(1.21)

Then ‖vε‖L2(RN ) ≤ cε.
Thus we can concentrate our attention only on the relation corresponding to the

first Bloch wave:

λε
1(ξ)(B

ε
1u

ε)(ξ) = (Bε
1f)(ξ) ∀ξ ∈ ε−1Y ′.(1.22)

The homogenized equation in the Fourier space

qk�ξkξ�û∗(ξ) = f̂(ξ) ∀ξ ∈ R
N(1.23)

is obtained from (1.22) by passing to the limit as ε → 0. Here, the symbol ̂ stands
for the classical Fourier transformation

f̂(ξ) =
1

(2π)N/2

∫
RN

f(x)e−ix·ξdx.

To this end, the following results were established and applied in [11].
Proposition 1.5. We assume that ak� satisfies (1.2). Then there exists δ > 0

such that the first eigenvalue λ1(η) is an analytic function on Bδ
def
= {η | |η| < δ}, and

there is a choice of the first eigenvector φ1(y; η) satisfying{
η → φ1(·; η) ∈ H1

#(Y ) is analytic on Bδ,

φ1(y; 0) = p(0) (= |Y |−1/2 = 1
(2π)N/2 ).

Moreover, we have the relations

λ1(0) = 0, Dkλ1(0) =
∂λ1

∂ηk
(0) = 0 ∀k = 1, . . . , N,

1

2
D2

k�λ1(0) =
1

2

∂2λ1

∂ηk∂η�
(0) = qk� ∀k, � = 1, . . . , N,

and there exist constants c and c̃ such that

c|η|2 ≤λ1(η)≤ c̃|η|2 ∀η ∈ Y ′,(1.24)

0 <λ
(N)
2 ≤ λm(η) ∀m ≥ 2, η ∈ Y ′,(1.25)

where λ
(N)
2 is the second eigenvalue of the spectral problem for A in the cell Y with

Neumann boundary conditions on ∂Y .
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BLOCH APPROXIMATION 1173

Apart from the above result of regularity on the Bloch spectrum, we need to
prove that the first Bloch transform is an approximation to the Fourier transform.
This result is naturally expected from the fact that φε

1(x; ξ) → (2π)−N/2, as ε → 0,
∀ξ ∈ R

N .
Proposition 1.6. Let gε and g be in L2(RN ). Then
(i) if gε ⇀ g weakly in L2(RN

x ), then χ
ε−1Y ′B

ε
1g

ε ⇀ ĝ weakly in L2
loc(R

N
ξ ) pro-

vided there is a fixed compact set K such that supp (gε) ⊂ K ∀ε;
(ii) if gε → g in L2(RN

x ), then χ
ε−1Y ′B

ε
1g

ε → ĝ in L2
loc(R

N
ξ ).

These results easily lead us to the following homogenization theorem in R
N .

Theorem 1.7. We consider a sequence uε satisfying (1.9). Then

aεk�
∂uε

∂x�
⇀ qk�

∂u∗

∂x�
in L2(RN ) ∀k = 1, . . . , N.

In particular, u∗ satisfies A∗u∗ = f in R
N .

Once the homogenization result in R
N is established, it is an easy matter to

deduce the corresponding result in a bounded domain Ω by localization techniques
using a cut-off function φ ∈ D(Ω) (see [11]).

1.2. Presentation of new results: The Bloch approximation. Let us con-
sider the sequence uε satisfying hypotheses (1.9). The Bloch approximation of uε is
defined by the following formula:

θε(x)
def
=

∫
ε−1Y ′

û∗(ξ)eix·ξφε
1(x; ξ)dξ, x ∈ R

N .(1.26)

First of all, let us remark that this object is not difficult to be computed in principle.
Our goal throughout this paper is to study properties of this function and particularly
its relations with various correctors terms. It is worth noticing that θε is defined only
in terms of the first Bloch mode φε

1. We will see in section 3 that higher Bloch modes
φε
m, m ≥ 2, do not contribute at all in the analysis of the correctors of first and

second order in the energy norm. (It will be interesting to know whether these higher
order modes play a part in the analysis of correctors in stronger norms H2, . . . , etc.
For H2-estimates, we refer to our work in [12].) Thus we are motivated to introduce
the projection onto the first Bloch mode: for all g ∈ L2(RN ), we define

P ε
1 g(x) =

∫
ε−1Y ′

Bε
1g(ξ)e

ix·ξφε
1(x; ξ)dξ, x ∈ R

N .(1.27)

We note by the item (ii) of Proposition 1.6 that the Fourier transform û∗ is an
approximation of Bε

1u
ε. Therefore, heuristically speaking, the Bloch approximation

θε is close to P ε
1u

ε and hence to uε. With these notations, we will prove the following
theorem.
Theorem 1.8. Assume that the coefficients ak� satisfy (1.2). Let uε be the

sequence introduced in (1.9). Then if f ∈ L2(RN ), we have

(uε − θε) → 0 in H1(RN ).(1.28)

Furthermore, we have the estimate

|uε − θε|
H1(RN )

≤ cε‖f‖
L2(RN )

.(1.29)
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1174 C. CONCA, R. ORIVE, AND M. VANNINATHAN

It is worth remarking that even though error estimates of the type (1.29) are
sometimes found in the literature, they are usually obtained using the maximum
principle with more regularity hypotheses on ak� and f . Here, we obtain these natural
estimates under optimal hypotheses.

Thanks to the above result, we are reduced to expanding θε in terms of ε in order
to be able to compare it with the classical correctors for uε. To fulfill this task, it is
clear from the definition of θε that it is necessary to obtain asymptotic expansions
of the first eigenvalue λε

1(ξ) and the first Bloch mode φε
1(·; ξ). (In addition, for our

purposes below, we need an asymptotic expansion of the first Bloch transform Bε
1g(ξ)

for which we refer the reader to section 5. These results strengthen earlier results,
particularly those of Proposition 1.6.) We now state results in this direction, and their
proofs will be taken up in the following sections along with other auxiliary results.
First, we introduce some test functions χk�, χk�m, χk�mn defined by the following cell
problems (observe that the first ones are nothing but the functions already introduced
in (1.14)): 

Aχ
k�

= (ak� − qk�)− 1

2

(
Ckχ�

+ C�χk

)
in R

N ,

χ
k�

∈ H1
#(Y ), MY (χk�

) = 0.
(1.30)



Aχ
k�m

=
1

3

[
(ak� − qk�)χm

+ (a�m − q�m)χ
k
+ (amk − qmk)χ�

−Ckχ�m
− C�χmk

− Cmχ
k�

]
in R

N ,

χ
k�m

∈ H1
#(Y ), MY (χk�m

) = 0.

(1.31)



Aχ
k�mn

=
1

4!
D4

k�mnλ1(0)− 1

4

(
Cnχk�m

+ Ckχ�mn
+ C�χmnk

+ Cmχ
nk�

)
+

1

3!

[
(ak� − qk�)χmn

+ (a�m − q�m)χ
kn

+ (akm − qkm)χ
�n

+ (amn − qmn)χk�
+ (a�n − q�n)χkm

+ (akn − qkn)χ�m

]
in R

N ,

χ
k�mn

∈ H1
#(Y ), MY (χk�mn

) = 0.

(1.32)

Proposition 1.9. All odd order derivatives of λ1 at η = 0 vanish, i.e.,

Dβλ1(0) = 0 ∀β ∈ Z
N
+ , |β| odd.

All even order derivatives of λ1 at η = 0 can be calculated in a systematic fash-
ion. For instance, the fourth order derivatives have the following expressions: for all
k, �,m, n = 1, . . . , N

1

4!
D4

k�mnλ1(0) =
1

4

1

|Y |
∫
Y

{
Cnχk�m

+ Ckχ�mn
+ C�χmnk

+ Cmχ
nk�

}
dy
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BLOCH APPROXIMATION 1175

− 1

3!

1

|Y |
∫
Y

{
(ak� − qk�)χmn

+ (a�m − q�m)χ
nk

+ (amn − qmn)χk�

+ (ank − qnk)χ�m
+ (akm − qkm)χ

�n
+ (a�n − q�n)χkm

}
dy.

Various derivatives of φ1 at η = 0 can also be calculated in a systematic fashion.
Proposition 1.10. We have the following expressions:

Dkφ1(y; 0) = ip(0)χ
k
(y),

1

2!
D2

k�φ1(y; 0) = − p(0)χ
k�
(y)− β

(2)
k� p

(0),

1

3!
D3

k�mφ1(y; 0) = − ip(0)χ
k�m

(y)− i

3

(
β

(2)
k� χm

(y) + β
(2)
�mχ

k
(y) + β

(2)
mkχ�

(y)

)
p(0),

1

4!
D4

k�mnφ1(y; 0) = p(0)χ
k�mn

(y)− 1

3!

(
β

(2)
k� χmn

(y) + β
(2)
�mχ

nk
(y) + β(2)

mnχk�

+ β
(2)
nk χ�m

(y) + β
(2)
kmχ

n�
(y) + β

(2)
�n χ

km
(y)
)
p(0) + β

(4)
k�mnp

(0)

with

β
(2)
k� =

1

2!

1

|Y |
∫
Y

χ
�
χ
k
dy,

β
(4)
k�mn =

1

|Y |
∫
Y

1

4

[
χ
�mn

χ
k
+ χ

kmn
χ
�
+ χ

n�k
χ
m
+ χ

k�n
χ
n

]
dy

− 1

|Y |
∫
Y

1

6

[
χ
�m

χ
kn

+ χ
km

χ
n�

+ χ
�k
χ
nm

]
dy

+
1

|Y |
1

2

(
β

(2)
k� β

(2)
mn + β

(2)
kmβ

(2)
n� + β

(2)
kn β

(2)
m�

)
.

We note that all odd order derivatives of φ1 at η = 0 are purely imaginary and
all even order derivatives are real.

Since φ1(·; η) is proved to be analytic for |η| ≤ δ, we can expand it and thus give
rise to an asymptotic expansion of θε which is as follows:

θε(x) = u∗(x) + εχ
k

(x
ε

) ∂u∗

∂xk
(x)− ε2

(
χ
k�

(x
ε

)
+ β

(2)
k�

)
∂2u∗

∂xk∂x�
(x) + · · · .(1.33)

This can be rigorously proved. Our next result is a sample where we specify the
precise hypotheses needed to justify the above expansion up to three terms.
Theorem 1.11. Assume that the hypotheses of Theorem 1.8 hold.
(i) If u∗ ∈ H1(RN ), then

‖θε − u∗‖
L2(RN )

≤ cε‖u∗‖
H1(RN )

.

(ii) If f ∈ L2(RN ) and χk ∈ W 1,∞
# (Y ), where χk is the solution of (1.13) and

χε
k(x) = χk

(
x
ε

)
, then we have∥∥∥∥θε − u∗ − εχε

k

∂u∗

∂xk

∥∥∥∥
H1(RN )

≤ cε‖f‖
L2(RN )

.
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1176 C. CONCA, R. ORIVE, AND M. VANNINATHAN

(iii) If f ∈ H1(RN ) and χk, χk� ∈ W 1,∞
# (Y ), where χk� is the solution of (1.30),

β
(2)
k� are constants defined in Proposition 1.10, and χε

k�(x) = χk�

(
x
ε

)
, then

∥∥∥∥θε − u∗ − εχε
k

∂u∗

∂xk
+ ε2

(
χε
k� + β

(2)
k�

) ∂2u∗

∂xk∂x�

∥∥∥∥
H1(RN )

≤ cε2‖f‖
H1(RN )

.

It is important to note that these above expansions are of Taylor type owing to
the analyticity of λ1(η) and φ1(·; η). This is the main difference between this approach
and the classical one found in [5], where the expansion has a multiscale structure.

Concerning the hypotheses on the smoothness of functions χk and χk� in state-
ments (ii) and (iii), it is worth mentioning from regularity theory of elliptic boundary
value problems thatW 1,∞-estimates are hard to come by. This is why they are usually
assumed in homogenization theory. However, several numerical studies with simple
fibers show that these assumptions are valid. Thus they are reasonable hypotheses to
work with as far as certain applications are concerned.

The expansions of λ1(η), φ
ε
1(·; η), and Bε

1g(ξ) obtained in Propositions 1.5 and 1.9
and Propositions 5.1, 5.2, and 5.3 below have further interesting consequences which
will be developed in a forthcoming paper. For the time being, we will be content
with a few remarks. Since higher order modes can be neglected, the first eigenvalue
λ1(η) along with the first eigenvector φ1(·; η) represent the periodic medium under
consideration. Their contributions occur somewhat separately without interaction at
the levels of homogenized equation and correctors. More precisely, the first eigenvalue
λ1(η) contributes at various levels through its derivatives at η = 0. The first eigen-
vector φ1(·; η) and its first derivatives contribute through the first Bloch transform
Bε

1g(ξ) and its expansion described in Propositions 5.2 and 5.3.
In the homogenized equation, for instance, we see the product of the second order

derivatives of λ1(η) at η = 0 with the 0th order term of Bε
1g(ξ), namely, ĝ(ξ). We

see a similar structure in the correctors, too. There seem to be situations where both
interact and contribute jointly in a manner different from the above. One example
of such a situation is the study of the propagation of waves in a periodic medium.
It appears that the homogenized medium is not good enough to provide an approx-
imation to the propagation for large times because of the appearance of dispersion
effects shown numerically in F. Santosa and W. W. Symes [20]. We feel that this is an
appropriate place to highlight the improvements achieved in this work with respect
to [20]. Apart from the mathematical rigor, the main point is that the third order
derivatives of λ1(η) at η = 0 are shown to be zero even in the multidimensional case.
(In fact all odd order derivatives vanish.) Moreover, our arguments are more general
compared with the one-dimensional case covered in [20]. This will have consequences
in the propagation of waves in periodic media. We plan to cover these aspects in a
future publication.

We conclude this introduction by saying how the rest of this paper is organized.
Section 2 is devoted to certain fundamental lemmas which are indispensable. As an
immediate application, we prove in section 3 that the higher order Bloch modes are
negligible. Taylor expansions for λ1 and φ1 are obtained in section 4 which proves
Propositions 1.9 and 1.10. Section 5 is devoted to the description of the asymptotic
behavior of the first Bloch transform Bε

1 whose definition is given in Theorem 1.2.
Finally, in section 6, we present the proofs of the main results, namely, Theorems 1.8
and 1.11.
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BLOCH APPROXIMATION 1177

2. Fundamental lemmas. In this section, we prove a series of results which
generalize Parseval’s identity stated in Theorem 1.3. These estimates will be useful
later for the analysis of correctors. The following two lemmas are easily seen to be
generalizations of well-known classical results for −∆.
Lemma 2.1. For all g ∈ H1(RN), we have

c1|g|2
H1(RN )

≤
∫
ε−1Y ′

∞∑
m=1

λε
m(ξ)|Bε

mg(ξ)|2dξ ≤ c2|g|2
H1(RN )

,

where c1 and c2 are constants independent of ε and g.
Proof. First of all, by uniform ellipticity of Aε, we have

α

∫
RN

|∇g|2dx ≤
∫

RN

Aεgḡdx ≤ β

∫
RN

|∇g|2dx.

We can rewrite the middle term by applying the Plancherel identity:∫
RN

g(x)h(x)dx =

∫
ε−1Y ′

∞∑
m=1

Bε
mg(ξ)Bε

mh(ξ)dξ ∀g, h ∈ L2(RN ).(2.1)

Indeed, using the spectral resolution of Aε, we get∫
RN

Aεgḡdx =

∫
ε−1Y ′

∞∑
m=1

λε
m(ξ)|Bε

mg(ξ)|2dξ.

This completes the proof.
By using the duality between H1(RN ) and H−1(RN ), we deduce the following.
Lemma 2.2. For all g ∈ H−1(RN ), there exist c1 and c2 which are independent

of ε and g, such that

c1‖g‖2

H−1(RN )
≤
∫
ε−1Y ′

∞∑
m=1

1

1 + λε
m(ξ)

|Bε
mg(ξ)|2dξ ≤ c2‖g‖2

H−1(RN )
.

Proof. It is well known that (Aε + I):H1(RN ) → H−1(RN ) is an isomorphism.
For every g ∈ H−1(RN ) there exists a unique solution u ∈ H1(RN ) of Aεu+ u = g in
R

N . We can express the previous equation in the equivalent form

(λε
m(ξ) + 1)Bε

mu(ξ) = Bε
mg(ξ) ∀m ≥ 1, ξ ∈ ε−1Y ′.

Therefore, an application of the Cauchy–Schwarz inequality yields

〈g, v〉 =
∫
ε−1Y ′

∞∑
m=1

(λε
m(ξ) + 1)Bε

muBε
mvdξ

≤
(∫

ε−1Y ′

∞∑
m=1

(λε
m(ξ) + 1)|Bε

mu|2dξ
)1/2(∫

ε−1Y ′

∞∑
m=1

(λε
m(ξ) + 1)|Bε

mv|2dξ
)1/2

≤
(∫

ε−1Y ′

∞∑
m=1

|Bε
mg|2

(λε
m(ξ) + 1)

dξ

)1/2(∫
ε−1Y ′

∞∑
m=1

(λε
m(ξ) + 1)|Bε

mv|2dξ
)1/2D
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1178 C. CONCA, R. ORIVE, AND M. VANNINATHAN

for all v ∈ H1(RN ), g ∈ H−1(RN ). Here, 〈·, ·〉 denotes the H1(RN ) and H−1(RN )
duality pairing. By virtue of Lemma 2.1 and Parseval’s identity, the second term in
the right-hand side is equivalent to the H1-norm of v. Thus we deduce the existence
of a constant c1 such that

c1‖g‖2

H−1(RN )
≤
∫
ε−1Y ′

∞∑
m=1

1

1 + λε
m(ξ)

|Bε
mg(ξ)|2dξ,

which is the lower estimate in Lemma 2.2. To prove the upper estimate is enough
to use the continuity of the solution u ∈ H1(RN ) with respect to the right-hand side
g ∈ H−1(RN ).

In our next lemma, we consider gε = gε(ξ) a measurable function defined on
ε−1Y ′, and another function ρ = ρ(y; η) measurable with respect to (y; η) and Y -
periodic in y. We then introduce

Gε(x) =

∫
ε−1Y ′

gε(ξ)eix·ξρ
(x
ε
; εξ

)
dξ, x ∈ R

N .(2.2)

The following result estimates its L2(RN ) and H1(RN ) norms.
Lemma 2.3. We assume gε ∈ L2(ε−1Y ′) and ρ ∈ L∞(Y ′;H1

#(Y )). Then we
have

‖Gε‖2

L2(RN )
=

∫
ε−1Y ′

|gε(ξ)|2‖ρ(·; εξ)‖2

L2(Y )
dξ,

|Gε|2
H1(RN )

=

∫
ε−1Y ′

|gε(ξ)|2‖iξρ(·; εξ) + ε−1∇yρ(·; εξ)‖2

L2(Y )N
dξ.

Proof. We expand ρ(y; η) as a function of y in the orthonormal basis {φm(y; η)}∞m=1

where η is a parameter:

ρ(y; η) =

∞∑
m=1

am(η)φm(y; η).

Introducing this expression in (2.2), we get

Gε(x) =

∫
ε−1Y ′

gε(ξ)

∞∑
m=1

am(εξ)eix·ξφε
m(x; ξ)dξ.

Applying Parseval’s identity of Theorem 1.3, we get

‖Gε‖2

L2(RN )
=

∫
ε−1Y ′

|gε(ξ)|2
∞∑

m=1

|am(εξ)|2dξ.

This completes the proof of the first part of the lemma if we use Parseval’s identity
in L2(Y ):

‖ρ(·; η)‖2

L2(Y )
=

∞∑
m=1

|am(η)|2 ∀η ∈ Y ′.(2.3)

For the second part of the lemma, we formally differentiate Gε(x) with respect
to x. We obtain

∇xG
ε(x) =

∫
ε−1Y ′

gε(ξ)eix·ξ
(
iξρ

(x
ε
; εξ

)
+ ε−1∇yρ

(x
ε
; εξ

))
dξ.
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BLOCH APPROXIMATION 1179

We remark that the above integral is of the same type as the one analyzed in the first
part. This completes the proof.

The next lemma presents H1-estimates on the Bloch modes.
Lemma 2.4. We suppose that the coefficients ak� satisfy (1.2). Then there exists

a constant c depending on ‖ak�‖L∞(Y ) such that∥∥∥∂φm

∂yk
(·; η)

∥∥∥
L2(Y )

≤ c1λm(η)1/2 ∀η ∈ Y ′, m ≥ 1, k = 1, . . . , N.(2.4)

To prove this, let us introduce the bilinear forms associated with the operators
A(η) and A, respectively.

a(η;φ, ψ) =

∫
Y

ak�(y)

(
∂φ

∂y�
+ iη�φ

)(
∂ψ

∂yk
+ iηkψ

)
dy,

a(φ, ψ) =

∫
Y

ak�(y)
∂φ

∂y�

∂ψ

∂yk
dy.

The basic estimates on them are obtained in [10, p. 190]: There exist constants c, c̃
which are independent of η ∈ Y ′ such that for all φ ∈ H1

#(Y ),

c (‖∇φ‖2

L2(Y )N
+ |η|2‖φ‖2

L2(Y )
) ≤ a(η;φ, φ) ≤ c̃ (‖∇φ‖2

L2(Y )N
+ |η|2‖φ‖2

L2(Y )
),(2.5)

c ‖∇φ‖2

L2(Y )N
≤ a(φ, φ) ≤ c̃ ‖∇φ‖2

L2(Y )N
.(2.6)

Proof of Lemma 2.4. For simplicity, we denote φm(·; η) by φm(η). We recall that
it satisfies

a(η;φm(η), ψ) = λm(η)(φm(η), ψ) ∀ψ ∈ H1
#(Y ).(2.7)

To deduce (2.4), it is enough to take ψ = φm(η) and use (2.5).
Our next result concerns the estimation of expressions which are inverse to (2.2).

We define

Jεg(ξ) =

∫
RN

g(x)e−ix·ξρ
(x
ε
; εξ

)
dx for ξ ∈ ε−1Y ′,(2.8)

where g = g(x) is a measurable function defined on R
N and ρ = ρ(y; η) is a measurable

function defined on Y × Y ′. We assume that ρ is Y -periodic in y. The required
hypotheses on these functions will depend on the estimate deduced on Jεg. This is
illustrated in the results that follow which are analogous to classical estimates on the
Fourier transform.
Lemma 2.5.
(i) If g ∈ L2(RN ) and ρ ∈ L∞(Y ′;L2

#(Y )), then we have

‖Jεg‖
L2(ε−1Y ′)

≤ ‖g‖
L2(RN )

‖ρ‖
L∞(Y ′;L2

#
(Y ))

.

(ii) If g ∈ H1(RN ) and ρ ∈ L∞(Y ′;H1
#(Y )), then we have

‖(1 + |ξ|2)1/2Jεg(ξ)‖
L2(ε−1Y ′)

≤ c

{
‖∇g‖

L2(RN )
‖ρ‖

L∞(Y ′;L2(Y ))

+ ε−1‖g‖
L2(RN )

‖∇yρ‖L∞(Y ′;L2(Y )N )

}
.
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1180 C. CONCA, R. ORIVE, AND M. VANNINATHAN

Proof. The idea is to consider the product space L2(Y ′;L2
#(Y )) and expand

ρ(y; η) in two steps. First using the fact that {φ̄m(·; η)}∞m=1 is an orthonormal basis
in L2

#(Y ), we get

ρ(y; η) =
∞∑

m=1

am(η)φ̄m(y; η) ∀y ∈ Y, η ∈ Y ′.

Next, for each m, we can expand am(η) in the usual Fourier series:

am(η) =
∑
n∈ZN

amne
2πin·η ∀η ∈ Y ′.

The corresponding Parseval’s identities are as follows:

‖ρ(·; η)‖2

L2(Y )
=
∑
m

|am(η)|2 ∀η ∈ Y ′,∫
Y ′

|am(η)|2dη =
∑
n∈ZN

|amn|2 ∀m ∈ N.

Using this expansion, we can rewrite Jεg as follows:

Jεg(ξ) =

∞∑
m=1

∑
n∈ZN

amne
2πiεn·ξ

∫
RN

g(x)e−ix·ξφ̄m

(x
ε
; εξ

)
dx,

which, according to the definition of Bε
mg(ξ), is equal to

Jεg(ξ) =

∞∑
m=1

∑
n∈ZN

amne
2πiεn·ξBε

mg(ξ) =

∞∑
m=1

am(εξ)Bε
mg(ξ).

By the Cauchy–Schwarz inequality,

|Jεg(ξ)|2 ≤
( ∞∑

m=1

|am(εξ)|2
)( ∞∑

m=1

|Bε
mg(ξ)|2

)

= ‖ρ(·; εξ)‖2

L2(Y )

( ∞∑
m=1

|Bε
mg(ξ)|2

)

≤ ‖ρ‖2

L∞(Y ′;L2
#

(Y ))

( ∞∑
m=1

|Bε
mg(ξ)|2

)
.

The proof of (i) is complete if we integrate the above inequality with respect to
ξ ∈ ε−1Y ′ and apply Theorem 1.3. For the proof of (ii), we multiply (2.8) by (−iξk)
and obtain

(−iξk)J
εg(ξ) =

∫
RN

g(x)(−iξk)e
−ix·ξρ

(x
ε
; εξ

)
dx,

which, by integration by parts, can be rewritten as

(−iξk)J
εg(ξ) = −

∫
RN

∂g

∂xk
(x)e−ix·ξρ

(x
ε
; εξ

)
dx− ε−1

∫
RN

g(x)e−ix·ξ ∂ρ

∂yk

(x
ε
; εξ

)
dx.
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BLOCH APPROXIMATION 1181

It is now sufficient to apply (i) to each of the terms on the right-hand side of the
above relation.

Next, we will need some properties of the classical discrete Fourier transform
in our asymptotic description of the first Bloch transform. In particular, we are
interested in the relation between discrete and continuous Fourier transforms. To this
end, let us begin by introducing some necessary notations. Let {Y ε

� }�∈ZN be the mesh
of R

N generated by the cell εY . More precisely, Y ε
� = xε

� + εY where xε
� = 2πε� is

the origin of the cell Y ε
� . We recall the definition of the discrete Fourier transform of

a function corresponding to this mesh: Let p > N be given. For g ∈ W 1,p(RN ) with
compact support we define

F εg(ξ) =
∑
�∈ZN

g(xε
�)e

−ixε
� ·ξ ∀ξ ∈ ε−1Y ′.(2.9)

It is worthwhile to recall that W 1,p(RN ) is embedded in C0(RN ) when p > N , and so
g(xε

�) is well defined.
Lemma 2.6. For g ∈ W 1,p(RN ) (p > N) with compact support K, we have
(i) εN (χ

ε−1Y ′F
εg)(ξ) → 1

(2π)N/2 ĝ(ξ) for ξ ∈ R
N .

(ii) ‖εNF εg‖
L2(ε−1Y ′)

≤ c|K| p−2
2p {‖g‖

Lp(RN )
+ ε‖∇g‖

Lp(RN )N
}, |K| denotes the

measure of K.
(iii) εNχ

ε−1Y ′F
εg → 1

(2π)N/2 ĝ in L2(RN ).

Proof. To prove (i), we multiply (2.9) by εN to get

εNF εg(ξ) =
1

(2π)N

∑
�∈ZN

g(xε
�)e

−ixε
� ·ξ|Y ε

� |.

We regard the right-hand side of the above equality as a Riemann sum of the integral

1

(2π)N

∫
RN

g(x)e−ix·ξdx

which converges to it as ε → 0.
To prove (ii), we observe that the right-hand side of (2.9) is nothing but the

Fourier series in the variable ξ ∈ ε−1Y ′. Therefore, by Parseval’s identity, we get

εN
∫
ε−1Y ′

|F εg(ξ)|2dξ =
∑
�∈ZN

|g(xε
�)|2.

We multiply this relation by εN and rewrite it as

ε2N
∫
ε−1Y ′

|F εg(ξ)|2dξ = 1

(2π)N

∑
�∈ZN

|g(xε
�)|2|Y ε

� |.(2.10)

To estimate the right-hand side of the above equality, we integrate the inequality

|g(xε
�)|2 ≤ 2

{|g(x)|2 + |g(x)− g(xε
�)|2

}
, x ∈ Y ε

� ,

over Y ε
� to obtain

|g(xε
�)|2|Y ε

� | ≤ 2

{∫
Y ε
�

|g(x)|2dx+

∫
Y ε
�

|g(x)− g(xε
�)|2dx

}
.(2.11)
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1182 C. CONCA, R. ORIVE, AND M. VANNINATHAN

Since p > N , we can use the classical Morrey’s inequality (see Brezis [7, p. 167]) to
deduce

|g(x)− g(xε
�)| ≤ cε1−

N
p |∇g|

Lp(Y ε
�

)N
.

Using both the above estimate in (2.11) and the Hölder inequality and summing over
� ∈ Z

N , we complete the proof of (ii).
To prove the statement (iii) we first use (i) and (ii) to deduce that

εNχ
ε−1Y ′(ξ)F

εg(ξ) ⇀
1

(2π)N/2
ĝ(ξ) in L2(RN )-weak.

Let us now expand∥∥∥∥ εNχ
ε−1Y ′F

εg − 1
(2π)N/2 ĝ

∥∥∥∥2

L2(RN )

= ε2N‖F εg‖2

L2(RN )
− 2εN

(2π)N/2 (χε−1Y ′F
εg, ĝ)

+ 1
(2π)N

‖ĝ‖2

L2(RN )
.

Now relation (2.10) shows that

ε2N‖F εg‖2

L2(RN )
→ 1

(2π)N

∫
RN

|g|2dx =
1

(2π)N
‖ĝ‖2

L2(RN ).

Thanks to the above weak convergence, the second term converges to

− 2

(2π)N/2

1

(2π)N/2
‖ĝ‖2

L2(RN )
.

This simple computation establishes the strong convergence in L2(RN ).

3. Higher Bloch modes are negligible. In this section, we consider a se-
quence of solutions uε of the equation with f ∈ H−1(RN ):

Aεuε = f in R
N , uε ∈ H1(RN ).(3.1)

Let us recall that the above equation is equivalent to (1.20) in the Bloch space. In
what follows, we present a systematic method of obtaining estimates on the solution
in Sobolev spaces L2 and H1. In particular, we show that the component of uε in the
higher Bloch modes does not play any role in the analysis of correctors of first and
second order provided f is sufficiently smooth. Thus we consider vε defined in (1.21),
which is nothing but the projection of uε corresponding to all higher Bloch modes.
Estimates on vε derived in this section improve Proposition 1.4.
Proposition 3.1. We have the following estimates for f ∈ L2(RN ):
(i) |vε|

H1(RN )
≤ cε‖f‖

L2(RN )
,

(ii) ‖vε‖
L2(RN )

≤ cε‖f‖
H−1(RN )

.

Proof. To show (i), we apply Lemma 2.1 with g = vε and use (1.20). We obtain

‖∇vε‖2

L2(RN )N
≤ c

∫
ε−1Y ′

∞∑
m=2

1

λε
m(ξ)

|Bε
mf(ξ)|2dξ

≤ c sup
m≥2, ξ∈ε−1Y ′

1

λε
m(ξ)

‖f‖2

L2(RN )
.
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BLOCH APPROXIMATION 1183

Proof of (i) is complete since we have (cf. (1.25))

sup
m≥2, ξ∈ε−1Y ′

1

λε
m(ξ)

≤ 1

λ
(N)
2

ε2.(3.2)

For the proof of (ii), we apply Lemma 2.2 with g = f and (1.20). We have

‖vε‖2

L2(RN )
=

∫
ε−1Y ′

∞∑
m=2

|Bε
muε(ξ)|2dξ

=

∫
ε−1Y ′

∞∑
m=2

1

λε
m(ξ)2

|Bε
mf(ξ)|2dξ.

Writing

1

λε
m(ξ)2

|Bε
mf(ξ)|2 = 1 + λε

m(ξ)

λε
m(ξ)2

|Bε
mf(ξ)|2

1 + λε
m(ξ)

and using (3.2), we deduce that

1

λε
m(ξ)2

|Bε
mf(ξ)|2 ≤ cε2

|Bε
mf(ξ)|2

1 + λε
m(ξ)

.

The proof is complete if we use Lemma 2.2.
While the above proposition shows that vε can be neglected at the level of the

first order correctors (cf. (1.10)), the next result will demonstrate that vε can be
neglected at the level of correctors of first and second order. These finer estimates
require naturally higher order regularity of f but not of the coefficients ak�(y). Let us
state the following proposition, whose proof is similar to the previous one and hence
will not be repeated.
Proposition 3.2. We have the following estimates for f ∈ H1(RN ):
(i) |vε|

H1(RN )
≤ cε2‖f‖

H1(RN )
,

(ii) ‖vε‖
L2(RN )

≤ cε2‖f‖
L2(RN )

.

Assuming ak� are in W 1,∞
# (Y ) and further assumptions, we can obtain H2-

estimates on the solution. This is difficult as it involves more subtleties (see [12]).

4. Taylor expansion of the first Bloch eigenvalue and eigenvector. The
purpose of this section is to indicate a systematic method to compute derivatives
of the first Bloch eigenvalue λ1(η) and the first Bloch eigenvector φ1(·; η) at η = 0.
In particular, we will prove Propositions 1.9 and 1.10. Recall that λ1(η) and φ1(·; η)
depend analytically on η in a small neighborhood Bδ of η = 0. At the cost of reducing
this neighborhood, we claim that the branch η �→ φ1(·; η) can be chosen so that the
following conditions are satisfied simultaneously:

η ∈ Bδ �→ φ1(·; η) ∈ H1
#(Y ) is analytic,(4.1)

‖φ1(·; η)‖L2(Y ) = 1 ∀η ∈ Bδ,(4.2)

Im

∫
Y

φ1(y; η)dy = 0 ∀η ∈ Bδ.(4.3)
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1184 C. CONCA, R. ORIVE, AND M. VANNINATHAN

In what follows, we will see that the above conditions uniquely fix the eigenvector
φ1(·; η). We remark that the condition (4.2) is classical, whereas the condition (4.3)
is somewhat unusual and can be achieved as indicated below. The idea consists of
multiplying φ1(·; η) by a complex number (α1(η)+ iα2(η)) where α1(η) and α2(η) are
real analytic with respect to η and are chosen such that

Im

∫
Y

(α1(η) + iα2(η))φ1(y; η)dy = 0.

If we define

d(η) = (d1(η), d2(η))
def
=

(
Im

∫
Y

φ1(y; η)dy,Re

∫
Y

φ1(y; η)dy

)
,

then the above condition is equivalent to

α1(η)d1(η) + α2(η)d2(η) = 0 ∀η ∈ Bδ.

Obviously, one such choice which is analytic is as follows:

α1(η) = −d2(η), α2(η) = d1(η).

Of course, the above procedure has destroyed condition (4.2) (but not condition (4.1)).
However, it can be regained by dividing by |d(η)|. This is possible because d(0) �= 0
by our choice of φ1(·; 0) (see Proposition 1.5).

Thanks to our choice of the branch satisfying (4.1)–(4.3), we will now draw some
consequences which will simplify the computations below. In fact, differentiating (4.2)
with respect to η, we successively get for all k, �,m, n = 1, . . . , N

Re〈Dkφ1(·; η), φ1(·; η)〉 = 0,(4.4)

Re〈D2
k�φ1(·; η), φ1(·; η)〉+ Re〈Dkφ1(·; η), D�φ1(·; η)〉 = 0,(4.5)

{
Re〈D3

k�mφ1(·; η), φ1(·; η)〉+ Re〈D2
k�φ1(·; η), Dmφ1(·; η)〉

+ Re〈D2
kmφ1(·; η), D�φ1(·; η)〉+ Re〈Dkφ1(·; η), D2

�mφ1(·; η)〉 = 0,
(4.6)



Re〈D4
k�mnφ1(·; η), φ1(·; η)〉+ Re〈D3

k�mφ1(·; η), Dnφ1(·; η)〉
+ Re〈D3

k�nφ1(·; η), Dmφ1(·; η)〉+ Re〈D2
k�φ1(·; η), D2

mnφ1(·; η)〉
+ Re〈D3

kmnφ1(·; η), D�φ1(·; η)〉+ Re〈D2
kmφ1(·; η), D2

�nφ1(·; η)〉
+ Re〈D2

knφ1(·; η), D2
�mφ1(·; η)〉+ Re〈Dkφ1(·; η), D3

�mnφ1(·; η)〉 = 0,

(4.7)

where 〈·; ·〉 denotes the scalar product in L2
#(Y ). On the other hand, differentiation

of (4.3) yields

Im

∫
Y

Dβφ1(y; η)dy = 0 ∀ β ∈ Z
N
+ .(4.8)

From these sets of relations, it follows that∫
Y

Dβφ1(y; 0)dy = 0 ∀ β ∈ Z
N
+ with |β| odd.(4.9)
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BLOCH APPROXIMATION 1185

4.1. First order derivatives. If we differentiate the eigenvalue equation
(A(η)− λ1(η))φ1(·; η) = 0 once with respect to ηk, we obtain

Dk(A(η)− λ1(η))φ1(·; η) + (A(η)− λ1(η))Dkφ1(·; η) = 0.(4.10)

Taking the scalar product with φ1(·; η), we get

〈[Dk(A− λ1)]φ1, φ1〉 = 0,(4.11)

where we have suppressed the dependence on η for ease of writing. We will continue
with this convention in what follows provided there is no ambiguity. It follows from
(1.18) that

DkA(0) = iCk ∀η ∈ Y ′,(4.12)

where the operator Ck is defined in (1.19).
If we evaluate the relation (4.11) at η = 0 and use the structure of Ck, we

immediately get that

Dkλ1(0) = 0 ∀k = 1, . . . , N.(4.13)

The next step is to compute the first order derivatives of φ1 at η = 0. To this end,
we go back to (4.10) and use (4.13). We obtain

ADkφ1(·; 0) = −DkA(0)φ1(·; 0) = −iCkφ1(·; 0).

Taking into account (4.9) and the above equation, we can solve for Dkφ1(y; 0) and
obtain

Dkφ1(y; 0) = iφ1(y; 0)χk
(y) = ip(0)χ

k
(y),(4.14)

where, we recall, χk satisfies (1.13) and the constant p(0) was fixed in Proposition 1.5.
Thus, the first order derivative is completely determined and

Dkφ1(y; 0) is purely imaginary.(4.15)

4.2. Second order derivatives. Our starting point is the relation (4.10), which
we differentiate once with respect to η. We obtain

[D2
k�(A− λ1)]φ1 + [Dk(A− λ1)]D�φ1 + [D�(A− λ1)]Dkφ1 + (A− λ1)D

2
k�φ1 = 0.

(4.16)

Taking the scalar product with φ1, we get

〈[D2
k�(A− λ1)]φ1, φ1〉+ 〈[Dk(A− λ1)]D�φ1, φ1〉+ 〈[D�(A− λ1)]Dkφ1, φ1〉 = 0(4.17)

for all η ∈ Bδ. If we use the information obtained in section 4.1 onDkλ1(0),Dkφ1(·; 0),
DkA(0), and

D2
k�A(η) = 2ak�(y) ∀k, � = 1, . . . , N, η ∈ Y ′,(4.18)
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1186 C. CONCA, R. ORIVE, AND M. VANNINATHAN

we obtain

1

2!
D2

k�λ1(0) =
1

|Y |
∫
Y

ak�(y)dy − 1

2|Y |
∫
Y

(Ckχ�
(y) + C�χk

(y))dy

=
1

2
(qk� + q�k) = qk� ∀k, � = 1, . . . , N.(4.19)

As before, the next step is to compute D2
k�φ1(·; 0). For this purpose, we go back to

(4.16) and rewrite it with η = 0 as follows:

AD2
k�φ1(·; 0) =

{
−2(ak� − qk�) + Ckχ�

+ C�χk

}
φ1(·; 0).

By comparing the above equation with (1.30) and using the simplicity of the eigenvalue
under consideration, we see that D2

k�φ1(·; 0) is of the form
1

2!
D2

k�φ1(y; 0) = −p(0)χ
k�
(y)− β

(2)
k� p

(0)

for some constant β
(2)
k� . Thanks to (4.5) and (4.8), we can infer that

β
(2)
k� and D2

k�φ1(·; 0) are real.(4.20)

Moreover, β
(2)
k� admits the expression given in Proposition 1.10.

4.3. Third order derivatives. From the calculations done so far, it is now
clear how to proceed further to calculate higher order derivatives. Therefore we will
be brief here. Differentiating (4.16), we get

[D3
k�m(A− λ1)]φ1 + [D2

k�(A− λ1)]Dmφ1 + [D2
�m(A− λ1)]Dkφ1

+ [D2
km(A− λ1)]D�φ1 + [Dk(A− λ1)]D

2
�mφ1 + [D�(A− λ1)]D

2
kmφ1

+ [Dm(A− λ1)]D
2
k�φ1 + (A− λ1)D

3
k�mφ1 = 0.

(4.21)

Taking the scalar product with φ1, we get
〈[D3

k�m(A− λ1)]φ1, φ1〉+ 〈[D2
k�(A− λ1)]Dmφ1, φ1〉+ 〈[D2

�m(A− λ1)]Dkφ1, φ1〉
+ 〈[D2

km(A− λ1)]D�φ1, φ1〉+ 〈[Dk(A− λ1)]D
2
�mφ1, φ1〉

+ 〈[D�(A− λ1)]D
2
kmφ1, φ1〉+ 〈[Dm(A− λ1)]D

2
k�φ1, φ1〉 = 0.

(4.22)
To conclude that D3

k�mλ1(0) = 0, it is enough to use the following information in the
above relation:{

DkA is purely imaginary, D2
k�A is real, D3

k�mA = 0,

φ1(0), D
2
k�φ1(0) are real, Dkφ1(0) is purely imaginary.

(4.23)

It is evident that the above argument is very general and so can be used to establish
that all odd order derivatives of λ1 at η = 0 vanish. This proves the first part of
Proposition 1.9.
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BLOCH APPROXIMATION 1187

To find the third order derivatives of φ1 at η = 0, we realize that (4.21) defines
a periodic problem for D3

k�mφ1(·; 0) which can be compared with (1.31). Further, the
relation (4.9) says that its average vanishes. These observations are enough to get the
expression of D3

k�mφ1(·; 0) given in Proposition 1.10. We conclude by observing the
following important property:

D3
k�mφ1(y; 0) is purely imaginary.(4.24)

4.4. Fourth order derivatives. To arrive at the expressions for the fourth
order derivatives of λ1 and φ1 at η = 0 given in Propositions 1.9 and 1.10, we follow
the same arguments as in section 4.3.

5. Convergence of the first Bloch transform to the Fourier transform.
This section is devoted to the proof of the next proposition which shows the sense in
which the Fourier transform is approximated by the first Bloch transform.
Proposition 5.1.
(i) For every g ∈ L2(RN ) with compact support, we have

χ
ε−1Y ′(ξ)B

ε
1g(ξ) → ĝ(ξ) in L∞

loc(R
N
ξ ).

(ii) If g ∈ L2(RN ), we have

χ
ε−1Y ′(ξ)B

ε
1g(ξ) → ĝ(ξ) in L2(RN

ξ ).

This will be a consequence of a more general result. In order to state it, we need
to introduce some new notations. We associate with every function ρ = ρ(y; η) defined
on Y × Y ′ which is Y -periodic in y the following function:

ρ̃(0)(η) =
1

|Y |
∫
Y

ρ(y; η)e−iy·ηdy, η ∈ Y ′.(5.1)

With this notation, we have the following proposition.
Proposition 5.2. We suppose ρ ∈ L∞(Y ′;L2

#(Y )). Then for all g ∈ W 1,p(RN )
with compact support K and with p > N , we have

χ
ε−1Y ′(ξ)

(
Jεg(ξ)− (2π)N/2ρ̃(0)(εξ)ĝ(ξ)

)
→ 0 in L2(RN

ξ ),(5.2)

where, we recall, Jεg was defined in (2.8).
The proof will be taken up later. Admitting it for the moment, we turn our

attention to the following proof.
Proof of Proposition 5.1. If g ∈ L2(RN ) with compact support K, we have for all

ξ ∈ R
N

|χ
ε−1Y ′(ξ)B

ε
1g(ξ) − ĝ(ξ)| ≤ |χ

ε−1Y ′(ξ)(B
ε
1g(ξ)− ĝ(ξ))|+ |(χ

ε−1Y ′(ξ)− 1)ĝ(ξ)|

≤ c|K|‖g‖L2(RN )‖φ1(·; εξ)− φ1(·; 0)‖L2(Y )
+ |(χ

ε−1Y ′(ξ)− 1)ĝ(ξ)|.

If |ξ| is bounded, then by using the fact that the map η �→ φ1(·; η) ∈ L2
#(Y ) is

Lipschitz near η = 0, we deduce

||φ1(·; εξ)− φ1(·; 0)‖L2(Y )
≤ cε.
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1188 C. CONCA, R. ORIVE, AND M. VANNINATHAN

This completes the proof of (i).
The proof of (ii) is more involved. First, according to Theorem 1.3, we have the

uniform estimate ∫
ε−1Y ′

|Bε
1g(ξ)|2dξ ≤

∫
RN

|g(x)|2dx,

and so, by the usual density arguments, it is enough to prove (ii) with g ∈ D(RN ).
We can now complete the proof using Proposition 5.2. Indeed, with ρ = φ̄1, we see
that

ρ̃(0)(εξ) → p(0) and Bε
1g(ξ) = Jεg(ξ) ∀ξ ∈ R

N ,

which implies, by Lebesgue’s dominated convergence theorem, that

(2π)N/2χ
ε−1Y ′(ξ)ρ̃

(0)(εξ)ĝ(ξ) → ĝ(ξ) in L2(RN
ξ ).

Proof of Proposition 5.2. The key point is that the variation of ρ(xε ; εξ) with
respect to x is faster than that of g. To exploit this, we consider the ε-mesh {Y ε

� }�∈ZN

generated by the cell εY which was already introduced at the end of section 2. We
decompose

Jεg(ξ) =
∑
�∈ZN

∫
Y ε
�

g(x)e−ix·ξρ
(x
ε
; εξ

)
dx(5.3)

=
∑
�∈ZN

g(xε
�)

∫
Y ε
�

e−ix·ξρ
(x
ε
; εξ

)
dx+ rε1(ξ),

where

rε1(ξ) =
∑
�∈ZN

∫
Y ε
�

(g(x)− g(xε
�))e

−ix·ξρ
(x
ε
; εξ

)
dx.(5.4)

The first term on the right-hand side of (5.3) can be, by means of the change of
variables x = xε

� + εy, transformed into

|Y |εNF εg(ξ)ρ̃(0)(εξ),

where F εg is the discrete Fourier transform of g and ρ̃(0) is defined in (5.1). Since
we know that χε−1Y ′(ξ)εNF εg(ξ) → 1

(2π)N/2 ĝ(ξ) in L2(RN ) (cf. Lemma 2.6), our

hypothesis on ρ ensures that∥∥∥χ
ε−1Y ′(ξ)

{
|Y |εNF εg(ξ)− (2π)N/2ĝ(ξ)

}
ρ̃(0)(εξ)

∥∥∥
L2(RN )

→ 0.(5.5)

Thus, to complete the proof, it is enough to show that

‖rε1‖L2(ε−1Y ′)
≤ c(K)

(1− N
p )

ε‖ρ‖
L∞(Y ′;L2

#
(Y ))

‖∇g‖
Lp(RN )

.(5.6)

To this end, we rewrite rε1 in a slightly different form, namely,

rε1(ξ) =

∫
RN

g̃ε1(x)e
−ix·ξρ

(x
ε
; εξ

)
dx,(5.7)
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BLOCH APPROXIMATION 1189

where

g̃ε1(x) =
∑
�∈ZN

(g(x)− g(xε
�))χY ε

�

(x).(5.8)

We already know how to estimate integrals of the type (5.7) in L2(RN ) (see Lemma
2.5), and so we can deduce (5.6) provided we have the estimate

‖g̃ε1‖L2(RN )
≤ c(K)

(1− N
p )

ε‖∇g‖
Lp(RN )

.(5.9)

Thanks to our hypothesis, we can deduce a stronger estimate, namely,

‖g̃ε1‖Lp(RN )
≤ c

(1− N
p )

ε‖∇g‖
Lp(RN )

,(5.10)

where c is a constant independent of K, the support of g. We note that (5.10) is a
simple consequence of Morrey’s estimate (see [7, p. 167]).

Finally, we note that (5.9) can be obtained from (5.10) with c(K) = c|K|1− 2
p and

a simple application of the Hölder inequality.
The proof of Proposition 5.2 shows that the result can be strengthened by as-

suming suitable smoothness on g. Our next result is an example in this direction. It
introduces naturally the following quantities:

ρ̃(k)(η) =
1

|Y |
∫
Y

ρ(y; η)yke
−iy·ηdy ∀k = 1, . . . , N, η ∈ Y ′.(5.11)

Then we have the following corrector result for Jεg.
Proposition 5.3. We suppose ρ ∈ L∞(Y ′;L2

#(Y )). Then for all g ∈ W 2,p(RN )
with compact support K and with p > N , we have

χ
ε−1Y ′(ξ)

{
Jεg(ξ)− (2π)N/2

[
ρ̃(0)(εξ) + iεξkρ̃

(k)(εξ)
]
ĝ(ξ)

}
→ 0 in L2(RN

ξ ).

Proof. We follow the idea of the proof of Proposition 5.2. We decompose Jεg(ξ)
as

Jεg(ξ) =
∑
�∈ZN

∫
Y ε
�

{g(xε
�) +∇g(xε

�) · (x− xε
�)} e−ix·ξρ

(x
ε
; εξ

)
dx+ rε2(ξ),(5.12)

where

rε2(ξ) =
∑
�∈ZN

∫
Y ε
�

{g(x)− g(xε
�)−∇g(xε

�) · (x− xε
�)} e−ix·ξρ

(x
ε
; εξ

)
dx.(5.13)

We can estimate rε2(ξ) as follows:

‖rε2‖L2(ε−1Y ′)
≤ c(K)

(2− N
p )

ε2‖ρ‖
L∞(Y ′;L2

#
(Y ))

|g|
W 2,p(RN )

.(5.14)

This, in fact, will be a consequence of Lemma 2.5, because we can represent rε2 as
follows:

rε2(ξ) =

∫
RN

g̃ε2(x)e
−ix·ξρ

(x
ε
; εξ

)
dx(5.15)
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1190 C. CONCA, R. ORIVE, AND M. VANNINATHAN

with

g̃ε2(x) =
∑
�∈ZN

(g(x)− g(xε
�)−∇g(xε

�) · (x− xε
�))χY ε

�

(x),(5.16)

which admits the following estimates:

‖g̃ε2‖L2(RN )
≤ c(K)

(2− N
p )

ε2|g|
W 2,p(RN )

,(5.17)

‖g̃ε2‖Lp(RN )
≤ c

(2− N
p )

ε2|g|
W 2,p(RN )

.(5.18)

As before, (5.17) will be a consequence of (5.18) with c(K) = c|K|1− 2
p .

To establish (5.18), what we need is a generalization of Morrey’s inequality for
W 2,p functions, namely,

|g(x)−g(xε
�)−∇g(xε

�) · (x−xε
�)|≤

c

(2−N
p )

|x−xε
� |2−

N
p |g|

W 2,p(Y ε
�

)
∀x∈Y ε

� .(5.19)

Admitting the above estimate, it is an easy matter to prove (5.18). But the above
estimate is a consequence of Morrey’s inequality for the gradient ∇g ∈ W 1,p(RN ) and
the following representation: for all x ∈ Y ε

� ,

g(x)− g(xε
�)−∇g(xε

�) · (x− xε
�) =

∫ 1

0

{∇g((1− t)xε
� + tx)−∇g(xε

�)} · (x− xε
�)dt.

This completes the proof of the estimate (5.14) on rε2. Thus, as expected, r
ε
2 tends to

zero more rapidly. The same cannot be said for the first term on the right-hand side
of (5.12). Indeed, it is equal to

|Y |
[
εN (F εg)(ξ)ρ̃(0)(εξ) + εN+1

(
F ε ∂g

∂xk

)
(ξ)ρ̃(k)(εξ)

]
.(5.20)

According to Lemma 2.6, we have the following convergence (apart from (5.5)):

χ
ε−1Y ′

{
|Y |

[
εN

(
F ε ∂g

∂xk

)
(ξ)− 1

(2π)N/2
iξkĝ(ξ)

]
ρ̃(k)(εξ)

}
→ 0 in L2(RN

ξ ).(5.21)

This clearly allows us to complete the proof.

6. Proof of the main convergence results. Applying the previously devel-
oped techniques and results, we are now in a position to prove the main convergence
results stated in section 1.2 of the introduction (namely, Theorems 1.8 and 1.11 and
the statement (1.8)). We begin by recalling briefly the set-up. We take f ∈ L2(RN )
and consider a sequence uε satisfying (1.9), i.e.,

Aεuε = f in R
N ,

uε ⇀ u∗ in H1(RN )-weak,

uε → u∗ in L2(RN )-strong.

(6.1)D
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BLOCH APPROXIMATION 1191

6.1. No concentration of energy at infinity. Our hypothesis that uε → u∗

in L2(RN )-strong may, at first sight, look artificial. But this in not the case. If Ω
is bounded and smooth, then it is classical that the weak convergence in H1(Ω) will
automatically imply the strong convergence in L2(Ω). This is not the case in R

N . To
make comparisons, the correct operator to consider is (Aε + I) instead of Aε in R

N .
In that case, we have the following.
Proposition 6.1. Assume that wε satisfies{

(Aε + I)wε = g in R
N ,

wε ⇀ w∗ in H1(RN )-weak,
(6.2)

where g is a given function in L2(RN ). Then

wε → w∗ in L2(RN )-strong.

Proof. First of all, following the idea of Proposition 3.1, we can neglect higher
Bloch modes of wε and w∗. More precisely, we can show∫

ε−1Y ′

∞∑
m=2

|Bε
mwε(ξ)|2dξ ≤ cε4,

∫
ε−1Y ′

∞∑
m=2

|Bε
mw∗(ξ)|2dξ ≤ cε2.

Therefore, it remains to prove∫
ε−1Y ′

|Bε
1w

ε(ξ)−Bε
1w

∗(ξ)|2dξ → 0.(6.3)

Equation (6.2) gives the relation

(1 + λε
1(ξ))B

ε
1w

ε(ξ) = Bε
1g(ξ), ξ ∈ ε−1Y ′.

We use it to write

χ
ε−1Y ′(ξ)(B

ε
1w

ε(ξ)−Bε
1w

∗(ξ)) = χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε
1(ξ)

−ŵ∗(ξ)− (χ
ε−1Y ′(ξ)B

ε
1w

∗(ξ)− ŵ∗(ξ)).

According to Proposition 5.1, the last term tends to zero in L2(RN ). It suffices to
show

χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε
1(ξ)

− ŵ∗(ξ) → 0 in L2(RN
ξ ).(6.4)

Note that w∗ satisfies the homogenized equation A∗w∗ + w∗ = g in R
N , which is

equivalent to (
1

2
D2

k�λ1(0)ξkξ� + 1

)
ŵ∗(ξ) = ĝ(ξ), ξ ∈ R

N .
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1192 C. CONCA, R. ORIVE, AND M. VANNINATHAN

So, (6.4) is reduced to

χ
ε−1Y ′(ξ)

Bε
1g(ξ)

1 + λε
1(ξ)

− ĝ(ξ)

1 + 1
2D

2
k�λ1(0)ξkξ�

→ 0 in L2(RN
ξ ).(6.5)

The above expression can be written in the form

aε + bε

cε
,

where

aε =

(
1 +

1

2
D2

k�λ1(0)ξkξ�

)[
χ
ε−1Y ′(ξ)B

ε
1g(ξ)− ĝ(ξ)

]
,

bε = −
(
λε

1(ξ)−
1

2
D2

k�λ1(0)ξkξ�

)
ĝ(ξ),

cε = (1 + λε
1(ξ))

(
1 +

1

2
D2

k�λ1(0)ξkξ�

)
.

Now we have the convergence

aε

cε
=

χ
ε−1Y ′(ξ)B

ε
1g(ξ)− ĝ(ξ)

1 + λε
1(ξ)

→ 0 in L2(RN
ξ )

because [1 + λε
1(ξ)] ≥ 1 and by the virtue of Proposition 5.1.

The convergence of bε

cε is not immediate. To show this, we split the energy into
three parts, taking γ > 0 as a fixed constant:∫

|ξ|≤δε−1

|ξ|≤γ

(
bε

cε

)2

dξ +

∫
|ξ|≤δε−1

|ξ|>γ

(
bε

cε

)2

dξ +

∫
|ξ|>δε−1

(
bε

cε

)2

dξ.

In the first two parts, we use the estimate∣∣∣∣λε
1(ξ)−

1

2
D2

k�λ1(0)ξkξ�

∣∣∣∣ ≤ c|ξ|3ε for |ξ| ≤ δε−1,(6.6)

which holds since λ1(0) = Dλ1(0) = 0 (see Proposition 1.5). In the first integral, we
have cε ≥ 1 and |bε(ξ)| ≤ cγ3ε|ĝ(ξ)|, and consequently it is less than

cε2
∫

RN

|ĝ(ξ)|2dξ

and hence converges to zero. In the second integral, we have

cε ≥ 1

2
λε

1(ξ)D
2
k�λ1(0)ξkξ� ≥ c|ξ|4 ≥ cγ|ξ|3 since |ξ| ≥ γ > 0.

With regards to bε, we still have |bε(ξ)| ≤ c|ξ|3ε|ĝ(ξ)|, and so the second integral also
converges to zero.

In the third integral, we use the bounds

|bε| ≤
(
λε

1(ξ) +
1

2
D2

k�λ1(0)ξkξ�

)
|ĝ(ξ)|,

cε ≥ λε
1(ξ) +

1

2
D2

k�λ1(0)ξkξ�.
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BLOCH APPROXIMATION 1193

Thus the third integral is estimated from above by∫
|ξ|>δε−1

|ĝ(ξ)|2dξ.

Obviously, this tends to zero as ε → 0 since g ∈ L2(RN ).

6.2. Corrector result in R
N . This section is devoted to the proof of Theo-

rem 1.8 concerning the Bloch approximation θε. The proof consists of several steps
which correspond to estimations of the required energy in different regions in the
Fourier space (in a neighborhood of the origin |η| ≤ δ and in its complement |η| > δ).

Step 1. We decompose uε as follows:

uε = vε + P ε
1u

ε,

where vε and P ε
1u

ε are defined in (1.21) and (1.27), respectively. Thanks to Proposi-
tion 3.1, it is enough to prove

‖P ε
1u

ε − θε‖
L2(RN )

→ 0,(6.7)

|P ε
1u

ε − θε|
H1(RN )

≤ cε‖f‖L2(RN ).(6.8)

Step 2. We estimate the energies in the region |ξ| > δε−1. To this end, we
introduce the quantities

θε,δ(x) =

∫
ξ∈ε−1Y ′
|ξ|>δε−1

û∗(ξ)eix·ξφε
1(x; ξ)dξ,(6.9)

P ε,δ
1 uε(x) =

∫
ξ∈ε−1Y ′
|ξ|>δε−1

Bε
1u

ε(ξ)eix·ξφε
1(x; ξ)dξ.(6.10)

We will obtain the estimates

‖θε,δ‖
L2(RN )

≤ cε‖f‖
H−1(RN )

,(6.11)

|θε,δ|
H1(RN )

≤ cε‖f‖
L2(RN )

,(6.12)

‖P ε,δ
1 uε‖

L2(RN )
≤ cε‖f‖

H−1(RN )
,(6.13)

|P ε,δ
1 uε|

H1(RN )
≤ cε‖f‖

L2(RN )
.(6.14)

We start with (6.14). Using Lemma 2.3 with ρ = φ1 and inequalities (2.5), we get

|P ε,δ
1 uε|2

H1(RN )
≤ c

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|Bε
1u

ε(ξ)|2λε
1(ξ)dξ.

Now (6.14) easily follows if we use (1.22) and (1.24). Next, we prove (6.12). Following
the above procedure, we get

|θε,δ|2
H1(RN )

≤ c

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|û∗(ξ)|2|ξ|2dξ.(6.15)
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1194 C. CONCA, R. ORIVE, AND M. VANNINATHAN

If f ∈ L2(RN ), then it is well known that u∗ ∈ H2(RN ) and∫
RN

|ξ|4|û∗(ξ)|2dξ ≤ c

∫
RN

|f̂(ξ)|2dξ.(6.16)

Combining (6.15) and (6.16), we easily get (6.12). We now show (6.11). By Parseval’s
identity, we have

‖θε,δ‖2

L2(RN )
=

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|û∗(ξ)|2dξ ≤ cδε
2

∫
ξ∈ε−1Y ′
|ξ|>δε−1

|ξ|−2|f̂(ξ)|2dξ,

since u∗ and f are related by the homogenized equation A∗u∗ = f in R
N . This clearly

implies

‖θε,δ‖2

L2(RN )
≤ cδε

2

∫
ξ∈ε−1Y ′
|ξ|>δε−1

(1 + |ξ|2)−1|f̂(ξ)|2dξ = cδε
2‖f‖2

H−1(RN )
.

The proof of (6.13) is completely analogous.
Step 3. Now, we consider the energies in |ξ| ≤ δε−1. To this end, let us define

ωε(x) =

∫
|ξ|≤δε−1

(Bε
1u

ε(ξ)− û∗(ξ))eix·ξφε
1(x; ξ)dξ(6.17)

and show that

‖ωε‖
L2(RN )

→ 0,(6.18)

|ωε|
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.19)

To prove (6.18), we decompose the integrand as follows:

Bε
1u

ε − û∗ = Bε
1(u

ε − u∗) + (Bε
1u

∗ − û∗).

By Parseval’s equality, the first term in the L2-norm is bounded above by ‖uε −
u∗‖L2(RN ) which, by our hypothesis, converges to zero. That the second term con-

verges to zero in L2(RN ) is proved in Proposition 5.1.
Next, we turn are attention to the proof of (6.19). By Lemma 2.1, we have

|ωε|2H1(RN ) ≤ c

∫
|ξ|≤δε−1

λε
1(ξ)|Bε

1u
ε(ξ)− û∗(ξ)|2dξ.(6.20)

To estimate the above integral, we write the integrand as

Bε
1u

ε(ξ)− û∗(ξ) = λε
1(ξ)

−1(Bε
1f(ξ)− f̂(ξ)) +

[
λε

1(ξ)
−1 −

(1
2
D2

k�λ1(0)ξk ξ�

)−1]
f̂(ξ).

Thus we get, using (1.24), that
|ωε|2

H1(RN )
≤ c

∫
|ξ|≤δε−1

|Bε
1f(ξ)− f̂(ξ)|2

|ξ|2 dξ

+ c

∫
|ξ|≤δε−1

λε
1(ξ)

∣∣∣λε
1(ξ)

−1−
(1
2
D2

k�λ1(0)ξkξ�

)−1∣∣∣2|f̂(ξ)|2dξ.
(6.21)D
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BLOCH APPROXIMATION 1195

To estimate the first term on the right-hand side of (6.21), we represent the integrand
as

Bε
1f(ξ)− f̂(ξ)

|ξ| =

∫
RN

f(x)e−ix·ξ (φ
ε
1(x; ξ)− φε

1(x; 0))

|ξ| dx.

Applying Lemma 2.5 and using ‖φ1(·; η)− φ1(·; 0)‖L2(Y ) ≤ c|η| for |η| ≤ δ, we get∫
|ξ|≤δε−1

|Bε
1f(ξ)− f̂(ξ)|2

|ξ|2 dξ ≤ cε2‖f‖2

L2(RN )
.

The second term on the right-hand side of (6.21) can be rewritten, using the homog-
enized equation, as ∫

|ξ|≤δε−1

|λε
1(ξ)− 1

2D
2
k�λ1(0)ξkξ�|2

λε
1(ξ)

|û∗(ξ)|2dξ.

Using (6.6) and (1.24), we see that the above integral is estimated from above by

cε2
∫
|ξ|≤δε−1

|ξ|4|û∗(ξ)|2dξ ≤ cε2‖f‖2

L2(RN )
.

This establishes (6.19) and hence the result.

6.3. Asymptotic expansion of the Bloch approximation. In this conclud-
ing section, we prove Theorem 1.11.

Proof of (i). We have the following decomposition:

θε(x)− u∗(x) = zε(x) + θε,δ(x) + u∗,δ(x),(6.22)

where

zε(x) =

∫
ξ∈ε−1Y ′
|ξ|≤δε−1

û∗(ξ)eix·ξ(φε
1(x; ξ)− φε

1(x; 0))dξ,(6.23)

u∗,δ(x) =
1

(2π)N/2

∫
|ξ|>δε−1

û∗(ξ)eix·ξdξ,(6.24)

and θε,δ is defined in (6.9).
The second term has already been estimated in the L2-norm (see (6.11)). The

same proof shows that the third term admits a bound

‖u∗,δ‖
L2(RN )

≤ cε‖f‖
H−1(RN )

≤ cε‖u∗‖
H1(RN )

.(6.25)

To estimate the first term on the right-hand side of (6.22), we must proceed
differently. In fact, it is essential to use Lemma 2.3. We see then that

‖zε‖2

L2(RN )
=

∫
ξ∈ε−1Y ′
|ξ|≤δε−1

|û∗(ξ)|2‖φε
1(·; ξ)− φε

1(·; 0)‖2

L2(Y )
dξ.

Using the Lipschitz continuity of the map η �→ φ1(·; η) ∈ L2(Y ) for |η| ≤ δ, we see
that the above integral can be majorized, and we obtain

‖zε‖2

L2(RN )
≤ cε2

∫
|ξ|≤δε−1

|û∗(ξ)|2|ξ|2dξ ≤ cε2|u∗|2
H1(RN )

.(6.26)
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1196 C. CONCA, R. ORIVE, AND M. VANNINATHAN

This finishes the proof of (i). We note that we cannot, in general, assert that

|u∗|
H1(RN )

≤ c‖f‖
H−1(RN )

as we are working on the entire space R
N .

Proof of (ii). Because of (i), it suffices to prove∣∣∣θε − u∗ − εχε

k

∂u∗

∂xk

∣∣∣
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.27)

To this end, we use once again the decomposition (6.22) for (θε − u∗) in terms of zε,
θε,δ, and u∗,δ. For θε,δ, we have the estimate (6.12). For u∗,δ, we can easily derive
the estimate

|u∗,δ|2
H1(RN )

≤ c

∫
|ξ|>δε−1

|ξ|2|û∗(ξ)|2dξ ≤ cδε
2‖f‖2

L2(RN )
.(6.28)

Thus, we are reduced to obtaining the estimate∣∣∣zε − εχε

k

∂u∗

∂xk

∣∣∣
H1(RN )

≤ cε‖f‖
L2(RN )

.(6.29)

To this end, we use the representation

∂u∗

∂xk
(x) =

1

(2π)N/2

∫
RN

(iξk)û
∗(ξ)eix·ξdξ,

and combine it with the representation (6.23) for zε. We get

zε(x)− εχε

k
(x)

∂u∗

∂xk
(x) =

∫
|ξ|≤δε−1

û∗(ξ)eix·ξ
(
φε

1(x; ξ)− φε
1(x; 0)− ip(0)χε

k
(x)εξk

)
dξ

−
∫
|ξ|>δε−1

ip(0)χε

k
(x)εξkû

∗(ξ)eix·ξdξ.(6.30)

To estimate the first term on the right-hand side of (6.30), we appeal to Lemma 2.3.
Further, we use∥∥∥φ1(·; η)− φ1(·; 0)− ip(0)χ

k
(·)ηk

∥∥∥
H1(Y )

≤ c|η|2 for |η| ≤ δ.(6.31)

The estimate on the second term on the right-hand side of (6.30) is more straightfor-
ward. We finally get∣∣∣∣zε − εχε

k

∂u∗

∂xk

∣∣∣∣2
H1(RN )

≤ cε2
∫

RN

|ξ|4|û∗(ξ)|2dξ.

This completes the proof of (6.29) and hence (ii).
Proof of (iii). Consider again the decomposition (6.22). Thanks to (6.9) and

(6.15), we have the estimates

‖θε,δ‖
L2(RN )

≤ cε2‖f‖
L2(RN )

,(6.32)

|θε,δ|
H1(RN )

≤ cε2|f |
H1(RN )

.(6.33)
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BLOCH APPROXIMATION 1197

Similar techniques imply

‖u∗,δ‖
L2(RN )

≤ cε2‖f‖
L2(RN )

,(6.34)

|u∗,δ|
H1(RN )

≤ cε2|f |
H1(RN )

.(6.35)

On the other hand, it is clear from the representation (6.30) that∥∥∥zε − εχε

k

∂u∗

∂xk

∥∥∥
L2(RN )

≤ cε2‖f‖
L2(RN )

.(6.36)

Thus, it is enough to obtain the estimate∣∣∣∣θε − u∗ − εχε

k

∂u∗

∂xk
+ ε2(χε

k�
+ β

(2)
k� )

∂2u∗

∂xk∂x�

∣∣∣∣
H1(RN )

≤ cε2|f |
H1(RN )

.(6.37)

Thanks to (6.33) and (6.35), we are reduced to showing that∣∣∣∣zε − εχε

k

∂u∗

∂xk
+ ε2(χε

k�
+ β

(2)
k� )

∂2u∗

∂xk∂x�

∣∣∣∣
H1(RN )

≤ cε2|f |
H1(RN )

.(6.38)

We can write

zε(x)− εχε

k
(x)

∂u∗

∂xk
(x) + ε2(χε

k�
(x) + β

(2)
k� )

∂2u∗

∂xk∂x�
(x)

=

∫
|ξ|≤δε−1

û∗(ξ)eix·ξ[φε
1(x; ξ)− φε

1(x; 0)− ip(0)χε

k
(x)εξki

+ p(0)(χε

k�
(x) + β

(2)
k� )ε

2ξkξ�]dξ

−
∫
|ξ|>δε−1

ip(0)χε

k
(x)εξkû

∗(ξ)eix·ξdξ

+

∫
|ξ|>δε−1

p(0)(χε

k�
(x) + β

(2)
k� )ε

2ξkξ�û
∗(ξ)eix·ξdξ.(6.39)

The analysis of the right-hand side of (6.39) is similar to that of (6.30). The new
information needed is the following:∥∥∥φ1(·; η)− φ1(·; 0)− ip(0)χ

k
(·)ηk + p(0)(χ

k�
(·) + β

(2)
k� )ηkη�

∥∥∥
H1(Y )

≤ c|η|3(6.40)

for |η| ≤ δ, which is a simple consequence of Proposition 1.10. The proof is concluded
via a simple application of Lemma 2.3.
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[6] F. Bloch, Über die quantenmechanik der electronen in kristallgittern, Z. Phys., 52 (1928),
pp. 555–600.
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