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Abstract
In this paper, we investigate the problem of the detection of a moving obstacle
in a perfect fluid occupying a bounded domain in R

2 from the measurement of
the velocity of the fluid on one part of the boundary. We show that when the
obstacle is a ball, we may identify the position and the velocity of its centre of
mass from a single boundary measurement. Linear stability estimates are also
established by using shape differentiation techniques.

1. Introduction

Inverse problems in fluid mechanics constitute a challenging topic with numerous potential
applications, ranging from engineering, medicine, and military surveillance to fishing. In
[4], the authors established that a fixed smooth convex obstacle surrounded by a real
fluid modellized by Navier–Stokes equations could be identified via a localized boundary
measurement of the velocity of the fluid and the Cauchy forces. Directional stability estimates
were also derived in the same paper. The results in [4] strongly rested on the unique
continuation property for the Stokes system due to Fabre–Lebeau [8]. In [6] the obstacle was
identified by a measurement of both the gradient of the pressure and the velocity of the fluid on
a part of the boundary, and the stability was established by shape differentiation. The distance
from a chosen point to the obstacle was estimated in [10] from boundary measurements for
a fluid governed by the stationary Stokes equation. As water is often considered as a perfect
fluid on a small time-scale, it is natural to wonder whether the above results are still valid
when the viscosity coefficient tends to zero, i.e., for an ideal fluid. The answer to that question
is of great importance for applications.
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In this paper, we shall address the issue of whether a moving obstacle surrounded by a
perfect fluid may be detected by the measurement of the tangential velocity of the fluid on one
part of the boundary. Assume a fixed domain � ⊂ R

2, and a rigid body S occupying the set
S(t) ⊂ � at time t. Let us denote by h(t) the centre of mass of S(t),m the mass of the rigid
body and J its moment of inertia. Then the equations modelling the dynamics of the system
solid + fluid read [19] as follows:

∂u

∂t
+ (u · ∇)u + ∇p = 0 (x, t) ∈ (�\S(t)) × R, (1.1)

div u = 0 (x, t) ∈ (�\S(t)) × R, (1.2)

u · n = (h′ + r(x − h)⊥) · n (x, t) ∈ ∂S(t) × R, (1.3)

u · n = g (x, t) ∈ ∂� × R, (1.4)

mh′′(t) =
∫

∂S(t)

pn dσ + f (t) t ∈ R, (1.5)

J r ′(t) =
∫

∂S(t)

(x − h(t))⊥ · pn dσ + T (t) t ∈ R. (1.6)

In these equations, u = u(x, t) (resp. p = p(x, t)) is the velocity (resp. the pressure) of the
fluid, g is the flow through the boundary � (just assumed to be given here), r is the angular
velocity of the solid, x⊥ = (−x2, x1) if x = (x1, x2), n is the outward unit normal vector
and f (t) (resp. T (t)) stands for the external force (resp. the external torque) applied to the
solid in addition to the contribution of the fluid pressure represented by the integral term. For
a rigid body without a self-propelling mechanism (i.e. f = T = 0) moving in the whole
space (� = R

2), it has been proved that system (1.1)–(1.6) admits a unique classical solution
defined for all times in [18, 19]. When � is a half-plane, the existence of chocks in finite time
between the rigid body and the boundary of the domain has been established in [12] when S
is a ball and u is a potential velocity.

In this paper, we focus on the determination of the position and the velocity of the obstacle
from a boundary measurement of the velocity of the fluid at a given time t. This means that
we will ignore the Newton laws (1.5) and (1.6) in our analysis. This setting is convenient in
situations where the self-propelling data, namely f and T, are not known. This is the case, for
example, when we aim to localize a submarine from a pressure measurement.

In contrast to what happens for Navier–Stokes equations, the Euler equations do not exhibit
any unique continuation property because of the existence of the famous ghost solutions with
compact support [16]. A simple example of a ghost solution is provided by the stationary
solution v(x) = (∂ψ/∂x2,−∂ψ/∂x1), where the stream function ψ is given by

ψ(x) = −
∫ |x|

1

1

r

(∫ r

1
sω(s) ds

)
dr

and the vorticity ω ∈ C∞(R+) is chosen so that ω(s) = 0 for s � 1 and
∫ 1
r

sω(s) ds = 0 for
r ∈ (0, r0), where r0 ∈ (0, 1) is a given number. As v is supported in the set {r0 � |x| � 1},
we deduce that no obstacle contained in the ball Br0(0) can be detected from measurements
performed at a distance from the origin larger than 1; that is, the identifiability property fails
for Eulerian flows.

However, the above obstruction to the detection disappears if we restrict ourselves to
potential flows, that is, flows for which the velocity assumes the form v = ∇ϕ for a scalar
function ϕ = ϕ(x, t). It is well known (see, e.g. [17]) that a bidimensional Eulerian flow in
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Figure 1. Moving obstacle in a pipeline.

a domain with one hole S is potential if the vorticity vanishes everywhere and the circulation
along S is null. As it has been noticed in [13], an Eulerian flow remains potential as long as
the incoming flow, located at the part of the boundary where g < 0, has a null vorticity. We
shall assume that the incoming flow fulfils that condition.

Plugging u = ∇ϕ in (1.1)–(1.4) results in the system

∇
(

∂ϕ

∂t
+

1

2
|∇ϕ|2 + p

)
= 0 (x, t) ∈ (�\S(t)) × R, (1.7)

�ϕ = 0 (x, t) ∈ (�\S(t)) × R, (1.8)

∂ϕ

∂n
= (h′ + r(x − h)⊥) · n (x, t) ∈ ∂S(t) × R, (1.9)

∂ϕ

∂n
= g (x, t) ∈ ∂� × R. (1.10)

Clearly, measuring the tangential component of the velocity on one part of the boundary
amounts to measuring the function ϕ itself. When the obstacle is fixed (h′ = r = 0), condition
(1.9) simplifies to ∂ϕ/∂n = 0, so that the detection of the obstacle reduces to a very classical
problem (see, e.g. [1–3, 5, 9, 14, 22]). Such a problem arises in different contexts including
the corrosion detection by electrostatic measurements and the crack detection in nonferrous
metals from electromagnetic measurements.

As far as we know, the situation where the obstacle is moving (i.e. (h, r) �= (0, 0)) has not
yet been investigated. It turns out that this problem is more difficult to study than the stationary
one for two reasons: (i) the velocity of the rigid body being unknown, the classical argument
based upon the unique continuation property for the Laplace equation is not sufficient to derive
the identifiability property; (ii) unlike [2, 9], we cannot use several Neumann data and apply
topological arguments to identify the obstacle. Indeed, the obstacle may occupy different
positions and undergo different velocities for different Neumann data.

The goal of this paper is to address the identifiability issue when the obstacle has a
known form. For the sake of simplicity, we shall assume here that the obstacle is the
ball B1(h(t)) of radius one centred at the point h(t). (See figure 1.) Note that, for any
x ∈ ∂B1(h(t)), x − h(t) = −n, hence (x − h)⊥ · n = 0. Setting l = h′, the system reads

�ϕ = 0 in �\B1(h(t)), (1.11)

∂ϕ

∂n
= l · n on ∂B1(h(t)), (1.12)

3
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∂ϕ

∂n
= g on ∂�, (1.13)

and we assume that ϕ is measured on a part �m of the boundary ∂�. The identifiability
issue is to understand whether only one pair (h, l) may be associated with a given
measurement.

Clearly, the data g(x) = l · x, with l ∈ R
2 a given fixed vector, has to be excluded, for it

may lead to the situation where the ball, which is surrounded by a fluid flowing at the same
velocity (ϕ(x, t) = l · x), is not identifiable. We shall prove in this paper that for any data g

which is not of this form, the identifiability problem has a positive answer, whatever be the
distance between the ball and ∂�.

The method of proof relies on a careful investigation of the singularities of the solution
ψ to the Dirichlet problem

�ψ = 0 in B1(h)\B1(−h), (1.14)

ψ = y on ∂B1(h) ∩ {y > 0}, (1.15)

ψ = −y on ∂B1(−h) ∩ {y > 0}, (1.16)

where h = (0, δ) and 0 < δ < 1. More precisely, we will show that the solution ψ of
(1.14)–(1.16) is not of the class C2 at the point M+ = (

√
1 − δ2, 0) when δ � 1/

√
2, and

that ψ may be extended analytically on the set B1(−h) ∩ {y > 0} when δ > 0, by using a
Möbius transformation and a version of Schwarz reflection principle for harmonic functions.
It is likely that the function ψ fails to be analytic in a neighbourhood of M+ for any δ > 0, but
despite our efforts, we were not able to prove it.

The second main objective of the paper is to investigate the stability properties of the
map ϕ|�m

→ (h, l). Under the same assumption on the data g as above, we shall derive a
linear stability estimate. The method of proof rests on the concept of shape differentiation
introduced by Simon in [21].

To summarize, we present in this paper sharp results for the identification of a moving
obstacle surrounded by a potential flow via a single boundary measurement, when the obstacle
is a ball in R

2. It would be interesting to see whether these results can be extended to a
smooth obstacle of arbitrary (known) form in dimension two. On the other hand, it is clear
that more information can be collected by repeating measurements on a time interval. It would
be interesting to see whether the shape of the obstacle could be identified with a measurement
over a time interval. Finally, preliminary computations indicate that a single measurement of
the fluid velocity on the boundary is probably not sufficient to extend the results of the paper
to the dimension three. This suggests that repeating measurements over a time interval could
be essential in dimension three. These issues, which are below the scope of this paper, will be
investigated elsewhere.

The paper is outlined as follows. The identifiability result is stated and proved in
section 2. Section 3 is devoted to the derivation of the stability estimate. Finally, the
annexe contains the proof of the fact that ψ is not of class C2 at M+ when δ � 1/

√
2.

2. Identifiability

Let � be a bounded (connected) open set in R
2, with a smooth boundary ∂�. Assume given

an open set �m in ∂�, and a function g ∈ Hs(∂�), with s � 0, such that
∫
∂�

g dσ = 0. We
denote by �a the set of admissible positions for the centres of the balls of radius one included
in �; i.e.,

�a := {h ∈ �, dist(h, ∂�) > 1}.
4
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Let h1, h2 ∈ �a and l1, l2 ∈ R
2. For i = 1, 2, we denote by Bi the ball B1(hi), and by ϕi

the solution (defined up to an additive constant) of the following Neumann problem:

�ϕi = 0 in �\Bi, (2.1)

∂ϕi

∂n
= g on ∂�, (2.2)

∂ϕi

∂n
= li · n on ∂Bi, (2.3)

where n stands for the outward unit normal vector. We shall say that problem (2.1)–(2.3) is
identifiable if, for a convenient choice of the input g, the following implication holds:

ϕ1 = ϕ2 on �m ⇒ h1 = h2 and l1 = l2. (2.4)

Let us introduce the two-dimensional space

V = Span{e1 · n, e2 · n} ⊂ L∞(∂�),

where {e1, e2} denotes the canonical basis of R
2.

The following result is the first main result of this paper.

Theorem 2.1. Assume that g ∈ Hs(∂�)\V with s > 1/2. For i = 1, 2, pick any
(hi, li) ∈ �a × R

2 and let ϕi denote the solution (defined up to a constant) of (2.1)–(2.3).
Then (2.4) holds.

Proof. By standard regularity results for elliptic problems [15], we know that ϕi ∈
Hs+3/2(�\Bi) ⊂ C1(�\Bi). Assume that ϕ1 = ϕ2 on �m. Since also ∂ϕ1

∂n
= g = ∂ϕ2

∂n

on �m, we infer from the unique continuation property that

ϕ1 = ϕ2 on �\B1 ∪ B2.

Define a function ϕ : �\B1 ∩ B2 → R by

ϕ(x) :=
{

ϕ1(x) if x ∈ �\B1

ϕ2(x) if x ∈ �\B2.
(2.5)

Then ϕ fulfils

�ϕ = 0 in �\B1 ∩ B2, (2.6)

∂ϕ

∂n
= g on ∂�, (2.7)

∂ϕ

∂n
= l1 · n on ∂B1, (2.8)

∂ϕ

∂n
= l2 · n on ∂B2. (2.9)

If B1 ∩ B2 = ∅, then ϕ is, as ϕ2, defined and harmonic in B1, and we infer from (2.8)
that ϕ(x) = l1 · x + const on B1. The same property holds on � by unique continuation. This
gives g = l1 · n on ∂�, and hence g ∈ V , which is a contradiction.

The nontrivial case is the one for which B1 ∩ B2 �= ∅, i.e. ‖h2 − h1‖ < 2. Obviously, if
h1 = h2, then (2.8) and (2.9) yield l1 = l2. Assume from now on that h1 �= h2. If l1 = l2,
then introducing the domain D1 = B1\B2, we see that ϕ solves

�ϕ = 0 in D1, (2.10)

5
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Figure 2. The Möbius transformation from D1 to C1.

∂ϕ

∂n
= l1 · n on ∂D1, (2.11)

which gives again ϕ(x) = l1 · x + const in D1 and g ∈ V , which is a contradiction.
We shall therefore assume that h1 �= h2 and l1 �= l2. Using Green’s formula, we infer

from (2.10) and (2.8)–(2.9) that

(l2 − l1) · (h2 − h1) = 0. (2.12)

Translating and rotating � if needed, we may assume that h1 = (0, δ), h2 = (0,−δ) with
0 < δ < 1, and l2 − l1 = λe1 for some λ �= 0. Replacing ϕ and g by (−2/λ)(ϕ − l1 ·x) + e1 ·x
and (−2/λ)(g − l1 · n) + e1 · n, respectively, we may assume that l1 = e1 and that l2 = −e1.
We are thus led to investigate the properties of a function ϕ : �\B1 ∩ B2 → R satisfying the
system

�ϕ = 0 in �\B1 ∩ B2, (2.13)

∂ϕ

∂n
= g on ∂�, (2.14)

∂ϕ

∂n
= e1 · n on ∂B1, (2.15)

∂ϕ

∂n
= −e1 · n on ∂B2. (2.16)

We introduce the points M± = (±√
1 − δ2, 0) located at the intersection of the circles ∂B1

and ∂B2 (see figure 2).
We shall use thereafter some complex analysis, denoting the coordinates by (x, y) instead

of (x1, x2), and identifying a couple (x, y) of real numbers with the complex number z = x+iy.
Pick a number η > 0 such that B1+η(h1) ⊂ �. The function ϕ̃(x, y) = ϕ(x, y)− x fulfils

the system

�ϕ̃ = 0 on B1+η(h1)\B1,

∂ϕ̃

∂n
= 0 on ∂B1

6
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and is of class C1 on �\B1. By the reflection principle (see [11]), we may extend ϕ̃ to the
annulus A1 = B1+η(h1)\B(1+η)−1(h1) as a harmonic function in setting

ϕ̃(z) = ϕ̃((z − iδ)−1 + iδ) for (1 + η)−1 < |z − iδ| < 1.

Therefore, ϕ may as well be extended to A1 as a harmonic function. Analogously, ϕ

may be extended as a harmonic function on the annulus A2 = B1+η(h2)\B(1+η)−1(h2). To
obtain the contradiction, we shall prove that ϕ is also analytic in B1 ∩ B2, so that by (2.15),
ϕ(x) = x · e1 + const, and again g ∈ V , which contradicts the assumptions.

Since
∫
∂B1

(∂ϕ/∂n)dσ = 0, the function ϕ possesses a harmonic conjugate function ψ

defined on A1 ∪A2 ∪ �\(B1 ∩ B2), fulfilling ∇ψ = (∇ϕ)⊥. Let θ (resp. θ ′) denote the angle
(�e1,

−−→
h1M) (resp. (�e1,

−−→
h2M)).

Then ∂ψ/∂θ = ∂ϕ/∂r = cos θ on ∂B1, which gives upon integration ψ = sin θ + C.
Similarly, ψ = − sin θ ′ + C ′ on ∂B2. Picking the constants C and C ′ so that ψ(M±) = 0, we
see that ψ solves

�ψ = 0 in D1 = B1\B2, (2.17)

ψ = y on �1 := (∂B1)\B2, (2.18)

ψ = −y on γ2 := (∂B2) ∩ B1. (2.19)

A similar Dirichlet problem is satisfied by ψ on −D1 = B2\B1, and from the uniqueness of
the solution we infer that

ψ(x,−y) = ψ(x, y) = ψ(−x, y).

To prove that ϕ has no singularity in B1 ∩ B2, it is therefore sufficient to check that ψ does
not have any singularity in the set B2 ∩ {z = x + iy; y > 0}. We first transform problem
(2.17)–(2.19) into a Dirichlet problem in a corner.

Let T1 : z �→ z1 = x1 + iy1 = (z +
√

1 − δ2)−1 denote the inversion of pole
M− = −√

1 − δ2. As T1 is a Möbius transformation, it carries circles into circles or lines (see
[11]). Since T1(M−) = ∞, we see that l1 = T1(∂B1) (resp. l2 = T1(∂B2)) is the line passing
through T1(M+) = (2

√
1 − δ2)−1 and T1(i(1+δ)) = (−i+

√
(1 − δ)/(1 + δ))/2 (resp. through

T1(M+) and T1(−i(1 + δ)) = (i +
√

(1 − δ)/(1 + δ))/2) (see figure 2). Clearly, T1(�1) is the
half-line l+

1 ⊂ l1 issuing from T1(M+) and containing T1(i(1 + δ)), while T1(γ2) is the half-line
l+
2 ⊂ l2 issued from T1(M+) and which does not contain T1(−1(1 + δ)). Therefore, T1(D1) is

the convex corner C1 = l+
1 l+

2 .
Note that z = T −1

1 (z1) = z−1
1 − √

1 − δ2. Let ψ1(z1) := ψ(z). Then ψ1 solves the
system

�ψ1 = 0 in C1, (2.20)

ψ1(z1) = − y1

x2
1 + y2

1

on l+
1 , (2.21)

ψ1(z1) = y1

x2
1 + y2

1

on l+
2 , (2.22)

ψ1(z1) → 0 as z1 → ∞, z1 ∈ C1. (2.23)

For notational convenience, we translate and rotate the corner C1. We let C2 = T2(C1),
where T2(z1) := z2 = −(z1 − (2

√
1 − δ2)−1). Then

C2 =
{
z2 ∈ C

∗; π − θ

2
< arg z2 <

π + θ

2

}
,

7
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where θ ∈ (0, π) stands for the angle of C1 at T1(M+), or of ∂D1 at M+ by conformal
invariance.

Let ψ2(z2) := ψ1(z1). Then ψ2 solves the system

�ψ2 = 0 in C2, (2.24)

ψ2(z2) = y2

(x2 + c)2 + y2
2

on d−1, (2.25)

ψ2(z2) = − y2

(x2 + c)2 + y2
2

on d0, (2.26)

ψ2(z2) → 0 as z2 → ∞, z2 ∈ C2, (2.27)

where c := −(2
√

1 − δ2)−1, and for any k ∈ Z, dk denotes the half-line

dk =
{
z2 ∈ C

∗; arg z2 = θk := π + (2k + 1)θ

2

}
.

Note that (T2 ◦ T1)(B2 ∩ {y > 0}) is the corner C = {z2 ∈ C
∗; θ0 < arg z2 < π}. To

prove that ψ does not have singularities in B2 ∩ {y > 0}, it is then sufficient to check that
ψ2 can be extended as a harmonic function on C. This is done in applying several times the
following reflection principle for harmonic functions. �

Lemma 2.2. Let θ0 ∈ R and θ ∈ (0, π/2). Let l± = {z ∈ C
∗; arg z = θ0 ± θ}, and

let l0 = {z ∈ C
∗; arg z = θ0}. Let C+ = {z ∈ C

∗; θ0 < arg z < θ0 + θ} (resp. C− =
{z ∈ C

∗; θ0 − θ < arg z < θ0}) be the sectors bounded by the half-lines l0 and l+ (resp. by the
half-lines l− and l0). Let ψ be a harmonic function on C− such that

lim
z→Z,z∈C−

ψ(z) = Imf−(Z) ∀Z ∈ l−, (2.28)

lim
z→Z,z∈C−

ψ(z) = Imf0(Z) ∀Z ∈ l0, (2.29)

where f− (resp. f0) is a holomorphic function in a neighbourhood of l− (resp. on C−∪ l0 ∪C+).
Then ψ can be extended as a harmonic function on the set C− ∪ l0 ∪ C+, and

lim
z→Z,z∈C+

ψ(z) = −Imf−(e−2iθZ) + lim
z→Z,z∈C+

Im(f0(z) + f0(e
2iθ0z)) (2.30)

for each Z ∈ l+ for which the limit in the right-hand side of (2.30) exists.

Proof. Using the transformation z �→ e−iθ0z, we may without loss of generality assume that
θ0 = 0, hence l+ = l− and C+ = C−, (·̄ means conjugation). Pick a holomorphic function f

on C− such that ψ(z) = Imf (z) on C−, and let F(z) := f (z)−f0(z). Then F is holomorphic
on C−, and for any Z ∈ l0

lim
z→Z,z∈C−

Im F(z) = lim
z→Z,z∈C−

ψ(z) − Im f0(Z) = 0

by (2.29). Using the Schwarz reflection principle for holomorphic functions stated in [20], we
infer that F may be extended as an holomorphic function on C− ∪ l0 ∪ C+ in setting

F(z) = F(z) ∀z ∈ C+.

Letting

ψ(z) = Im(F (z) + f0(z)) ∀z ∈ C+ ∪ l0,

8
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Figure 3. Analytic extension of ψ2 when θ = π/5.

we obtain a harmonic extension of ψ on C− ∪ l0 ∪ C+. For Z ∈ l+, we have

lim
z→Z,z∈C+

ψ(z) = lim
z→Z,z∈C+

Im(F (z) + f0(z))

= lim
z→Z,z∈C+

Im(f (z) − f0(z) + f0(z))

= − lim
z→Z,z∈C+

ψ(z) + lim
z→Z,z∈C+

Im(f0(z) + f0(z))

= −Im f−(Z) + lim
z→Z,z∈C+

Im(f0(z) + f0(z)) (2.31)

whenever the limit in (2.31) does exist. �

To see that ψ2 can be extended in an analytic way on the sector C, we apply inductively
lemma 2.2. Starting with (l+, l0, l−) = (d1, d0, d−1) and f−(z2) = −(z2 + c)−1, f0(z2) =
(z2 + c)−1, we obtain for arg z2 = θ1

ψ2(z2) = Im

(
2

e−2iθ z2 + c
+

1

z2 + c

)
. (2.32)

Note that arg (e−2iθ z2) = −2θ + θ1 = θ−1 > 0, and hence the right-hand side of (2.32) is well
defined on d1. (Recall that c < 0.)

Applying again lemma 2.2 with (l+, l0, l−) = (d2, d1, d0) and

f−(z) = 1

z2 + c
, f0(z2) = 2

e−2iθ z2 + c
+

1

z2 + c
,

it follows that for arg z2 = θ2,

ψ2(z2) = Im

(
2

e−4iθ z2 + c
+

2

e−2iθ z2 + c
+

1

z2 + c

)
.

9
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Assume first that θ = π

2N + 1
for some N ∈ N

∗, so that θN = π . Then, we can prove

by induction on k that for each k ∈ {1, . . . , N} the function ψ2 can be extended in an analytic
way on the sector d−1dk , with

ψ2(z2) = Im

(
1

z2 + c
+

k∑
l=1

2

e−2liθ z2 + c

)
∀z2 ∈ dk. (2.33)

Note that for any k � N , the right-hand side of (2.33) does not present any singularity in the
sector dk−1dk+1 (hence the extension at the step k can be performed), as

arg(e−2kiθ z2) > θk−1 − 2kθ = π

2

(
1 − 2k + 1

2N + 1

)
� 0.

A final application of lemma 2.2 gives that ψ2 may be extended analytically on the sector
d−1dN+1, with

ψ2(z2) = Im

(
1

z2 + c
+

N+1∑
l=1

2

e−2liθ z2 + c

)
(2.34)

for any z ∈ dN+1 for which the right-hand side of (2.34) is meaningful. This occurs for any
point of dN+1, except for z2 = |c| eiθN+1 . This point is the first singularity encountered during
the extension procedure of ψ2. As it is outside C, since θN+1 ∈ (π, 2π), we are done.

Assume now that π
2N+3 < θ < π

2N+1 for some N ∈ N. Then θN < π < θN+1. The analytic
extension may be done in the sector d−1dN+1, as for k � N and θk−1 < arg z2 < θk+1 we have

arg(e−2kiθ z2) > θk−1 − 2kθ = π

2
− 2k + 1

2
θ � π

2
− 2N + 1

2
θ > 0.

Once again, the analytic extension of ψ2 does not present any singularity in C. The proof of
theorem 2.1 is complete.

Remark 2.3. The above proof of theorem 2.1 is still valid when g = 0 and l1 �= 0. Indeed,
the relation l1 · n = 0 cannot hold everywhere on ∂�. This means that, in the absence of flow
through the boundary, the obstacle can be identified when it is moving, and only in that case.

3. Stability estimates

In this section, we investigate the stability properties of the map ϕ|�m
→ (h, l). Linear stability

estimates will be established by using shape differentiation.
Fix h0 ∈ �a, l0 ∈ R

2 and a function g fulfilling

g ∈ Hs(∂�) for some s � 1 and
∫

∂�

g dσ = 0. (3.1)

Write B0 = B1(h0). Let ϕ0 denote the solution of the reference Neumann problem

�ϕ0 = 0 in �\B0, (3.2)

∂ϕ0

∂n
= g on ∂�, (3.3)

∂ϕ0

∂n
= l0 · n on ∂B0. (3.4)

Pick any (h, l) ∈ �a × R
2, and let ϕ denote the solution of the perturbed Neumann problem

�ϕ = 0 in �\B, (3.5)

10
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∂ϕ

∂n
= g on ∂�, (3.6)

∂ϕ

∂n
= l · n on ∂B, (3.7)

where B = B1(h). Once again, the functions ϕ and ϕ0 are defined up to an additive constant.
By standard regularity results for elliptic problems, we know that ϕ ∈ Hs+3/2(�\B), hence
ϕ|∂� ∈ Hs+1(∂�). We may therefore define a map � : �a × R

2 × {g ∈ Hs(∂�); ∫
∂�

g dσ =
0} → Hs+1(�m)/R by

�(h, l, g) = ϕ|�m
. (3.8)

Recall that the quotient space Hs+1(�m)/R is a Banach space for the norm

‖g‖Hs+1(�m)/R := inf
t∈R

‖g + t‖Hs+1(�m)·

Proceeding as in [4], one may prove that this map is of class C1. We are now in a position to
state the second main result of the paper.

Theorem 3.1. Let g fulfilling (3.1) and let (h0, l0) ∈ �a × R
2. If g �∈ V , then there exist two

constants ρ > 0 and C > 0 depending only on (h0, l0, g) such that for any (h, l) ∈ Bρ(h0, l0)

we have

‖�(h, l, g) − �(h0, l0, g)‖Hs+1(�m)/R � C‖(h − h0, l − l0)‖R
4 . (3.9)

Proof. Let d�(h0, l0, g) denote the differential of � at the point (h0, l0, g), and let
L = d�(h0, l0, g)|R2×R

2×{0}. We need the following result, whose proof will be postponed.

Proposition 3.2. Let g be as in theorem 3.1. Then the map L : R
4 → Hs+1(�m)/R is

one-to-one.

By the compactness of the unit sphere in R
4, we infer from proposition 3.2 the existence of

two positive constants C1, C2 such that

C1‖(ĥ, l̂)‖ � ‖L(ĥ, l̂)‖Hs+1(�m)/R � C2‖(ĥ, l̂)‖ ∀(ĥ, l̂) ∈ R
4. (3.10)

On the other hand, we can write

�(h0 + ĥ, l0 + l̂, g) = �(h0, l0, g) + L(ĥ, l̂) + ‖(ĥ, l̂)‖ε(ĥ, l̂), (3.11)

where ε(h, l) is a function such that ε(h, l) → 0 as (h, l) → 0. Pick ρ > 0 so that
‖ε(ĥ, l̂)‖ < C1/2 whenever ‖(ĥ, l̂)‖ < ρ. Then we infer from (3.10) and (3.11) that

‖�(h0 + ĥ, l0 + l̂, g) − �(h0, l0, g)‖Hs+1(�m)/R � (C1/2)‖(ĥ, l̂)‖
for ‖(ĥ, l̂)‖ < ρ. The proof of theorem 3.1 is achieved.

It remains to prove proposition 3.2.

Proof of proposition 3.2. Let h0, l0 and g be as in the statement of theorem 3.1. Without loss
of generality, we may assume that h0 = (0, 0).

If (ĥ, l̂) ∈ R
4 is given, then by a classical result due to Simon (see [21]) we have that

L(ĥ, l̂) = ψ|�m
, where ψ denotes the solution (defined up to a constant) of

�ψ = 0 in �\B0, (3.12)

∂ψ

∂n
= 0 on ∂�, (3.13)

11
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∂ψ

∂n
= −ĥ · n

∂2ϕ0

∂n2
+ (∇ϕ0 − l0) · grad∂�(ĥ · n) + l̂ · n on ∂B0, (3.14)

ϕ0 denoting the solution of (3.2)–(3.4), and grad∂� standing for the tangential gradient, defined
as

grad∂�f := ∇f − (∇f · n)n.

To prove the proposition, we argue by contradiction. If the map L is not one-to-one, then
we can pick a pair (ĥ, l̂) �= (0, 0) such that L(ĥ, l̂) = 0, i.e. ψ|�m

= const. Since ∂ψ

∂n |�m
= 0

and �ψ = 0 in �\B0, we infer that ψ ≡ const in �\B0 by unique continuation. Therefore,
(3.14) gives

0 = −ĥ · n
∂2ϕ0

∂n2
+ (∇ϕ0 − l0) · grad∂�(ĥ · n) + l̂ · n on ∂B0. (3.15)

Note that ĥ �= 0, otherwise l̂ = 0 by (3.15). Let (r, θ) denote the polar coordinates with respect
to the origin, and let er := (cos θ, sin θ) and eθ := e⊥

r = (−sin θ, cos θ). Then er = −n on
∂B0, so ∂2ϕ0/∂n2 = ∂2ϕ0/∂r2. Since g ∈ H 1(∂�), we see that ϕ0 ∈ H

5
2 (�), hence all the

second derivatives of ϕ0 possess traces in L2(∂B0). In particular,

0 = �ϕ0 = ∂2ϕ0

∂r2
+

1

r

∂ϕ0

∂r
+

1

r2

∂2ϕ0

∂θ2
on ∂B0. (3.16)

On the other hand,

∇ϕ0 = ∂ϕ0

∂r
er +

1

r

∂ϕ0

∂θ
eθ and grad∂�(ĥ · n) = ∂ĥ · n

∂θ
eθ on ∂B0. (3.17)

Using (3.15)–(3.17), we obtain

0 = −ĥ · n

(
−∂ϕ0

∂r
− ∂2ϕ0

∂θ2

)
+

(
∂ϕ0

∂r
er +

∂ϕ0

∂θ
eθ − l0

)
· ∂ĥ · n

∂θ
eθ + l̂ · n

= −ĥ · er

(
l0 · er +

∂2ϕ0

∂θ2

)
−

(
∂ϕ0

∂θ
− l0 · eθ

)
∂ĥ · er

∂θ
− l̂ · er ,

and hence, gathering together the second derivatives with respect to θ ,

∂

∂θ

(
(ĥ · er)

∂ϕ0

∂θ

)
= (ĥ · eθ )(l0 · eθ ) − (ĥ · er)(l0 · er) − l̂ · er . (3.18)

Let M0 and M ′
0 be the two points M ∈ ∂B0 at which ĥ · er(M) = 0, and let θ(M) denote the

angle (
−−→
OM0,

−−→
OM). Then, by (3.18),

ĥ · er(M)
∂ϕ0

∂θ
(M) =

∫ θ(M)

0

∂

∂θ

(
ĥ · er

∂ϕ0

∂θ

)
dθ

=
∫ θ(M)

0
[(ĥ · eθ )(l0 · eθ ) − (ĥ · er)(l0 · er)] dθ −

∫ θ(M)

0
l̂ · er dθ.

As der/dθ = eθ and deθ/dθ = −er , we obtain at once that∫ θ(M)

0
[(ĥ · eθ )(l0 · eθ ) − (ĥ · er)(l0 · er)] dθ = [(ĥ · er)(l0 · eθ )]

θ(M)
0

and ∫ θ(M)

0
l̂ · erdθ = −l̂ · [eθ ]θ(M)

0 .

12



Inverse Problems 24 (2008) 045001 C Conca et al

We conclude that

ĥ · er

∂ϕ0

∂θ
= [(ĥ · er)(l0 · eθ ) + l̂ · eθ ]θ(M)

0 .

Pick now M = M ′
0, so that ĥ · er(M

′
0) = 0. We obtain

0 = l̂ · (eθ (M
′
0) − eθ (M0)) = −2l̂ · eθ (M0).

It follows that l̂ ∈ Span {er(M0)}, so

l̂ · ĥ = 0.

Writing l̂ = λĥ⊥ for some constant λ, we have that l̂ · eθ = λĥ · er , and thus

ĥ · er

∂ϕ0

∂θ
= (ĥ · er)(l0 · eθ ) + λĥ · er .

Dividing by ĥ · er (which is non-null for M �= M0,M
′
0) and integrating over θ , we obtain

ϕ0 = l0 ·er +λθ +µ, where µ denotes another constant. The function ϕ0 is therefore a solution
to the system

�ξ = 0 on �\B0, (3.19)

ξ = l0 · x + λθ + µ on ∂B0, (3.20)

∂ξ

∂n
= l0 · n on ∂B0. (3.21)

An obvious solution of (3.19)–(3.21) on C\(R− ∪ B0) is given by ξ = l0 · x + λθ + µ. By
the unique continuation property, we conclude that ϕ0 = ξ . As ϕ0 is continuous on �\B0, we
infer that λ = 0, and that g = ∂ϕ0/∂n = l0 · n on ∂�, which is a contradiction. The proof of
proposition 3.2 is complete. �

Combining theorems 2.1 and 3.1, we can state a semi-global stability result.

Corollary 3.3. Let g be as in theorem 3.1, and let � be the map defined in (3.8). Let
K ⊂ �a be a compact set, and let R > 0 be a given number. Then there exists a constant
C = C(K,R, g) > 0 such that for all (h1, l1), (h2, l2) ∈ K × BR(0) it holds

‖�(h1, l1, g) − �(h2, l2, g)‖Hs+1(�m)/R � C‖(h1 − h2, l1 − l2)‖R
4 . (3.22)

Proof. For any (h0, l0) ∈ K × BR(0), let Lh0,l0 : R
4 → Hs+1(�m)/R denote the linear map

Lh0,l0 = d�(h0, l0, g)|
R

2×R
2×{0}. Using the continuity of the map (h0, l0, ĥ, l̂) �→ Lh0,l0(ĥ, l̂),

the compactness of K×BR(0)×S3 and proposition 3.2, we infer the existence of two constants
C1, C2 such that for any (h0, l0) ∈ K × BR(0),

C1‖(ĥ, l̂)‖ � ‖Lh0,k0(ĥ, l̂)‖Hs+1(�m)/R � C2‖(ĥ, l̂)‖ ∀(ĥ, l̂) ∈ R
4. (3.23)

On the other hand, the map (h0, l0) �→ Lh0,l0 being uniformly continuous on the compact set
K × BR(0), we can find a small number δ > 0 such that if (h0, l0), (h

′
0, l

′
0) ∈ K × BR(0)

satisfy ‖(h0, l0) − (h′
0, l

′
0)‖ < δ, then

‖(Lh0,l0 − Lh′
0,l

′
0
)(ĥ, l̂)‖Hs+1(�m)/R � C1

2
‖(ĥ, l̂)‖ ∀(ĥ, l̂) ∈ R

4. (3.24)
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Pick two pairs (h1, l1), (h2, l2) in K × BR(0). Assume first that ‖(h1 − h2, l1 − l2)‖ < δ,
and set ĥ = h2 − h1, l̂ = l2 − l1. Then we have

�(h2, l2, g) − �(h1, l1, g) =
∫ 1

0

d

ds
�(h1 + sĥ, l1 + sl̂, g) ds

=
∫ 1

0
Lh1+sĥ,l1+sl̂ (ĥ, l̂) ds

= Lh1,l1(ĥ, l̂) +
∫ 1

0
[Lh1+sĥ,l1+sl̂ − Lh1,l1 ](ĥ, l̂) ds.

Using (3.23) and (3.24), we infer that

‖�(h2, l2, g) − �(h1, l1, g)‖Hs+1(�m)/R � C1

2
‖(ĥ, l̂)‖.

If ‖(h1 − h2, l1 − l2)‖Hs+1(�m)/R � δ, then

‖�(h2, l2, g) − �(h1, l1, g)‖Hs+1(�m)/R � m

d
‖(ĥ, l̂)‖,

where m denotes the minimum of the continuous map

(h1, l1, h2, l2) �→ ‖�(h2, l2, g) − �(h1, l1, g)‖Hs+1(�m)/R

taken over the compact set {(h1, l1, h2, l2) ∈ (K × BR(0))2, ‖(h2 − h1, l2 − l1)‖ � δ} and d
denotes the diameter of that compact set. Note that m > 0, according to theorem 2.1. The
proof is completed by taking C = min(m/d,C1/2). �

Remark 3.4. The constant C in theorem 3.1 is not given explicitly, as the method of proof
relies upon compactness arguments. One way to give explicit values for this constant would
be to estimate precisely the first eigenvalue of the linear map L in proposition 3.2.

Annexe

We prove in this annexe that the solution ψ of (2.17)–(2.19) cannot be of class C2 at the point
M+ when δ � 1/

√
2. Using the transformation T2 ◦T1 which is analytic in a neighbourhood of

M+, its inverse being also analytic near the origin, this is equivalent to show that the solution ψ2

of (2.24)–(2.27) is not of class C2 at the origin. This is a direct consequence of the following
result.

Proposition 3.5. Assume that δ � 1/
√

2. Then the second derivative ∂2ψ2
/
∂y2

2(0, 0) fails to
exist.

Proof. Recall that d−1 = {z2 ∈ C
∗; arg z2 = θ∗}, where we denote θ∗ = θ−1 = π−θ

2 .
Obviously, δ � 1/

√
2 if and only if θ∗ � π/4. Proving that ψ2 is not of class C2 in a

neighbourhood of the origin is quite easy when θ∗ = π/4. Indeed, in that case we may use
the system of orthogonal coordinates (u, v) = (

√
2)−1(x2 + y2,−x2 + y2), with d−1 and d0

as the coordinate axes, to compute the Laplacian of ψ2 at the origin. If ψ2 were of class C2

near the origin, we should have

0 = �ψ2(0, 0) = ∂2ψ2

∂u2
(0, 0) +

∂2ψ2

∂v2
(0, 0).

But straightforward computations give

∂2ψ2

∂u2
(0, 0) = ∂2ψ2

∂v2
(0, 0) = −2c−3 �= 0.
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When θ∗ �= π/4, the value of the Laplacian of ψ2 at the origin cannot be deduced from
the knowledge of the second derivatives of ψ2 along the axes d−1, d0. An exact computation
of ψ2 is therefore required. This is done in the following step.

Step 1. Reduction to a Dirichlet problem in the half-plane C
+.

Let us introduce the number α > 1 defined by

α−1 := 1 − θ∗
π
2

.

Introduce the transformation T3(z2) := z3 = x3 + iy3 = (e−iθ∗
z2)

α . Then

T3(d−1) = R
+, T3(d0) = R

− and T3(C2) = C
+ := {z = x + iy; y > 0}.

Define ψ3 on C
+ by ψ3(z3) = ψ2(z2). To determine the values of ψ3 on ∂C

+ = R, we need
to express z2 as a function of z3 when z3 = x3 ∈ R.

If z3 = x3 ∈ R
+, then z2 = eiθ∗

x
1/α

3 , and hence

ψ3(z3) = y2

(x2 + c)2 + y2
2

= x
1/α

3 sin θ∗(
c + x

1/α

3 cos θ∗)2
+

(
x

1/α

3 sin θ∗)2 .

If z3 = x3 ∈ R
−, then z2 = eiθ∗ |x3|1/α eiπ/α = |x3|1/α ei(π−θ∗), and hence

ψ3(z3) = − y2

(x2 + c)2 + y2
2

= − |x3|1/α sin θ∗

(c − |x3|1/α cos θ∗)2 + (|x3|1/α sin θ∗)2
.

Let us set x{α} := sgn(x)|x|α for any x ∈ R and any α ∈ R
+. Then ψ3 solves the system

�ψ3 = 0 in C
+, (3.25)

ψ3(x3) = x
{1/α}
3 sin θ∗(

c + x
{1/α}
3 cos θ∗)2

+
(
x

{1/α}
3 sin θ∗)2 on R, (3.26)

ψ3(z3) → 0 as z3 → ∞, z3 ∈ C
+. (3.27)

Using the Poisson formula (see, e.g. [7]), we obtain that

ψ3(z3) = y3

π

∫ ∞

−∞

ψ3(t)

|z3 − t |2 dt.

Going back to the variable z2 = r2 eiϕ2 , and using the fact that z3 = (e−iθ∗
z2)

α = rα
2 eiα(ϕ2−θ∗),

we conclude that

ψ2(z2) = rα
2 sin α(ϕ2 − θ∗)

π

∫ ∞

−∞

t {1/α} sin θ∗

(c + t {1/α} cos θ∗)2 + (t {1/α} sin θ∗)2

× dt(
t − rα

2 cos α(ϕ2 − θ∗)
)2

+
(
rα

2 sin α(ϕ2 − θ∗)
)2 .

For the value ϕ2 = π/2, we obtain

ψ2(0, y2) = ψ2(r2eiπ/2) = rα
2

π

∫ ∞

−∞

t {1/α} sin θ∗

(c + t {1/α} cos θ∗)2 + (t {1/α} sin θ∗)2

dt

t2 + |r2|2α
·

In a second step, we show that limy2→0+
∂2ψ2

∂y2
2

(0, y2) exists and is finite if and only if α > 2

(i.e. δ < 1/
√

2).

Step 2. Estimation of the second derivative of ψ2 with respect to y2 at the origin.
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Let us introduce the functions

f (t) = t {1/α}

(c + t {1/α} cos θ∗)2 + (t {1/α} sin θ∗)2
, g(r) = r

∫ ∞

−∞
f (t)

dt

t2 + r2

defined for t ∈ R and r ∈ (0, +∞), respectively. Note that f ∈ C(R) ∩ L∞(R) with
|f (t)| � const(1 + |t |1/α)−1. We aim to prove that for α � 2, |d2[g(rα)]/dr2| → ∞ as
r → 0+. Using the Lebesgue theorem and a change of variables, we have

g′(r) =
∫ ∞

−∞

f (t)

t2 + r2
dt − 2r2

∫ ∞

−∞

f (t)

(t2 + r2)2
dt,

= r−1
∫ ∞

−∞

f (rs)

s2 + 1
ds − 2r−1

∫ ∞

−∞

f (rs)

(s2 + 1)2
ds,

g′′(r) = −6r

∫ ∞

−∞

f (t)

(t2 + r2)2
dt + 8r3

∫ ∞

−∞

f (t)

(t2 + r2)3
dt

= −6r−2
∫ ∞

−∞

f (rs)

(s2 + 1)2
ds + 8r−2

∫ ∞

−∞

f (rs)

(s2 + 1)3
ds.

It may be seen that d[g(rα)]/dr → 0 as r → 0; that is, ∂ψ2/∂y2(0, 0) =
limy2→0+ ∂ψ2/∂y2(0, y2) = 0. On the other hand,

d2[g(rα)]

dr2
= (αrα−1)2g′′(rα) + α(α − 1)rα−2g′(rα)

= αr−1((α − 1)I1(r) + (−8α + 2)I2(r) + 8αI3(r)),

where

Ij (r) :=
∫ ∞

−∞

s{1/α}

c2 + 2c(cos θ∗)rs{1/α} + (rs{1/α})2

ds

(s2 + 1)j
for j ∈ {1, 2, 3}.

As s �→ s{1/α} is odd, we see that Ij (0) = 0 for each j . Since∣∣∣∣ 2c(cos θ∗)s{1/α} + 2r|s|2/α

(c2 + 2c(cos θ∗)rs{1/α} + r2|s|2/α)2

s{1/α}

(s2 + 1)j

∣∣∣∣ � const
|s|2/α

(s2 + 1)j
,

we infer from the Lebesgue theorem that

I ′
j (r) = −

∫ ∞

−∞

2c(cos θ∗)s{1/α} + 2r|s|2/α

(c2 + 2c(cos θ∗)rs{1/α} + r2|s|2/α)2

s{1/α}

(s2 + 1)j
ds ∀r > 0

for any α > 1 if j � 2, and for any α > 2 if j = 1.
If α > 2, then limr→0+ Ij (r)/r = I ′

j (0) for j = 1, 2, 3, thus ∂2ψ2

∂y2
2

(0, 0) =
limy2→0+

∂2ψ2

∂y2
2

(0, y2) exists.

Assume now that 1 < α � 2. Once again, limr→0+ Ij (r)/r = I ′
j (0) ∈ R for j = 2, 3.

For j = 1, we claim that I1(r)/r → −∞ as r → 0+.

Claim. limr→0+ I1(r)/r = −∞.

Indeed, letting σ = rαs, we have that

I1(r) = r−1−α

∫ ∞

−∞

σ {1/α}

c2 + 2c(cos θ∗)σ {1/α} + |σ |2/α

dσ

(σ/rα)2 + 1
,

hence
I1(r)

rα−1
=

∫ ∞

−∞

σ {1/α}

c2 + 2c(cos θ∗)σ {1/α} + |σ |2/α

dσ

σ 2 + r2α

= −4c(cos θ∗)J (r),
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where

J (r) :=
∫ ∞

0

σ 2/α

(c2 + 2c(cos θ∗)σ 1/α + σ 2/α)(c2 − 2c(cos θ∗)σ 1/α + σ 2/α)

dσ

σ 2 + r2α
.

An application of the monotone convergence theorem yields J (r) → J (0) as r → 0+, where
J (0) ∈ (0, +∞) for α ∈ (1, 2) and J (0) = +∞ for α = 2. The claim follows at once. The
proof of proposition 3.5 is complete. �
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