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Abstract. The classical problem of homogenization of elliptic operators in arbitrary domains
with periodically oscillating coefficients is considered. As the period goes to zero, an asymptotic
analysis of the corresponding sequence of operators is performed with the help of this new method
which we call in a natural way the Fourier homogenization method, since it is based on the standard
Fourier transform. This method offers an alternative way to view the classical results in homoge-
nization. It works in the Fourier space and thus in a framework dual to the one used in most of the
mathematical approaches to this subject.

The Fourier homogenization method is then used to derive an expression for the effective speed
of sound for an acoustic wave that propagates through a background flow made up of a periodic array
of vortices, in the limit of wavelength large compared with the lattice spacing. The main result is
an effective speed of sound that depends on the relative orientation between wave vector and lattice.
Examples in two and three dimensions are provided.
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1. Introduction. As is well known, homogenization process in classical exam-
ples is concerned with the study of the behavior of solutions of elliptic boundary value
problems when the coefficients are periodic with small period ε > 0. From a more
physical viewpoint, this means that we are interested in the bulk effective constants of
a periodic heterogeneous medium as its period goes to zero. Thus posed, the homoge-
nization process is therefore reminiscent of the problem of calculating the macroscopic
properties of a periodic inhomogeneous medium from its basic structure, i.e., the mi-
crogeometry or microstructure of the medium (which, in our case, is represented by
the period). For a nice introduction to this subject, the reader is referred to the book
of Bensoussan, Lions, and Papanicolaou [3].

The main mathematical result says that the limit of such integrals resolves a
suitable limit boundary value problem which has constant coefficients that represent
what is known as homogenized medium. For the last 20 years or so, homogenization
methods have proved to be powerful techniques for studying such heterogeneous me-
dia. Some of these classical tools today include Γ-convergence (these ideas have been
expounded in Dal Maso [5]), multiple-scale expansions (see [3]), two-scale convergence
methods (introduced by Nguetseng [11] and Allaire [1]), Bloch waves decomposition
techniques (which can be found in the book by Conca, Planchard, and Vanninathan
[4]), and energy methods and their variants (which were developed by Tartar [14]
in large part in association with Murat [10]; see also [3]). Those readers who are
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1574 CARLOS CONCA AND FERNANDO LUND

interested in applications of homogenization theory to other branches of physics or
mechanics should consult Sánchez-Palencia [13].

In this paper, we suggest a different approach based on Fourier analysis. The
method works in the following way: First, the original operator is transformed to
an equivalent one in the Fourier space (standard Fourier series is used to expand
the coefficients of the operator and Fourier transform to decompose their integrals).
Next, the Fourier transform of the integrals are expanded using a suitable two-
scale expansion and the homogenized problem is finally deduced merely neglecting
high-order terms in the above expansions when passing to the limit as the period ε
goes to zero. Although the results are not new, the method offers an alternative way
to view the classical results.

The Fourier homogenization method is used in this paper to study the propagation
of sound through a moving, periodic background flow. It is well known that the only
modification suffered by an acoustic wave propagating through a uniformly moving
medium is a Doppler shift in its frequency. When the motion of the background flow
is not uniform the situation can be considerably more complicated, and it has been
the subject of much research since the classical work of Kraichnan [8].

An important motivation behind this effort lies in the desire to understand the
propagation of sound through complex, including turbulent, flows. For reviews see
Ostachev [12] and Karweit, Blanc-Benon, Juve, and Comte-Bellot [6]. As emphasized
by Kerschen [7], a serious obstacle to progress in this subject is the lack of physical
models for the medium through which the acoustic wave propagates. Lund [9] has
suggested focusing attention on the interaction with localized vortical structures and
the consequences, in the case of a flow consisting of many slender vortex filaments
have been recently worked out in the case of wavelengths small compared with typical
intervortex separation by Baffico, Boyer, and Lund [2]. In this paper we address
the opposite limit, the wavelength large compared with intervortex separation, in the
special case that the vortices are placed periodically in space.

Finally, a word about the notation adopted in this work: Summation with respect
to repeated indices is understood throughout this paper.

2. Classical homogenization. As an application along with a justification of
our Fourier method , we are going to deduce a classical homogenization result in
arbitrary domains. To announce the result, let us consider the operator

A
def
= − ∂

∂yi

(
aij(y)

∂

∂yj

)
,

where the coefficients aij are assumed to satisfy

(2.1)


each aij is a [0,Λ[N -periodic bounded measurable function defined on RN ,
∃α > 0 such that aij(y)ξiξj ≥ α|ξ|2 (ellipticity),

aij = aji ∀i, j = 1, . . . , N (symmetry).

Associated with this operator, for each ε > 0, we consider also the operator Aε,
where

Aε
def
= − ∂

∂xi

(
aεij(x)

∂

∂xj

)
with aεij(x) = aij

(x
ε

)
.

From the theory of homogenization (see [3]), it is known that there is a corresponding
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FOURIER HOMOGENIZATION 1575

homogenized operator A∗ given by

A∗ def
= − ∂

∂xi

(
qij

∂

∂xj

)
.

The homogenized coefficients qij are constants and their definition can be found in
[3, p. 17]; we will deduce it later (see (2.5)). It is known that (qij) is a symmetric,
positive definite matrix: qijξiξj ≥ α|ξ|2 ∀ξ ∈ RN , where α > 0 is the same constant
appearing in (2.1).

To get the homogenized or effective operator A∗, for each ε > 0, we consider
the equation Aεuε = f in RN , where f is any given smooth function with compact
support in RN . Since the coefficients aεij(x) are periodic with period [0, εΛ[N , their
Fourier series is

aεij(x) =
∑
~n∈ZN

anije
ı~kn· xε , ~kn =

2π~n

Λ
.

Replacing this expansion of aεij(x) in the equation Aεuε = f and taking Fourier
transform, we obtain

Âεuε =
∑
~n∈ZN

anijki

(
kj −

knj
ε

)
ûε

(
~k −

~kn

ε

)
= f̂(~k),

where ûε and f̂ are the Fourier transforms of uε and f , respectively. Let us now

assume that Âεuε has a limit as ε → 0 and that this limit is the Fourier transform
of the homogenized operator A∗ acting on the limit u of the integrals uε. Thus the
following identity holds:

(2.2) qijkikj û(~k) = lim
ε→0

∑
~n∈ZN

anijki

(
kj −

knj
ε

)
ûε

(
~k −

~kn

ε

)
.

Our next step consists in passing to the limit in the right-hand side of (2.2). To this
end, we propose an ansatz for uε which takes care of periodic variations:

(2.3) uε(x) = u(x) + εχ`(y)
∂u

∂x`

∣∣
y= x

ε

+ 0(ε2),

where χ1, . . . , χN are defined for y ∈ [0,Λ[N and are assumed to be periodic. Denoting
by χn` the nth Fourier coefficient of χ` and Fourier transforming this ansatz, we get
(2.4)

ûε(~k) =û(~k) + εı
∑
~n∈ZN

χn`

(
k` − kn`

ε

)
û

(
~k −

~kn

ε

)
+ 0̂(ε2),

ûε

(
~k −

~kn

ε

)
=û

(
~k −

~kn

ε

)
+ εı

∑
~m∈ZN

χm`

(
k` − kn`

ε
−
~km`
ε

)
û

(
~k −

~kn

ε
−
~km

ε

)
+ 0̂(ε2).

Substituting (2.4) into the right-hand side of (2.3), there appears an expression with

a single sum
∑
~n which involves û(~k − ~kn

ε ) and a double sum
∑
~n,~m involving û(~k −
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1576 CARLOS CONCA AND FERNANDO LUND

~kn

ε −
~km

ε ). Here, we now use that û(~k) is significantly different from zero only when ~k
is small and conclude that in both sums the leading-order terms are those where the
argument of û remains bounded as ε goes to zero. Therefore, as ε→ 0, the first sum
is dominated by the term for which ~kn = 0 (i.e., ~n = 0) and the double sum by those

for which ~kn + ~km = 0 (i.e., ~m = −~n). Using this and the fact that 0̂(ε2) tends to
zero, we get

qijkikj û(~k) =

[
a0
ij − ı

∑
~n∈ZN

anipk
n
pχ

(−n)
j

]
kikj û(~k).

Since ıanipk
n
p is the nth Fourier coefficient of

∂aip
∂yp

(y), this latter identity gives the

following expression for the homogenized coefficients

(2.5) qij =
1

ΛN

∫
[0,Λ[N

aip(y)

[
δpj +

∂χj
∂yp

]
dy ∀i, j = 1, . . . , N.

In addition, an easy (but tedious) calculation applying Aε to the ansatz (2.3) yields

Aεuε =
1

ε

[
Aχ`(y)− ∂ai`

∂yi

]
∂u

∂x`
+O(1).

Since the left-hand side of this identity has a limit as ε goes to zero and u varies
among all solutions of the homogenized equation A∗u = f , we conclude that each χ`
is the unique integral (defined up to an additive constant) of the following problem
with periodic boundary conditions:

Aχ` =
∂ai`
∂yi

in RN , χ` is [0,Λ[N -periodic.

Therefore, formula (2.5) coincides with the classical expression for the homogenized
coefficients (see, as mentioned above, [3, p. 17]).

Remark. Observe that the homogenized operator A∗ can perfectly represent the
bulk effective constants of a nonisotropic medium even if (aij(y)) is a scalar tensor
for all y.

3. Propagation of an acoustic wave through a background, periodic,
vortical flow. We take an inviscid, isentropic fluid described by

(3.1)


~U = ~u0 + ~u′ velocity,

P = p0 + p′ pressure,

ρ = ρ0 + ρ′ density.

Primed quantities are small, and ρ0 is a constant. Order zero equations are those
corresponding to incompressible flow:

(3.2)


∇ · ~u0 = 0,

∂t~u0 + (~u0 · ∇)~u0 = − 1

ρ0
∇p0.

Equations to order one are

(3.3)


∂tρ
′ + (~u0 · ∇)ρ′ + ρ0∇ · ~u′ = 0,

∂t~u
′ + (~u0 · ∇)~u′ + (~u′ · ∇)~u0 =

ρ′

ρ2
0

∇p0 − 1

ρ0
∇p′.
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FOURIER HOMOGENIZATION 1577

Taking time derivative of the first one, divergence of the second one, and subtracting
gives, to leading order,

(3.4) ∂ttρ
′ −∇2p′ = 2ρ0∇i∇j(u0iu

′
j).

The fact that ∇·~u0 = 0 has been used, as well as the estimate, obtained by assuming
∂t ∼ ν (frequency) and ∇ ∼ k (wave vector) for the primed quantities

ρ′

ρ0
∼ u′

c
,

where c is the speed of sound defined by

c−2 ≡ dρ

dp
.

In the absence of a background flow ~u0 it relates acoustic frequency ν and acoustic
wavenumber k through ν = ck, and it is assumed that u0 � c; that is, the background
flow is of low Mach number.

We thus have a wave equation for the disturbances with a right-hand side. Assume
now that ~u0, and the corresponding p0 are given by a periodic array of vortex disks
in two dimensions. Question: Is it possible to write an “effective” wave equation in
which the right-hand side is replaced by an “effective” speed of sound?

The right-hand side of (3.4) is supposed to be a small correction to the propagation
of sound in the absence of a background flow, so that, to leading order, the following
approximate forms of (3.3) can be used in that right-hand side:

(3.5)


∂tρ
′ + ρ0∇ · ~u′ = 0,

∂t~u
′ = − 1

ρ0
∇p′.

Before getting an effective wave equation we try to get an effective dispersion
relation. To this end we Fourier transform all quantities associated with the acoustic
wave through the definition

f(~x, t) =

∫
(dNk)(dν)eı(

~k·~x−νt)f̃(~k, ν).

Also, quantities characterizing the background flow are assumed to be periodic with
period Λ, so that

~u0(~x) =
∑
~n∈ZN

~un0 e
ı~kn·~x, ~kn =

2π~n

Λ
.

The basic intuition is that the period of the background flow will be small compared
with the wavelength of the acoustic wave, so we expect wave vectors relevant for the
acoustic wave to be much smaller than all kn’s.

Taking the Fourier transform of (3.4) and (3.5), using

(2π)−N
∫
dNxeı

~k·~x = δ(~k)
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1578 CARLOS CONCA AND FERNANDO LUND

and evaluating at wavenumbers ~k = ~k′, an “acoustic” wavenumber, and at ~k = ~km, a
“background” wavenumber, we get

(3.6)


(
−ν

2

c2
+ k′2

)
p̃′(~k′, ν) = 2ρ0

∑
n

[~k′ · ~un0 ][~k′ · ~u′(~k′ − ~kn, ν)],(
−ν

2

c2
+ k2

m

)
p̃′(~km, ν) = 2ρ0

∑
n

[~km · ~un0 ][~km · ~u′(~km − ~kn, ν)].

Using now (note that this relation is valid only to leading order so that we shall be
allowed to keep whatever corrections we get below only to leading order)

(3.7) −νũ′j(~k′ − ~kn) =
1

ρ0
(k′j − knj)p̃(~k′ − ~kn),

we get a set of two equations that relate the acoustic pressure at acoustic wavenumbers
p̃′(~k) with the acoustic pressure at background wavenumbers p̃′(~kn):

(3.8)



(
−ν

2

c2
+ k′2

)
p̃′(~k′, ν) =

−2

ν

∑
n

[~k′ · ~un0 ][~k′ · (~k′ − ~kn)]p̃′(~k′ − ~kn, ν),(
−ν

2

c2
+ |~k′ − ~km|2

)
p̃′(~k′ − ~km, ν)

=
−2

ν

∑
n

[(~k′ − ~km) · ~un0 ][(~k′ − ~km) · ~k′′]p̃′(~k′′, ν),

where ~k′′ ≡ ~k′−~km−~kn. We wish to have the acoustic pressure p̃′ as a function of the
same argument in both sides of the equation so we can extract a dispersion relation.
To this end we iterate (3.6) to obtain

(3.9)

(
−ν

2

c2
+ k′2

)
p̃′(~k′, ν) =

−2

ν
[~k′ · ~u0

0]k′2p̃′(~k′, ν)

+

(
2

ν

)2∑
n 6=0

[~k′ · ~un0 ][~k′ · (~k′ − ~kn)]

−ν2

c2 + |~k′ − ~kn|2
Sn,

where

(3.10)

Sn =[(~k′ − ~kn) · ~u0
0]|~k′ − ~kn|2p̃′(~k′ − ~kn, ν)

+
∑
m6=0

[(~k′ − ~kn) · ~u0
m][(~k′ − ~kn) · (~k′ − ~kn − ~km)]p̃′(~k′ − ~kn − ~km, ν).

There appears an expression that involves the acoustic pressure evaluated at three
different arguments: p̃′(~k′), which is the same one appearing in the left-hand side,

p̃′(~k′ − ~kn) with n 6= 0, and p̃′(~k′ − ~kn − ~km) with n,m 6= 0. As in section 2, we wish

to argue that p̃′(~k) is significantly different from zero only when ~k is small. This is
to implement the requirement that the acoustic wave will have a wavelength that is
long compared with the period of the flow, and the latter will introduce small short
wavelength components. If this is true, then the contribution of p̃′(~k′ − ~kn) with
n 6= 0 will be negligible, and the double sum will be dominated by the term for which
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FOURIER HOMOGENIZATION 1579

~km + ~kn = 0. Using this and the fact that in the second term in the right-hand side
we can use, to leading order, ν2 = c2k′2, we get, remembering ~kn · ~un0 = ~kn · ~u−n0 = 0,
(3.11)(
−ν

2

c2
+ k′2

)
p̃′(~k′) =

−2

ν
[~k′ · ~u0

0]k′2p̃′(~k′, ν) + 4

(∑
n

(~k′ · ~kn)2|~k′ · ~un0 |2
|~k′|2|~kn|2c2

)
p̃′(~k′).

There are two cases to consider:

(3.12)
Case I: ~u0

0 6= 0,

Case II: ~u0
0 = 0,

according to whether the background flow has, or doesn’t have, a steady component.
In Case I the correction that the background flow brings to acoustic wave propagation
is completely given, to the accuracy with which we have been working, by the first
term in the right-hand side which is linear in the background velocity. As noted above,
higher-order corrections are not accurate. In this case the dispersion relation is

−ν
2

c2
+ k′2 =

−2

ν
[~k′ · ~u0

0]k′2,

which is the well-known Doppler shift

νDoppler = ν − ~u0
0 ·
~k′

c
,

accurate to terms linear in the uniform background flow. Case II is more interesting.
Corrections to acoustic wave propagation are described by the second term in the
right-hand side of (3.11), leading to more interesting effects. The dispersion relation
in this case is

ν2 = c2k′2
(

1− 4
∑
n

(k̂′ · ~kn)2|k̂′ · ~un0 |2
|~kn|2c2

)
,

where k̂′ is a unit vector on the direction of ~k′. The periodic vortex structure thus
gives rise to a new, homogenized speed of sound c∗:

(3.13) (c∗)2 = c2

(
1− 4

∑
n

(k̂′ · ~kn)2|k̂′ · ~un0 |2
|~kn|2c2

)
.

This can also be written

(c∗)2 = c2(1− Cijrsk̂′ik̂′j k̂′rk̂′s),
with

(3.14) Cijrs = 4
∑
n

kniknj

|~kn|2
un0ru

−n
0s

c2

a tensor with the symmetries Cijrs = Cjirs = Cijsr.
It is interesting to note that the homogenized velocity depends on the direction of

the acoustic propagation, given by k̂′, but not on its wavelength, given by |~k′|. This
was to be expected, since we took the leading-order correction in wavelengths large
compared with the intervortex spacing. Note also that the presence of the vortex
lattice breaks the isotropy of the acoustic propagation. This was also to be expected
since the lattice is not isotropic.
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1580 CARLOS CONCA AND FERNANDO LUND

4. Examples. A simple example of a two-dimensional divergenceless field is
given by

~u0 = u1(x)ŷ + u2(y)x̂.

This flow has nonvanishing vorticity. Periodicity is imposed through
u1(x) =

∑
n

u
(n,0)
0 e2πınx/a,

u2(y) =
∑
m

u
(0,m)
0 e2πımy/b,

and the wave numbers of this periodic flow are

~k(n,m) =
2πn

a
x̂+

2πm

b
ŷ.

Consequently we have  ~k′ · ~kn =
2πn

a
k′x +

2πm

b
k′y,

~k′ · ~u(n,m)
0 = u

(m,0)
0 k′x + u

(0,n)
0 k′y.

Writing now {
k′x = |~k′| cos θ,

k′y = |~k′| sin θ,

we have

(c∗)2 = c2

1− 4
∑
n,m

(
2πn
a cos θ + 2πm

b sin θ
)2 ∣∣∣u(m,0)

0 cos θ + u
(0,n)
0 sin θ

∣∣∣2((
2πn
a

)2
+
(

2πm
b

)2)
c2

 .
Note that the correction to the speed of sound depends on the orientation of the wave
vector but not on its magnitude.

More generally, a two-dimensional divergenceless velocity field can be written in
terms of a velocity potential Ψ0: {

u0x =∂yΨ0,

u0y =− ∂xΨ0,

with

Ψ0(x, y) =
∑
n,m

Ψ
(n,m)
0 e2πı(nxa +my

b ).

With this definition the homogenized speed of sound is

(c∗)2 = c2

1− 16π2
∑
n,m

|Ψ(n,m)
0 |2 ( 2πn

a cos θ + 2πm
b sin θ

)2 (m
b cos θ − n

a sin θ
)2((

2πn
a

)2
+
(

2πm
b

)2)
c2

 .D
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Similarly, in three dimensions it is possible to describe a divergenceless velocity
field ~u0 in terms of a vector potential ~A0:

~u0 = ∇× ~A0.

The vector potential ~A0 is not uniquely defined. A number of choices are possible, a
popular one being ∇ · ~A0 = 0. Imposing periodicity through

~A0 =
∑
n

~An0 e
ı~kn·~x,

we have

~un0 = ı~kn × ~An0 and ~kn · ~An0 = 0,

and the coefficients Cijrs are obtained after substitution into (3.14).

REFERENCES

[1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992),
pp. 1482–1518.

[2] M. Baffico, D. Boyer, and F. Lund, Propagation of acoustic waves through a system of
many vortex rings, Phys. Rev. Lett., 80 (1998), pp. 2590–2593.

[3] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis in Periodic Struc-
tures, North–Holland, Amsterdam, 1978.

[4] C. Conca, J. Planchard, and M. Vanninathan, Fluids and Periodic Structures, Collection
RAM, 38, J. Wiley & Sons/Masson, Paris, 1995.

[5] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
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