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Abstract In this article we study which infinite matrices are potential matrices. We
tackle this problem in the ultrametric framework by studying infinite tree matrices
and ultrametric matrices. For each tree matrix, we show the existence of an associated
symmetric random walk and study its Green potential. We provide a representation
theorem for harmonic functions that includes simple expressions for any increasing
harmonic function and the Martin kernel. For ultrametric matrices, we supply proba-
bilistic conditions to study its potential properties when immersed in its minimal tree
matrix extension.
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1 Introduction and Basic Notation

1.1 Introduction

Here we study ultrametric and tree matrices, the associated random walks on trees,
their potentials, and the exit measure on the boundary.

There exists a broad literature in this field (a complete state-of-the-art study can be
found in [21]). The main difference between our work and most part of this literature
is that our starting point is not a random walk on a tree but a tree matrix or, more
generally, an ultrametric matrix. In this viewpoint, the random walk is constructed
from the matrix, a nontrivial fact even in the finite case. Hence, most of the concepts
must be expressed with respect to the matrix that turns out to be the sum of a potential
and a harmonic basis. Our results are not a simple translation of well-known results
from walks on trees to matrices. New phenomena appear: the formula for monotone
harmonic functions and the predictable representation property of tree matrices that
turns out to be the keystone for a wide class of relations including the Martin kernel
at ∞.

Below we give the framework of our work and summarize some of the main re-
sults.

An ultrametric matrix U = (Uij : i, j ∈ I ) is a symmetric nonnegative matrix ver-
ifying the ultrametric inequality Uij ≥ min{Uik,Ukj } for all i, j, k ∈ I . When I is
finite, it was shown in [12, 23] that the inverse U−1 of a nonsingular ultrametric ma-
trix U is a diagonal dominant Stieltjes matrix (see also [26]). Then, U is proportional
to the Green potential of a subMarkov kernel P , that is, U = α

∑
n∈N

P n. Thus,
d(i, j) = 1/Uij for i �= j is an ultrametric distance, and 1/d is a Green potential.
A similar relation happens in R

3 between the Newtonian potential and the Euclidean
distance, or in R

d with d ≥ 4 when we allow an increasing function of the Euclidean
distance.

Tree matrices are a special case of ultrametric matrices. They are defined by a
rooted tree (I, T ) (with root r) and a strictly increasing function w : {|k| : k ∈ I } →
R+, where |k|, the level of k, is the length of the geodesic from a site k to r . The tree
matrix U is defined as Uij = w|i∧j | with i ∧ j being the farthest vertex from r that is
common to the geodesic from i and j to r . When I is finite, U is the potential of a
Markov process, whose skeleton is a simple symmetric random walk on the tree, only
defective at the root. Let us mention that every ultrametric matrix can be obtained by
restriction of a matrix in this class (see [12]). That is, for every ultrametric matrix U,

there exists a minimal extension tree matrix Ũ , defined on (Ĩ , T̃ ), such that U = Ũ |I .
This minimal tree T̃ contains all the information that is required to understand the
one-step transitions of the Markov process associated to U . In fact, Pij > 0 if and
only if the geodesic in T̃ joining i and j does not contain other points in I .

One of the purposes of this paper is to extend this study to countably infinite ul-
trametric and tree matrices. At this respect we use that every tree matrix U defines
a natural kernel W in the boundary ∂∞ of the tree. This class of operators was al-
ready considered in [19] and [20], where a deep study of potential properties is done,
mainly in connection to dimension and capacity on the boundary. We show that W

is a stochastic integral operator whose associated filtration F = (Fk) is given by the
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tree structure, see Proposition 3.2. The operator W allows us to represent harmonic
functions in the infinite tree (see Corollary 3.1). This representation is alternative to
the well-known Martin kernel representation supplied, for example, in [8] and [30].
In Theorem 3.1 we describe the set of harmonic functions that are increasing along
the branches as the functions that are convex combinations of U . Also, we character-
ize the set of bounded harmonic functions which are the differences of two harmonic
increasing functions (see Theorem 3.2).

In the finite setting, a tree matrix U is the potential of a continuous-time Markov
chain, the leaves of the tree being reflecting states (see Proposition 2.2). Neverthe-
less, in the infinite transient case, each column of U is the sum of a potential and a
nontrivial harmonic function, as follows from relation (3.3). This last result uses two
main ingredients. The first one comes from the finite-case analysis: when imposing
Dirichlet boundary conditions at the boundary, a finite tree matrix is the sum of the
potential matrix and a matrix whose columns generate the harmonic functions (see
Proposition 2.4). The second element is the exit measure at the boundary.

We mainly consider the potential of tree matrices for Markov semigroups defective
at the root, because this is natural in the finite case. However, in the transient infinite
case we can reflect the process at the root as we do in Sect. 4 and by a limit procedure
we can represent the Martin kernel in a similar way as for the absorbed chain, see
Theorem 4.1. Also explicit computations for homogeneous trees are done, retrieving
some known formulae [9, 30].

In Sect. 5 we study ultrametric matrices U = (Uij : i, j ∈ I ). Under some explicit
hypotheses, we associate to U a minimal tree matrix Ũ = (Ũı̃j̃ : ı̃, j̃ ∈ Ĩ ) extending
it, with a natural immersion of the sites I into Ĩ . In Theorem 5.1 we show that a
canonical generator Q can be associated to U with the help of the generator Q̃ as-
sociated to Ũ ; in Theorem 5.2 it is shown that the harmonic functions defined by Q

can be retrieved from the harmonic functions defined by Q̃. The key hypothesis is
that a random walk starting from Ĩ \ I is trapped at the cemetery or it reaches I with
probability one.

We note that the main assumption on the tree (I, T ) is local finiteness. No other
hypothesis is needed; in particular no kind of homogeneity is required. In this general-
ity, the exit measure at ∞ fulfills the requirements allowing us to describe the process
at the boundary. In the case of stochastic process on the p-adic field or p-adic tree
(see, for example, [1–3, 18], and the references therein), there is a natural measure
in the boundary, the Haar measure for the p-adic tree, or an absolutely continuous
probability measure with respect to the Haar measure for the p-adic field.

In our work we use strongly the notion of a stochastic integral operator that is the
natural framework in which ultrametricity appears in stochastic analysis. We recall
that an operator Y acting on a space L2 is a stochastic integral operator (see [14])
if for some filtration F = (Ft ), Y can be written as Yf = ∫ ∞

0 Ht dE(f |Ft ), where
H = (Ht ) is an F -predictable process. The fact that H is predictable plays a funda-
mental role in the analysis of W . In a previous work, the stochastic integral operators
defined on countable spaces were characterized by using the relations between ultra-
metric matrices and filtrations (see [11]). We point out that the continuous version
of ultrametric matrices needs to consider operators of the form V = ∫ ∞

0 E(|Ft ) dGt ,
where (Gt ) is a bounded increasing and adapted process. In [13] it is shown that these
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operators are Markov potential kernels (see also [15]), which generalizes some of the
results obtained in [7].

Finally, we mention that ultrametricity is an important tool in applied areas like:
Taxonomy (see [5]); the problem of maximal flow on finite graphs, namely the the-
orem of Gomory-Hu (see [6]); statistical physics to explore the ultrametric Parisi
solution to spin-glass models (see [29] and references therein).

1.2 Trees

Here we fix notation and recall some well-known notions on trees. Let (I, T ) be a
connected, nonoriented, and locally finite tree. I is the set of sites, and T ⊂ I × I

is the set of links. Two sites i, j are neighbors if (i, j) ∈ T . The set of sites with a
unique neighbor is called the extremal set and is denoted by E . The geodesic joining i

and j is denoted by geod(i, j), and its length is written |i −j |. In particular geod(i, i)

only contains i, and its length is 0. We assume that the tree is rooted by r ∈ I and
write |i| = |i − r|. We introduce the following order relation on I :

i 	 j if i ∈ geod(r, j). (1.1)

The element i ∧ j = max(geod(r, i)∩ geod(r, j)) denotes the 	-minimum between i

and j . For i ∈ I \ {r}, there is a unique element i− verifying (i−, i) ∈ T and i− 	 i,
called the predecessor of i. It verifies |i−| = |i| − 1. The set of successors of i ∈ I

is denoted by Si = {j ∈ I : j− = i}. This is a finite set that can be empty. By i+ we
mean a generic element of Si , and L = {i ∈ I : Si = ∅} is the set of leaves of the tree.
We notice that L ⊆ E and that r is the only point that can be extremal without being
a leaf. The branch of the tree born at i ∈ I is denoted by [i,∞) = {j ∈ I : i 	 j}.

Assume that I is countably infinite. Any sequence (in ∈ I : n ∈ N) such that
(in, in+1) ∈ T for every n ∈ N = {0,1,2, . . .} is called an infinite path in the tree
with origin i0. If all in are different, this path is called an infinite chain. The relation

(in : n ∈ N) ∼ (jn : n ∈ N) ⇐⇒ ∣
∣{in : n ∈ N} ∩ {jn : n ∈ N}∣∣ = ∞

is an equivalence relation in the set of chains. The quotient set is the boundary of the
tree (I, T ) (see [8]), and we denote it by ∂∞.

For every i ∈ I and every ξ ∈ ∂∞, there exists a unique chain with origin i which
is in the equivalence class ξ . This chain is called the geodesic between i and ξ and
denoted by geod(i, ξ). For fixed ξ ∈ ∂∞ and n ∈ N, we denote by ξ(n) the unique
point in the geodesic geod(r, ξ) such that |ξ(n)| = n. In particular, ξ(0) = r .

For i ∈ I and ξ ∈ ∂∞, we write i 	 ξ if i ∈ geod(r, ξ). Let us extend ∧ to I ∪ ∂∞.
Let i ∈ I , and let η, ξ ∈ ∂∞ be such that η �= ξ . We put

i ∧ η = η ∧ i = max
(
geod(r, i) ∩ geod(r, η)

)
,

ξ ∧ η = max
(
geod(r, ξ) ∩ geod(r, η)

)
, (1.2)

η ∧ η = η.

Note that ξ ∧ η ∈ I and ξ ∧ η = j if and only if ξ(|j |) = j = η(|j |) and ξ(n) �= η(n)

for n > |j |.
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The extended subtree hanging from i ∈ I is [i,∞] = {z ∈ I ∪ ∂∞ : i 	 z}. The
set I ∪ ∂∞ is endowed with the topology T generated by the basis of open sets A =
{[i,∞] : i ∈ I }∪ {{i} : i ∈ I }. The sets in A are open and closed in T. The topological
space (I ∪ ∂∞,T) is compact, totally discontinuous, and metrically generated; the
trace topology on I is the discrete one, and I is an open dense subset in I ∪ ∂∞.
Then, when ξ ∈ ∂∞, it holds ξ = limn→∞ ξ(n).

The open basis A is also a semi-algebra generating the Borel σ -algebra σ(T). We
will use the notation

∂∞(i) = [i,∞] ∩ ∂∞ = {η ∈ ∂∞ : i 	 η}. (1.3)

The class of sets C = {∂∞(i) : i ∈ I } is a basis of open (and closed) sets generating
T ∩ ∂∞ and also is a semi-algebra generating the trace of σ(T) on ∂∞. We have
∂∞(ξ(n)) = {η ∈ ∂∞ : |ξ ∧ η| ≥ n

}
. We introduce the notation

Cn(ξ) = ∂∞
(
ξ(n)

)
for n ∈ N and ξ ∈ ∂∞. (1.4)

The set function Cn(•) with domain ∂∞ takes a finite number of values. We denote
by Fn the σ -field in ∂∞ generated by the finite family of sets {Cn(ξ) : ξ ∈ ∂∞}. This
sequence of σ -fields is increasing and generating, that is, F∞ = σ(T).

The following criterion stated in [8] is useful to establish convergence to a point
in the boundary. Let (in : n ∈ N) be an infinite path; then

(∀j ∈ I : ∣∣{n ∈ N : in = j}∣∣ < ∞) =⇒ ∃!ξ = lim
n→∞ in ∈ ∂∞. (1.5)

In this case there exists a subsequence (kn : n ∈ N) verifying geod(i0, ξ) = (ikn :
n ∈ N).

It will be useful to add a state ∂r /∈ I and the oriented link (r, ∂r ). We put r− = ∂r

and |∂r | = −1.
In the sequel we adopt the following notation. For any nonempty countable set J,

we denote by IJ the identity J × J matrix. If M is an I × I matrix and J,K ⊆ I

are nonempty, the matrix MJK = (Mjk : j ∈ J, k ∈ K) (also denoted by MJ,K ) is the
restriction of M to J × K .

By 1A we mean the characteristic function of a set A, and 1 is the constant func-
tion taking the value 1 in its domain of definition. As used frequently for the mean
expected value operator, by E(f,A) we mean E(f 1A).

2 Tree Matrices

In [12] we have introduced the notion of tree matrices in the finite case. Here we give
a general version of it. Let (I, T ) be a locally finite tree with root r . Put N = {|i| :
i ∈ I }, which is equal to N when the tree is infinite.

Definition 2.1 A tree matrix U = (Uij : i, j ∈ I ) is defined by a strictly positive and
strictly increasing function w : N → (0,∞) as follows:

Uij = w|i∧j | for i, j ∈ I.
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Fig. 1 Tree matrix

See Fig. 1 for a depiction of this notion.
The matrix U is strictly positive and symmetric, and it verifies Uij = Ui∧j,i∧j . In

particular, Ui−i = Ui−i− = w|i|−1 when i− ∈ I . Notice that Ui+i+ = w|i|+1 does not
depend on the particular element i+ ∈ Si . We extend U to I ∪ {∂r } by putting

U∂r∂r = Ui∂r = U∂r i = w−1 = 0, for i ∈ I.

In what follows, it is useful to define w∞ = limn→∞ wn. Let us use (1.2) to extend
U to I ∪ ∂∞. For i ∈ I and η, ξ ∈ ∂∞ such that η �= ξ , we put

Uiη = Uηi = w|i∧η|,

Uξη = Uηξ = w|ξ∧η|, (2.1)

Uηη = w∞.

This extension is continuous in both variables: Uξη = limn→∞,m→∞ Uξ(n)η(m) for
ξ, η ∈ ∂∞.

We associate to U a symmetric matrix Q = (Qij : i, j ∈ I ) supported by the tree
and the diagonal, that is, Qij = 0 if i �= j and (i, j) /∈ T . This matrix Q is given by

Qii− = Qi−i = (w|i| − w|i|−1)
−1 for i−, i ∈ I ;

(2.2)
Qii = −(

(w|i| − w|i|−1)
−1 + |Si |(w|i|+1 − w|i|)−1) for i ∈ I.

Observe that Qii+ = Qi+i = (w|i|+1 − w|i|)−1 does not depend on i+ ∈ Si . When
i ∈ L is a leaf, then Qii = −Qii− .
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The matrix Q verifies: Qij ≥ 0 if j �= i; Qii ≤ 0 and
∑

j∈I Qij ≤ 0 for i ∈ I , so
Q is a q-matrix. Q is conservative at i ∈ I \ {r}, that is,

∑
j∈I Qij = 0, and defective

at r since
∑

j∈I Qrj = −w−1
0 .

Observe that if M is an I × I matrix, then the formal products of matrices QM

and MQ are well defined because each line and column of Q has finite support.

Proposition 2.1 The q-matrix Q verifies (−Q)U = U(−Q) = II .

Proof By symmetry it suffices to show that (−Q)U = II . For i, k ∈ I, we have

(QU)ik = Qii−Ui−k + QiiUik + Qii+
∑

j∈Si

Ujk.

If k ∧ i 	 i−, we have i �= r and k ∧ i = k ∧ i− = k ∧ i+. Then (QU)ik = 0
because Q is conservative at i ∈ I .

For k = i, we have

(QU)ii = Qii−Ui−i + QiiUii + |Si |Qii+Uii

= Qii−Ui−i − Qii−Uii − |Si |Qii+Uii + |Si |Qii+Uii

= −Qii−(Uii − Ui−i ) = −1.

The last case left to analyze is when k ∧ i+ = i+ for some unique i+ ∈ Si . Then
k ∧ i− = i−, k ∧ i = i = k ∧ j for j ∈ Si \ {i+}. Hence

(QU)ik = Qii−Ui−i− + QiiUii + (|Si | − 1
)
Qii+Uii + Qii+Ui+i+

= (QU)ii + Qii+(Ui+i+ − Uii) = −1 + 1. �

When (I, T ) is a finite tree rooted at r, the matrix Q is the generator of a sub-
Markov process with semigroup (eQt : t ≥ 0). We denote its lifetime by ζ , so the
process is X = (Xt : 0 ≤ t < ζ ). We point out that this chain is irreducible and ζ is
finite Pi -a.s. for any i ∈ I . For simplicity, in some of the computations below we put
Xt = ∂r for t ∈ [ζ,∞]. In particular, X∞ = ∂r Pi -a.s. for any i ∈ I . Since the state
space is finite, the equation QU = −II is equivalent to Q = −U−1. This implies that
U = −Q−1 = ∫ ∞

0 etQ dt . Thus we have shown the following result.

Proposition 2.2 Let (I, T ) be a finite tree rooted at r . Then U is the potential matrix
of the chain (Xt : 0 ≤ t < ζ ) on I , that is, U = ∫ ∞

0 etQ dt or equivalently Uij =
Ei (

∫ ζ

0 1{Xt=j} dt) for i, j ∈ I .

Continuing in the finite setting, we put n + 1 = max{|i| : i ∈ I }. Consider the sets

Bn+1 = {
i ∈ I : |i| = n + 1

}
and B̃n = {

i ∈ I : |i| = n,Si �= ∅}
.

Hence Bn+1 = ⋃
i∈B̃n Si . To avoid trivial situations we assume n ≥ 1. We will also

set Im = {i ∈ I : |i| ≤ m}, so I = In+1.
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We denote by Ti = inf{t ≥ 0 : Xt = i} the hitting time of i ∈ I , and by TB̃n :=
inf{Ti : i ∈ B̃n} and TBn+1 := inf{Ti : i ∈ Bn+1} we denote the hitting times of B̃n

and Bn+1, respectively.
Let QInIn be the restriction of Q to In × In. The chain (Xt : t < ζ ∧ TBn+1) has

generator QInIn and semigroup (etQInIn : t ≥ 0). Its potential V (n) := −(QInIn)−1

verifies

V
(n)
ij = Ei

(∫ T
Bn+1

0
1{Xt=j} dt

)

for i, j ∈ In.

Definition 2.2 Given a q-matrix Q on the set I , we say that a function h : I → R is
Q-harmonic if it verifies Qh = 0.

From the definition it is clear that h is Q-harmonic if and only if etQh = h for all
t ≥ 0.

Consider the q-matrix Q̄(n) defined in In by

Q̄
(n)

In\B̃n,In = QIn\B̃n,In and Q̄
(n)

B̃nIn = 0.

The next proposition is a characterization of the Q̄(n)-harmonic functions, and its
proof is based on Doob’ sampling theorem.

Proposition 2.3 A function h : In → R is Q̄(n)-harmonic if and only if

Ei

(
h(Xτ∧TB̃n )

) = h(i) for i ∈ In and any stopping time τ,

where we put h(∂r) = 0.

The class of Q̄(n)-harmonic functions, denoted by Hn, is a linear space with di-
mension dim Hn = |B̃n|. Indeed, for each k ∈ B̃n, the function hk(i) =
Ei (1{k}(XTB̃n )) is the unique harmonic function which verifies hk(j) = δkj for
j ∈ B̃n. The class of these harmonic functions constitutes a basis for Hn.

Proposition 2.4 The matrix H := UInIn − V (n) is symmetric, and its columns gen-
erate the space Hn of Q̄(n)-harmonic functions. Moreover, the columns of UIn B̃n is
a basis of this space.

Proof First, let us introduce the matrices W = (Wik : i ∈ In, k ∈ B̃n), E = (Ei� :
i ∈ In, � ∈ Bn+1), and D = (Dik : i ∈ In, k ∈ B̃n) with terms

Wik = Pi{XTB̃n = k}, Ei� = Pi{XT
Bn+1 = �}, Dik = Pi{XT

Bn+1 ∈ Sk}.

Let Wk be the k column of W with k ∈ B̃n. We notice that hk = Wk ; then (Wk :
k ∈ B̃n) is a basis of Hn. In particular Q̄(n)Wk = 0.

From definition Dik = ∑
�∈Sk

Ei�. This equality can be written as D = EMt ,

where Mt is the transpose of the incidence matrix M = (Mk� : k ∈ B̃n, � ∈ Bn+1)

with Mk� = 1 if � ∈ Sk and Mk� = 0 otherwise.
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Let i ∈ In and k ∈ B̃n. Since

Pi{Tk < ∞} =
∑

j∈B̃n

Pi{XTB̃n = j}Pj {Tk < ∞} and Uik = Pi{Tk < ∞}Ukk,

we find Uik = ∑
j∈B̃n Pi{XTB̃n = j}Ujk . Hence we obtain

UIn B̃n = WUB̃n B̃n and so W = UInB̃n(UB̃nB̃n)
−1. (2.3)

Analogously we get E = UInBn+1(UBn+1 Bn+1)−1. From the equality D = EMt we
find D = UIn Bn+1(UBn+1 Bn+1)−1Mt . Since Ui� = w|i| = Uik when k ∈ B̃n and � ∈
Sk , we obtain

UIn Bn+1 = UInB̃nM. (2.4)

Then

D = UIn B̃nM(UBn+1 Bn+1)
−1Mt. (2.5)

Let us now show that

H = UInB̃nM(UBn+1Bn+1)
−1MtUB̃n In (2.6)

or equivalently H = DUB̃n In . For i, j ∈ In, we have

Uij = Ei

(∫ ζ

0
1{Xt=j} dt

)

= Ei

(∫ T
Bn+1

0
1{Xt=j} dt

)

+ Ei

(∫ ζ

T
Bn+1

1{Xt=j} dt, TBn+1 < ζ

)

= Ei

(∫ T
Bn+1

0
1{Xt=j} dt

)

+ Ei

(

EXT
Bn+1

(∫ ζ

0
1{Xt=j}dt

)

, TBn+1 < ζ

)

,

where in the last equality we have used the strong Markov property. Hence Uij =
V

(n)
ij + ∑

�∈Bn+1 Pi{XT
Bn+1 = �}U�j , or equivalently

Uij = V
(n)
ij + Ei (UXT

Bn+1 j , TBn+1 < ∞) = Ei (UXT
Bn+1 j ). (2.7)

The last equality follows from the fact that on the set TBn+1 = ∞ one has XT
Bn+1 = ∂r

Pi -a.s. and that by definition Uj∂r = U∂rj = 0. Thus Hij = Ei (UXT
Bn+1 j ), and by

using (2.4) we find

Hij =
∑

�∈Bn+1

Pi{XT
Bn+1 = �}U�j =

∑

k∈B̃n

Pi{XT
Bn+1 ∈ Sk}Ukj for i, j ∈ In.

This gives H = DUB̃n In , which together with (2.5) shows that (2.6) holds. From
(2.6) we deduce rankH = rankUB̃n In = |B̃n| = dim Hn. On the other hand, from
(2.3) and (2.6) we get

H = WUB̃nB̃nM(UBn+1Bn+1)
−1MtUB̃nB̃nW

t . (2.8)
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From Q̄(n)W = 0 we obtain Q̄(n)H = 0. Therefore, the columns of H belong to the
space Hn. Given that rank(H) = dim(Hn), the columns of H generate this space.
On the other hand, by (2.6) the columns of UIn B̃n generate Hn. Since the rank of this
matrix is equal to the dimension of Hn, the proposition is shown. �

3 Harmonic Functions and the Martin Kernel

From now on we assume that (I, T ) is an infinite rooted tree and that all its branches
are infinite.

We denote Q̂ the extension of Q to I ∪ {∂r } given by

Q̂r∂r = w−1
0 ,

Q̂i∂r = Q̂∂r ∂r = 0 for i �= r, i ∈ I, (3.1)

Q̂∂r i = 0 for all i ∈ I.

This extension is a nonsymmetric conservative q-matrix in I ∪ {∂r}, having ∂r as an
absorbing state.

We consider the minimal transition semigroup P̂t associated to Q̂ (this semigroup
can be constructed by a truncation method as in [4] Proposition 2.14). Let X̂ = (X̂t :
0 ≤ t < ζ̂ ) be a time-continuous Markov process with infinitesimal generator Q̂ and
lifetime ζ̂ . If we stop X̂ when it hits ∂r , we get a Markov process X = (X̂t : 0 ≤ t < ζ )

with generator Q, state space I, and lifetime ζ = T∂r ∧ ζ̂ . Let (Pt ) be the semigroup
associated to X and V = ∫ ∞

0 Pt dt be the induced potential on I .

Remark 3.1 We mention that the discrete skeleton of X̂ whose transition probabilities
are

pij = Q̂ij
∑

k∈Si∪{i−} Q̂ik

for i ∈ I, j ∈ Si ∪ {i−},

p∂r∂r = 1, p∂r i = 0 for i ∈ I,

has electrical circuits interpretation. It is the Markov chain with conductances Cii− :=
Qii− (see [17], Sect. 9, and [20], Sect. 2).

Let In = {i ∈ I : |i| ≤ n}. As in the previous section, V (n) is the potential asso-
ciated to QInIn, and Hn is the set of Q̄(n)-harmonic functions in In. Let X(n) :=
(Xt : t < T∂r ∧ TBn+1) be the chain killed at Bn+1 ∪ {∂r}, with generator QInIn ,
Markov semigroup P

(n)
t = etQInIn , and potential V (n) = ∫ ∞

0 P
(n)
t dt = −Q−1

InIn .

Clearly (P
(n)
t )ij ≤ (P

(n+1)
t )ij and V

(n)
ij ≤ V

(n+1)
ij for i, j ∈ In. By the Monotone

Convergence Theorem their limits are (Pt )ij and Vij , respectively. From (2.7) we get

V
(n)
ij ≤ Uij , so V ≤ U .

A classical procedure (for instance, see [8]) shows that Xζ is a well-defined vari-
able in I ∪∂∞ ∪∂r . Let us briefly do this. If T∂r < ∞, this is obvious because T∂r = ζ

and Xζ = ∂r . In the set T∂r = ∞, the Borel–Cantelli Lemma implies that the trajecto-
ries must visit each site of I only a finite number of times. Since they are not absorbed
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at ∂r , they must converge to a point in the boundary ∂∞ because (1.5) is fulfilled. To
describe this phenomenon we need the stopping times Rn = inf{t ≥ 0 : |Xt | ≥ n} and
R∞ := limn→∞ Rn. The above discussion is summarized in

Xζ = ∂r if T∂r < R∞ and Xζ = lim
n→∞XRn = lim

n→∞Xζ (n) ∈ ∂∞ if R∞ ≤ T∂r .

(3.2)
Here, as already introduced in Sect. 1.2, Xζ (n) is the point at level n in geod(r,Xζ ).

The tree matrix is said to be transient whenever Pr{T∂r < ∞} < 1 or equivalently
Pr{Xζ ∈ ∂∞} > 0. Otherwise, the tree matrix is said to be recurrent. This classifica-
tion corresponds to the recurrence or transient property for the chain reflected at r .
For a simple criterion on transience for reversible Markov chains, see [22].

Now, consider |i| ≤ n. Equality (2.7) gives Uij = V
(n)
ij + Ei (UXT

Bn+1 j ), which,

together with the fact that UXT
Bn+1 j ≤ Ujj and limn→∞ UXT

Bn+1 j = UXζ j Pi -a.e.,

yields

lim
n→∞ Ei (UXT

Bn+1 j ) = Ei (UXζ j ).

Combining these relations with limn→∞ V
(n)
ij = Vij allows us to get

Uij = Vij + Ei (UXζ j ) = Vij +
∫

∂∞
Uηj Pi{Xζ ∈ dη}. (3.3)

Given that Vij = Vji = Pj {Ti < ∞}Vii, the following limit exists:

Viξ := lim
j→ξ

Vij = Vii · lim
j→ξ

Pj {Ti < ∞} ≥ 0, for i ∈ I, ξ ∈ ∂∞. (3.4)

Therefore, passing to the limit as j → ξ ∈ ∂∞ in relation (3.3) and using the
Monotone Convergence Theorem lead to

Uiξ = Viξ +
∫

∂∞
UηξPi{Xζ ∈ dη}. (3.5)

A conclusion derived from (3.3) is that the recurrent case Pr {Xζ ∈ ∂∞} = 0 is
completely characterized by the equality V = U . In particular the tree matrix U is
the potential of (Xt ).

In the transient case we denote by μ the exit measure on the boundary ∂∞, that is,
the probability measure defined on ∂∞ by

μ(•) = Pr {Xζ ∈ • | Xζ ∈ ∂∞}. (3.6)

Remark 3.2 If U is unbounded, that is, w∞ = ∞, the measure μ is atomless. In fact,
from (3.5) we get

∞ > w0 = Urξ ≥
∫

∂∞\{ξ}
UηξPr{Xζ ∈ dη} + w∞Pr{Xζ = ξ}.

In what follows we concentrate ourselves on the transient case. Nevertheless, at
some points we shall state the corresponding results for the recurrent case.



322 J Theor Probab (2009) 22: 311–347

3.1 Harmonic Functions

In this subsection we study basic properties of the harmonic functions on I . We no-
tice that the restriction of a Q̂-harmonic function to I is not necessarily Q-harmo-
nic. An example of this is the constant 1 function. In fact, the unique Q̂-harmonic
functions whose restrictions are Q-harmonic are those vanishing at ∂r . Obviously
the reciprocal also holds, that is, the unique Q̂-harmonic extension of a Q-harmonic
function is the one extended by 0 at ∂r . In the sequel a harmonic function is to be un-
derstood as a Q-harmonic function, and for a function defined on a subset of I ∪ ∂∞,

we assume implicitly that it takes the value 0 at ∂r , unless otherwise is specified.
In the sequel an important role will be played by the function

ḡ(j) = Pj {T∂r < ∞}, j ∈ I ∪ {∂r}, (3.7)

which is the Martin kernel for Q̂ at ∂r . We point out that both ḡ and 1 − ḡ are Q̂-
harmonic, but only 1 − ḡ is Q-harmonic. We also note that ḡ is nonnegative and
decreasing on each branch, which allows to define it on ∂∞ by

ḡ(η) := lim
j→η

Pj {T∂r < ∞}, η ∈ ∂∞.

The following notion will enable us to study limiting properties on the boundary
for functions defined on the extended tree.

Given g : I → R an extended real function defined on the tree, we consider the
sequence of functions (gn) defined on the boundary by

gn(ξ) = g
(
ξ(n)

)
for n ∈ N and ξ ∈ ∂∞.

Definition 3.1 Let g : I → R and ϕ : ∂∞ → R. We put limg = ϕ pointwise (respec-
tively μ-a.e.) if limn→∞ gn = ϕ pointwise (respectively μ-a.e.).

Let R̄n := inf{t ≥ 0 : |Xt | ≥ n or Xt = ∂r }. A standard argument gives

h : I → R is harmonic

⇐⇒ [∀n ≥ 1, ∀τ stopping time: ∀i ∈ I,h(i) = Ei

(
h(Xτ∧R̄n

)
)]

.

In the transient case, an application of the Dominated Convergence Theorem and
Fatou’s Theorem give that for any bounded harmonic function h : I → R, the limit
ϕ = limh μ-a.e. exists and moreover

h(i) = Ei

(
ϕ(Xζ )

)
.

Indeed, this is a consequence of Theorem 2.6 in [8], because h is bounded if and only
if h/(1 − ḡ) is bounded. Thus, if h1, h2 are bounded harmonic functions such that
limh1 = limh2 μ-a.e., then h1 ≡ h2.

Obviously in the recurrent case the unique bounded harmonic function is h ≡ 0.

Proposition 3.1 If U is bounded, then the tree matrix is transient.
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Proof The function h(i) = Uiη is harmonic, bounded, and nonzero, which implies
that the tree matrix must be transient. �

A distinguished class of harmonic functions is given by the Martin kernel at ∞,
see [8, 17], or [28].

Definition 3.2 The Martin kernel (at ∞) κ : I × ∂∞ → R is given by

κ(i, η) := lim
j→η

Vij

Vrj

for i ∈ I, η ∈ ∂∞.

It is a well-known fact that κ(•, η) is a harmonic function on I (see [8] or [28]).
Consider i ∈ I, ξ ∈ ∂∞, and n > |i ∧ ξ |. Take j = ξ(n) and recall that Cn(ξ) =
∂∞(ξ(n)) (see (1.4)). From Vij = Pi{Tj < ∞}Vjj and the strong Markov property
we obtain

Pi

{
Xζ ∈ Cn(ξ)

} = Pi{Tj < ∞}Pj

{
Xζ ∈ Cn(ξ)

} = Vij

Vjj

Pξ(n)

{
Xζ ∈ Cn(ξ)

}
.

Thus we get

Vij

Vrj

= Pi{Xζ ∈ Cn(ξ)}
Pr {Xζ ∈ Cn(ξ)} ,

and passing to the limit, we find that

κ(i, ξ) = lim
j→ξ

Pi{Xζ ∈ ∂∞(j)}
Pr{Xζ ∈ ∂∞(j)} = Pi{Xζ ∈ Cn(ξ)}

Pr{Xζ ∈ Cn(ξ)} .

On the other hand, Pi{Xζ ∈ Cn(ξ)} = Pi{Ti∧ξ < ∞}Pi∧ξ {Xζ ∈ Cn(ξ)}. Also,
since every trajectory starting at r and reaching Cn(ξ) must cross i ∧ ξ , we obtain
Pr{Xζ ∈ Cn(ξ)} = Pr {Ti∧ξ < ∞}Pi∧ξ {Xζ ∈ Cn(ξ)}.

Thus for i ∈ I , ξ ∈ ∂∞, and n > |i ∧ ξ |, we get the formula

κ(i, ξ) = lim
j→ξ

Pi{Xζ ∈ ∂∞(j)}
Pr{Xζ ∈ ∂∞(j)} = Pi{Xζ ∈ Cn(ξ)}

Pr{Xζ ∈ Cn(ξ)} = Pi{Ti∧ξ < ∞}
Pr{Ti∧ξ < ∞} . (3.8)

In particular κ(i,•) is the Radon–Nikodým derivative of Pi{Xζ ∈ •} with respect
to Pr{Xζ ∈ •} (see [8]), so

Uiξ = Viξ +
∫

∂∞
Uξη κ(i, η) Pr{Xζ ∈ dη}.

Remark 3.3 When the tree is recurrent, that is, V = U , the Martin kernel is easily
computed as

κ(i, η) = lim
j→η

Vij

Vrj

= Uiη

w0
.

Therefore, {U•η/w0 : η ∈ ∂∞} is the Martin kernel.
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3.2 Regular Points

To study the potential theory in the transient case one needs the description of the
regular points on ∂∞. In the classical setting regularity is needed for the continuity
up to the boundary for solutions to the Dirichlet boundary problem (see, for example,
[10], Theorem 1.23). In our context this is stated in Lemma 3.1 (ii).

Definition 3.3 A point η ∈ ∂∞ is regular if ḡ(η) = 0, that is, limj→η Pj {T∂r < ∞}
= 0. We denote by ∂

reg
∞ the set of regular points.

The classification on regular points is the same if instead of T∂r , we use Ti for any
i ∈ I . Indeed η is regular if and only if limj→η Pj {Ti < ∞} = 0 for all i ∈ I . By (3.4)
this is exactly the case where Viη = 0.

Lemma 3.1

(i) The measure μ is concentrated on the set of regular points: μ(∂
reg∞ ) = 1.

(ii) A point η ∈ ∂∞ is regular if and only if any bounded continuous real function f

defined in ∂∞ ∪ {∂r} with f (∂r ) = 0 verifies

lim
j→η

Ej

(
f (Xζ )

) = f (η). (3.9)

(iii) Every regular point η ∈ ∂∞ belongs to the closed support of μ, that is,

Pr

{
Xζ ∈ [η(n),∞]} > 0 for all n.

Proof (i) The function ḡ(j) = Pj {T∂r < ∞} is bounded and Q̂-harmonic and verifies
ḡ(∂r ) = 1. For any n ≥ 1, it holds ḡ(r) = Er (ḡ(XTBn∧T∂r

)). Hence, the Dominated
Convergence Theorem gives

ḡ(r) = Er

(
ḡ(Xζ )

) = Pr{T∂r < ∞} +
∫

ḡ(ξ)Pr {Xζ ∈ dξ}.

From this relation we conclude that ḡ = 0 μ-a.e. Therefore μ(∂
reg∞ ) = 1.

(ii) Since f is continuous and bounded, for every fixed ε > 0, there exists n such
that |f (ξ) − f (η)| ≤ ε if ξ(n) = η(n). Then for j ∈ [η(n),∞), we have

∣
∣Ej

(
f (Xζ )

) − f (η)
∣
∣ ≤ 2MPj {Tη(n) < ζ } + 2εPj {ζ ≤ Tη(n)},

where M is a bound for f . From this inequality we conclude that

lim sup
j→η

∣
∣Ej

(
f (Xζ )

) − f (η)
∣
∣ ≤ 2ε

and then obtain the desired limit in (3.9).
Conversely, assume now that (3.9) holds for f = 1∂∞ (so f (∂r ) = 0). Then

Ej

(
f (Xζ )

) = Pj {R∞ ≤ T∂r } = 1 − Pj {T∂r < ∞}−→
j→η

1 = f (η),

proving that η is regular.
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(iii) Fix a regular point η and n ∈ N. Consider the indicator function f (•) =
1Cn(η)(•) of Cn(η). For j ∈ I close enough to η, we have Pj {Xζ ∈ Cn(η)} > 0,

which implies Pr{Xζ ∈ Cn(η)} > 0. Thus η is in the closed support of μ. �

3.3 The Kernel at the Boundary Is a Filtered Operator

Let us introduce the operator W , with kernel U , acting on Lp(μ). U and W acting on
∂∞ were introduced in [19], Sect. 4, and used in [20], Sect. 2.3, to study the capacity
function on the boundary.

Definition 3.4 For any (positive) bounded, real, and measurable function f with
domain in ∂∞, we define

Wf (η) =
∫

∂∞
Uηξf (ξ)μ(dξ),

which is also a (positive) real and measurable function.

We notice that the integral defining W can be made over ∂∞ or ∂
reg
∞ , because this

last set is of full measure μ. We have from (3.5) and w0 = Urη that

W1(η) =
∫

∂∞
Uηξμ(dξ) = w0 − Vrη

Pr{Xζ ∈ ∂∞} .

Then Wf is bounded for any bounded f . Since Vrη = 0 for any regular point η, we
conclude that W1 is constant μ-a.e., where this constant, denoted by α, is given by
α = w0/Pr {Xζ ∈ ∂∞}. In general we have W1 ≤ α in ∂∞.

The action of W on measures is given by νW(A) = ∫
W1A(ξ)ν(dξ). It is direct

to see that μW = αμ. Then α−1W is a Markov operator preserving μ. Hence, for
every p ≥ 1, the operator W : Lp(μ) → Lp(μ) is well defined, ‖W‖p = α, and W is
self-adjoint in L2(μ).

For f ∈ L1(μ), it is verified

Wf (η) =
∑

k∈N

wk

∫

Ck(η)\Ck+1(η)

f dμ =
∑

k∈N

(wk − wk−1)

∫

Ck(η)

f dμ. (3.10)

Recall that F = (Fk : k ∈ N) is a generating filtration in ∂∞, where for each k,

the σ -field Fk is generated by the finite family of sets {Ck(ξ) : ξ ∈ ∂∞}. Using the
associated conditional expectations, (3.10) can be written as

Wf (•) =
∑

k∈N

(wk − wk−1)μ
(
Ck(•)

)
Eμ(f |Fk)(•). (3.11)

Now, consider the following process defined on ∂∞:

G = (Gn : n ∈ N) where Gn(η) =
∑

k≥n

(wk − wk−1)μ
(
Ck(η)

)
. (3.12)
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Since G0 = W1 ≤ α, we obtain that G0 is a convergent series. On the other hand,
since every regular point is in the closed support of μ, we conclude that μ(Ck(ξ)) > 0
for all k ∈ N and ξ ∈ ∂

reg
∞ . In particular, Gn > 0 μ-a.e. for every n ∈ N. We also have

for n ≥ 1,

Gn(η) = G0 −
n−1∑

k=0

(wk − wk−1)μ
(
Ck(η)

)
is Fn−1-measurable.

Therefore if |ξ ∧η| ≥ n, we have Gi(η)−Gi+1(η) = Gi(ξ)−Gi+1(ξ), i = 0, . . . , n.
Moreover, if ξ, η are regular points, then G0(η) = G0(ξ) = α and

Gi(ξ) = Gi(η) for all i ≤ |ξ ∧ η|. (3.13)

The process (Gn) is F -predictable, positive, bounded by α, and decreasing to 0 as
n → ∞. Then GnEμ( |Fn) converges to 0 in Lp(μ) for every p ∈ [1,∞]. Therefore,
integration by parts on (3.11) gives

W =
∑

n∈N

(Gn − Gn+1)Eμ( |Fn) =
∑

n∈N

Gn

(
Eμ( |Fn) − Eμ( |Fn−1)

)
, (3.14)

the equality being in the sense of operators. Thus, we have shown the following result.

Proposition 3.2 The self adjoint operator W acting on L2(μ) is a stochastic integral
operator (or a filtered operator), that is, there exist a filtration F = (Fn) and an F -
predictable process G = (Gn) such that W = ∑

n∈N
Gn(Eμ( |Fn) − Eμ( |Fn−1)).

For definitions and properties of stochastic integral operators, see [14], and for its
characterization in the countable case, see [11].

Let us consider D = ⋃
n∈N

L2(Fn,μ), the set of simple functions over the algebra⋃
n∈N

Fn. Clearly D is a dense subset in L2(μ). The operator L = ∑
n∈N

G−1
n ×

(Eμ( |Fn) − Eμ( |Fn−1)) is well defined in D. Since Gn is Fn−1-measurable, the
following equalities hold on D:

LW = WL =
∑

n∈N

Eμ( |Fn) − Eμ( |Fn−1) = ID.

Here ID is the identity on D. In particular, Im(W) = W(L2(μ)) contains D, so
Im(W) is dense in L2(μ). Since W is a self-adjoint operator, we get that W is one-
to-one. Hence we can extend L to Im(W) by Lg = f for g ∈ Im(W), g = Wf .
Therefore WL = IIm(W) and LW = IL2(μ). We put L = W−1 and assume implicitly
that its domain is Im(W), so

W−1 =
∑

n∈N

G−1
n

(
Eμ( |Fn) − Eμ( |Fn−1)

)
. (3.15)

Observe that W−11 = α−1 μ-a.e.
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Let us compute W−1 in D. For that purpose, fix a set Cn ∈ Fn. For k ≤ n, we
denote by Ck the element in Fk such that Cn ⊆ Ck . We also put C−1 = ∅. From
(3.15) we obtain

W−11Cn =
n∑

k=0

G−1
k

(
Eμ(1Cn |Fk) − Eμ(1Cn |Fk−1)

)

=
n∑

k=0

G−1
k

(
μ(Cn)

μ(Ck)
1Ck − μ(Cn)

μ(Ck−1)
1Ck−1

)

= G−1
n 1Cn +

n−1∑

k=0

(
G−1

k − G−1
k+1

)μ(Cn)

μ(Ck)
1Ck . (3.16)

This formula shows that W−11Cn is a bounded function.
As a particular case, consider η, ξ ∈ ∂∞, η �= ξ, such that n > |η∧ ξ |. We consider

in the previous formulae the sets Ck = Ck(η) for k = 0, . . . , n and get

W−11Cn(η)(ξ) =
|η∧ξ |∑

k=0

(
G−1

k (η) − G−1
k+1(η)

)μ(Cn(η))

μ(Ck(η))
, (3.17)

since Ck(ξ) = Ck(η) for k ≤ |η ∧ ξ | and Ck(ξ) ∩ Ck(η) = ∅ for k > |η ∧ ξ |.

3.4 The Martin Kernel

We note that by (3.2) the Martin kernel for a nonregular point ξ is given by

κ(i, ξ) = Uiξ − ∫
∂∞ UηξPi{Xζ ∈ dη}

w0 − ∫
∂∞ UηξPr{Xζ ∈ dη} . (3.18)

For regular points, the numerator and denominator in the previous expression vanish.
Hence, for obtaining an expression for the Martin kernel, we need new elements in
the study of regular points. In the next formulae we get relations between the operator
W and the exit measure μ.

Proposition 3.3 For any i, j ∈ I, we have

Pi

{
Xζ ∈ ∂∞(j)

} =
∫

∂∞
Uiξ

(
W−11∂∞(j)

)
(ξ)μ(dξ). (3.19)

Proof The function h1(i) = Pi{Xζ ∈ ∂∞(j)} is harmonic and bounded. Moreover for
any regular point η, we have

lim
i→η

Pi

{
Xζ ∈ ∂∞(j)

} = 1∂∞(j)(η),

which implies that limh1 = 1∂∞(j) μ-a.e.
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On the other hand, consider h2(i) := ∫
∂∞ Uiξ (W

−11∂∞(j))(ξ)μ(dξ). This function
is also harmonic because for every ξ ∈ ∂∞, the function Uiξ is harmonic on I .

Let us show that h2 is a bounded function. From (3.16) one checks that
‖W−11∂∞(j)‖∞ < ∞. Then for η ∈ ∂∞(i), we find

∣
∣h2(i)

∣
∣ ≤ ∥

∥W−11∂∞(j)

∥
∥∞

∫

∂∞
Uηξμ(dξ) = ∥

∥W−11∂∞(j)

∥
∥∞W1(η) < ∞.

Hence h2 is bounded. Finally, by the Dominated Convergence Theorem we conclude
the pointwise convergence

lim
i→η

h2(i) =
∫

∂∞
Uηξ

(
W−11∂∞(j)

)
(ξ)μ(dξ).

The result follows from the equality
∫
∂∞ Uηξ (W

−11∂∞(j))(ξ)μ(dξ) = 1∂∞(j)(η) μ-
a.e. in η ∈ ∂∞. �

Corollary 3.1 Let h : I → R be a harmonic function such that limh = ϕ μ-a.e.
(for example, if h is bounded). Assume that ϕ is a simple function, that is, ϕ ∈ D (in
particular ϕ is in the domain of W−1). Then for all i ∈ I,

h(i) =
∫

Uiξ

(
W−1ϕ

)
(ξ)μ(dξ). (3.20)

Proof It is straightforward from (3.19) by decomposing ϕ as a finite linear combina-
tion of indicator functions based on the sets Cn1(η1), . . . , Cnk (ηk). �

Remark 3.4 Then, in a dense class of harmonic functions we have the representation
h(i) = ∫

Uiξ dν(ξ) with dν(ξ) = W−1ϕ(ξ)μ(dξ). This representation is similar to
the one using the Martin kernel as in [8]. Nevertheless, there are some differences.
Even if h is positive, ν may be a signed measure. On the other hand, the characteriza-
tion dν = W−1ϕ dμ gives additional information on this signed measure. We recall
that in the Martin representation, ϕ is the Radon–Nikodým derivative of the absolute
continuous part, with respect to μ, of the representing measure (see, for example,
[30]).

Let us characterize the increasing harmonic functions. A real function f : I → R

is increasing in the rooted tree if i 	 j implies f (i) ≤ f (j).

Theorem 3.1 A function h : I → R+ is harmonic and increasing if and only there
exists a finite (nonnegative) measure ν in ∂∞ such that

h(i) =
∫

∂∞
Uiξ dν(ξ) for every i ∈ I. (3.21)

Proof If h verifies (3.21), then it is harmonic and increasing, since so is U•ξ .
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Let us now prove the converse. Assume that h is a nonnegative harmonic and
increasing function. From Proposition 2.4 proven for finite matrices we get

∀n ∃!α(n) : Bn → R such that if |i| ≤ n : h(i) =
∑

j∈Bn

Uijα
(n)(j).

In particular if |i| = n − 1, we find

h
(
i+

) =
∑

j∈Bn

Ui+j α(n)(j) =
∑

j∈Bn,j �=i+
Uijα

(n)(j) + Ui+i+α(n)
(
i+

)

= h(i) + (Ui+i+ − Uii+)α(n)
(
i+

)
.

Therefore

α(n)
(
i+

) = h(i+) − h(i)

Ui+i+ − Uii+
,

and α(n) is a measure in Bn. Let us show that these measures verify the consistence
property. We have

for |i| ≤ n : h(i) =
∑

j∈B̃n+1

Uijα
(n+1)(j) =

∑

k∈Bn

Uik

(∑

j∈Sk

α(n+1)(j)

)

=
∑

k∈Bn

Uikα
(n)(k).

From the uniqueness of α(n) we deduce α(n)(k) = ∑
j∈Sk

α(n+1)(j). Then the

consistence property is verified. The total mass of α(n) is obtained from h(r) =
w0

∑
j∈Bn α(n)(j). Then there exists a finite measure in the boundary such that

h(i) = ∫
∂∞ Uiξ dν(ξ), for i ∈ I . �

Remark 3.5 The measure ν in the previous result can be singular with respect to μ.
For example, when ξ is a point outside the closed support of μ, the function h(i) =
Uiξ is represented by the measure ν = δξ , which is clearly singular with respect to μ.

The next result is a representation, as an integral of U , of all harmonic functions
that satisfy a certain finite-variation condition.

Theorem 3.2 Assume that h : I → R is a bounded harmonic function. Then, there
exists a finite signed measure ν such that

h(i) =
∫

∂∞
Uiξ dν(ξ) for every i ∈ I (3.22)

if and only if the following condition holds:

sup
n≥1

1

wn − wn−1

∑

j∈Bn

∣
∣h(j) − h

(
j−)∣

∣ < ∞. (3.23)
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In particular, if this condition holds, then h = h+ − h− is the difference of two in-
creasing nonnegative harmonic functions h+, h− given by the positive and negative
parts of ν.

Proof Let us first assume that h is strictly positive. If (3.22) holds, then

h(i) − h
(
i−

) =
∫

(Uiξ − Ui−ξ ) dν(ξ) = (Uii − Ui−i )ν
(
∂∞(i)

)
,

so |h(i) − h(i−)| ≤ (wn − wn−1)|ν|(∂∞(i)) for i ∈ Bn. Summing over Bn, this in-
equality yields

1

wn − wn−1

∑

i∈Bn

∣
∣h(i) − h

(
i−

)∣
∣ ≤ |ν|(∂∞) < ∞.

Let us now assume that (3.23) holds. As in the proof of Theorem 3.1, we have that,
for all n and all i ∈ I such that |i| ≤ n,

h(i) =
∑

j∈Bn

Uij α(n)(j),

where

α(n)(j) = h(j) − h(j−)

Ujj − Ujj−
= h(j) − h(j−)

wn − wn−1
.

Let us define the signed measure νn by νn(∂∞(j)) = αn(j). Then we obtain that
νn(∂∞) = h(r)/w0 > 0 and

sup
n≥1

|νn|(∂∞) < ∞.

Therefore, there exists a subsequence (νnk
) converging weakly to a finite signed mea-

sure ν �= 0. Moreover, ν(∂∞) = h(r)/w0, and since Ui• is a bounded continuous
function, we get

h(i) = lim
k

∫

Uiξ dνnk
(ξ) =

∫

Uiξ dν(ξ).

Let us prove the general case. Recall that the function �(i) =: 1 − ḡ(i) =
Pi (Xζ ∈ ∂∞) is nonnegative and harmonic, which is also increasing with limit 1 at
the boundary. Then

�(i) =
∫

Uiξ

(
W−11

)
(ξ) dμ(ξ) = �(r)

w0

∫

Uiξ dμ(ξ) =
∫

Uiξ dν(ξ),

where ν is the finite measure �(r)
w0

μ. Since �(i) ≥ �(r) > 0, we can take a large con-

stant C such that the function h̄ = h + C� is a nonnegative bounded harmonic func-
tion. It is straightforward to check that h satisfies (3.23) if and only if h̄ satisfies it,
whence the result follows. �
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Let have a close look at (3.23). Since h is harmonic, we have for n = |j |,
1

wn − wn−1

(
h(j) − h

(
j−)) = Qjj−

(
h(j) − h

(
j−)) =

∑

j+
Qjj+

(
h
(
j+) − h(j)

)
.

Then,

1

wn − wn−1

∣
∣h(j) − h

(
j−)∣

∣ ≤
∑

j+

1

wn+1 − wn

∣
∣h

(
j+) − h(j)

∣
∣,

implying that 1
wn−wn−1

∑
j∈Bn |h(j) − h(j−)| increases with n.

Now, we go back to the problem of a formula for the Martin kernel in terms of U

and μ. For this reason, we prove the following result.

Lemma 3.2 For η ∈ ∂∞, i ∈ I, n ≥ 1, we have

Pi

{
Xζ ∈ Cn(η)

} = μ
(
Cn(η)

)
[

Uiη

G|i∧η|+1(η)
1I\[η(n),∞)(i)

+ 1

Gn(η)
E(Ui•|Fn)(η) 1[η(n),∞)(i)

+
n−1∑

k=0

(
1

Gk(η)
− 1

Gk+1(η)

)

E(Ui•|Fk)(η)1[η(k),∞)(i)

]

.

In particular, if η is in the closed support of μ and n > |i ∧ η|, we get

Pi{Xζ ∈ Cn(η)}
μ(Cn(η))

= Uiη

G|i∧η|+1(η)
+

|i∧η|∑

k=0

(
1

Gk(η)
− 1

Gk+1(η)

)

E(Ui•|Fk)(η). (3.24)

Proof Let η and n be fixed. We denote Ck = Ck(η) and Ak = [η(k),∞) for k ∈ N.
From (3.19) we have hη(i) := Pi{Xζ ∈ Cn} = ∫

∂∞ Uiξ (W
−11Cn)(ξ)μ(dξ). Now, let

us compute ρk(i) := ∫
∂∞ Uiξ 1Ck (ξ)μ(dξ).

We examine two different cases. If i /∈ Ak, then Uiξ = Uiη(k) for every ξ ∈ Ck ,
and so ρk(i) = Uiη(k)μ(Ck). If i ∈ Ak, then ρk(i) = ∑

j∈Ak

|j |=|i|
Uijμ(∂∞(j)). We sum-

marize these relations in

ρk(i) = Uiη(k)μ
(
Ck

)
1I\Ak (i) +

∑

j∈An

|j |=|i|

Uijμ
(
∂∞(j)

)
1Ak (i). (3.25)

Now we use (3.16) to get
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∫

Uiξ

(
W−11Cn

)
(ξ)μ(dξ)

= 1

Gn

[

Uiη(n)μ
(
Cn

)
1I\An(i) +

∑

j∈An

|j |=|i|

Uijμ
(
∂∞(j)

)
1An(i)

]

+
n−1∑

k=0

(
1

Gk

− 1

Gk+1

)
μ(Cn)

μ
(
Ck

)

[

Uiη(k)μ
(
Ck

)
1I\Ak (i)

+
∑

j∈Ak

|j |=|i|

Uijμ
(
∂∞(j)

)
1Ak (i)

]

.

Using that

E(Ui•|Fn)(η) =
{

Uiη(k) if i /∈ Ak,
∑

j∈An

|j |=|i|
Uijμ(∂∞(j)) if i ∈ Ak,

yields

∫

Uiξ

(
W−11Cn

)
(ξ)μ(dξ)

= μ
(
Cn

)
[

n−1∑

k=0

(
1

Gk

− 1

Gk+1

)

E(Ui•|Fk)(η)1Ak (i) + 1

Gn

E(Ui•|Fn)(η)1An(i)

]

+ μ
(
Cn

)
[

n−1∑

k=0

(
1

Gk

− 1

Gk+1

)

Uiη(k) 1I\Ak (i) + 1

Gn

Uiη(n) 1I\An(i)

]

.

Now i ∈ I \Ak implies k > |i ∧η|. Since Uiη(k) = Uiη for k ≥ |i ∧η|, we can simplify

the last term in the previous equation to μ(Cn)
G|i∧η|+1

Uiη1I\An(i). Then we get

Pi

{
Xζ ∈ Cn(η)

} = μ
(
Cn(η)

)
[

Uiη

G|i∧η|+1
1I\An(i) + 1

Gn

E(Ui•|Fn)(η) 1An(i)

+
n−1∑

k=0

(
1

Gk(η)
− 1

Gk+1(η)

)

E(Ui•|Fk)(η)1Ak (i)

]

.
�

Theorem 3.3 Let i ∈ I, and let η be a point in the closed support of μ. Then the
Martin kernel has the representation

κ(i, η) = 1

Pr{Xζ ∈ ∂∞}
|i∧η|+1∑

k=0

1

Gk(η)

(
E(Ui•|Fk)(η) − E(Ui•|Fk−1)(η)

)
, (3.26)

where by convention E( |F−1) = 0.
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Proof We use Lemma 3.2 and the equality Urη

G0
= w0

G0
= Pr{Xζ ∈ ∂∞} to get

κ(i, η) = 1

Pr {Xζ ∈ ∂∞}

[
Uiη

G|i∧η|+1(η)
+

|i∧η|∑

k=0

(
1

Gk(η)
− 1

Gk+1(η)

)

E(Ui•|Fk)(η)

]

,

and the result follows. �

Corollary 3.2 For i ∈ I fixed, the Martin kernel κ(i,•) is the image of Ui• by a
stochastic integral operator, in fact,

κ(i, η) =
∞∑

k=0

G̃
(i)
k (η)

(
E(Ui•|Fk) − E(Ui•|Fk−1)

)
(η),

where G̃(i) = (G̃
(i)
k : k ∈ N) is an F -predictable process.

Proof It suffices to take G̃
(i)
k = 1

D
(i)
k

Pr {Xζ ∈ ∂∞}−1Gk
−1, where D

(i)
k = {ξ ∈ ∂∞ :

ξ ∧ i ≥ k − 1} is an Fk−1-measurable set. �

4 Trees Potential without Absorption

4.1 Reflecting at the Root

Let (I, T ) be a tree rooted at r . In this section we consider the case where r is a
reflecting barrier. As before, we take a strictly positive and strictly increasing se-
quence (wn : n ∈ N) and consider a symmetric q-matrix Q on I × I , supported on
the tree, and the diagonal defined as in (2.2) except at the pair (r, r), where we put
Qrr = − |Sr |

w1−w0
. It is straightforward to check that Q is conservative:

∑
j∈I Qij = 0

for every i ∈ I . We assume that the Markov process (Xt ) associated to Q is transient,
so Pr{Xζ ∈ ∂∞} = 1, and that all points in ∂∞ are regular.

The aim is to obtain a representation of the potential V and the Martin kernel in
terms of the tree matrix U = (Uij = w|i∧j | : i, j ∈ I ). For this purpose, consider the
translated matrix U(a) := U + a for a > 0, which is the tree matrix associated to the
level function w

(a)
n = wn +a. Define the matrix Q(a) on I × I as in (2.2) with respect

to this level function. At (r, r) it takes the value Q
(a)
rr = Qrr − 1

w0+a
. The matrices

Q(a) and Q in I × I only differ at (r, r). We note that Q(a) is not conservative at r .
As a tends to infinity, Q(a) converges to Q, and the associated processes also

converge. In fact, a coupling argument allows us to construct an increasing sequence
of stopping times T (a) ↑a→∞ ∞ such that

X
(a)
t = Xt if t < T (a) and X

(a)
t = ∂r if t ≥ T (a)

is a Markov process with generator Q(a). The lifetime variables ζ (a) and ζ associ-
ated respectively to X(a) and X verify ζ (a) = ζ ∧ T (a). From this representation it
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also follows immediately that the potentials V (a) and V associated to Q(a) and Q,
respectively, verify ∀i, j, V

(a)
ij ↑a→∞ Vij . Therefore, the representation (3.3) reads

U
(a)
ij − V

(a)
ij =

∫

∂∞
U

(a)
ηj Pi

{
Xζ ∈ dη, ζ ≤ T (a)

}

or equivalently Uij − V
(a)
ij = ∫

∂∞ Uηj Pi{Xζ ∈ dη, ζ ≤ T (a)} − aPi{T (a) < ζ }. Pass-

ing to the limit as a → ∞, we obtain that lima→∞ aPi{T (a) < ζ } exists and moreover

Uij − Vij =
∫

∂∞
UηjPi{Xζ ∈ dη} − lim

a→∞aPi

{
T (a) < ζ

}
.

Substituting j by r in the last equality and using that Uir = Uηr = w0, we find
lima→∞ aPi{T (a) < ζ } = Vir , and therefore we get

Uij − Vij =
∫

∂∞
Uηj Pi{Xζ ∈ dη} − Vir . (4.1)

Now, taking j → ξ ∈ ∂
reg
∞ , we obtain

Vir =
∫

∂∞
Uηξ Pi{Xζ ∈ dη} − Uiξ =

∫

∂∞
(Uηξ − Uiξ ) Pi{Xζ ∈ dη}.

Thus, we have proven the equality

Uij − Vij =
∫

∂∞
(Uηj + Uiξ − Uηξ ) Pi{Xζ ∈ dη}, (4.2)

which is independent of ξ ∈ ∂
reg
∞ . Integrating (4.2) with respect to Pj {Xζ ∈ dξ} gives

Uij − Vij =
∫

∂∞
Uηj Pi{Xζ ∈ dη} +

∫

∂∞
UiξPj {Xζ ∈ dξ}

−
∫

∂∞

∫

∂∞
Uηξ Pj {Xζ ∈ dξ}Pi{Xζ ∈ dη}.

The Martin kernel κ(a) associated to Q(a) can be computed as in Theorem 3.3.
Take i ∈ I , η ∈ ∂∞, and n > |i ∧ η|; then

κ(a)(i, η) = Pi{Xζ ∈ Cn(η), ζ ≤ T (a)}
Pr{Xζ ∈ Cn(η), ζ ≤ T (a)} .

Therefore, the Martin kernel is continuous with respect to a. Passing to the limit as
a → ∞ and using the representation (3.26), we obtain

κ(i, η) = lim
a→∞

|i∧η|+1∑

k=0

1

G
(a)
k

(
Eμ(a)

(
U

(a)
i• |Fk

)
(η) − Eμ(a)

(
U

(a)
i• |Fk−1

)
(η)

)
, (4.3)
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where G
(a)
k = G

(a)
k (η) = ∑

n≥k(w
(a)
n − w

(a)
n−1) μ(a)(Cn(η)) and μ(a)(•) =

Pr {Xζ ∈•,ζ≤T (a)}
Pr {ζ≤T (a)} . We notice that G

(a)
0 = w0+a

Pr {ζ≤T (a)} , and for k ≥ 1, it holds

G
(a)
k = G

(a)
0 −

k−1∑

n=0

(
w(a)

n − w
(a)
n−1

)
μ(a)

(
Cn(η)

)

= (w0 + a)
Pr {T (a) < ζ }
Pr {ζ ≤ T (a)} −

k−1∑

n=1

(wn − wn−1) μ(a)
(
Cn(η)

)
.

The previous computations are summarized in the following result.

Theorem 4.1 Let μ(•) = Pr{Xζ ∈ •}. Consider G0(η) := ∫
UηξPr{Xζ ∈ dξ} and

Gk := lima→∞ G
(a)
k . Then, G0(η) = Vrr + w0 is a constant, and (Gk : k ≥ 1) is a

positive decreasing predictable process that verifies

Gk(η) = G0 −
k−1∑

n=0

(wn − wn−1)μ
(
Cn(η)

) =
∑

n≥k

(wn − wn−1)μ
(
Cn(η)

)
for k ≥ 1;

moreover, the following representation holds:

κ(i, η) = 1 +
|i∧η|+1∑

k=1

1

Gk(η)

(
Eμ(Ui•|Fk)(η) − Eμ(Ui•|Fk−1)(η)

)
. (4.4)

Remark 4.1 It can be shown that μ(a) does not depend on a ≥ 0 (recall that μ(0) = μ

is the exit measure defined in (3.6) for the chain absorbed at ∂r ). Indeed this follows
from the independence relation

Pr

{
Xζ ∈ •, ζ ≤ T (a)

} = Pr{Xζ ∈ •}Pr

{
ζ ≤ T (a)

};

then μ(a) = μ for a ≥ 0. Further, if N∗
r is the number of visits in the strict future to r

of the discrete skeleton of (Xt ), then a simple argument shows that μ(•) = Pr{Xζ ∈
•|N∗

r = 0}.

Remark 4.2 Let W(a) = ∑
n∈N

G
(a)
n (Eμ(a) ( |Fn) − Eμ(a) ( |Fn−1)). Then,

lima→∞(W(a))−1 = ∑
n≥1 G−1

n (Eμ( |Fn)−Eμ( |Fn−1)) verifies lima→∞(W(a))−11
= 0, and it is the generator of a Markov process defined on ∂∞. This process has been
partially studied in [24].

4.2 Potential for Homogeneous Trees

In this section we consider a random walk on a homogeneous tree of degree p+1 ≥ 3.
In this case the previous calculations supply a closed form of the Martin kernel. Most
of the following formulas are well known, see, for instance, [30]. We assume that T is
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an infinite rooted tree with |Sr | = p + 1 and |Si | = p for i �= r . As a weight function,
we take wn = n + 1 and assume that r is reflecting. In this way we have

Qii+ = 1, Qii = −(p + 1) for i ∈ I, and Qii− = 1 for i �= r.

It is well known that this tree matrix is transient for all p ≥ 2. Also it is clear that μ is
the uniform measure on ∂∞ and that all points in ∂∞ are regular. Let us now compute
the quantities involved on (4.4) to get the Martin kernel.

We fix i ∈ I , η ∈ ∂∞ and put m = |i|, n = |i ∧ η|. For m = 0, we have i = r

and κ(r, η) = 1. For the rest, we assume m ≥ 1. We set Ck = Ck(η) for all k ∈ N.
Therefore, μ(Ck) = ((p + 1)pk−1)−1 for all k ≥ 1, and μ(C0) = 1. Then, for k ≥ 1,

Gk(η) =
∑

l≥k

(wl − wl−1)μ
(
Cl(η)

) =
∑

l≥k

1

(p + 1)pl−1
= 1

(p2 − 1)pk−2
.

On the other hand, an explicit computation of Eμ(Ui•|Fk)(η) = 1
μ(Ck)

∫
Ck Uiξμ(dξ)

gives

Eμ(Ui•|F0)(η) = 1

(p + 1)pm−1

(

m + 1 + pm + (p − 1)

m∑

t=2

tpm−t

)

,

Eμ(Ui•|Fk)(η) = pk−m

(

m + 1 + (p − 1)

m∑

t=k+1

tpm−t

)

for 1 ≤ k ≤ n.

Then we obtain (see, for example, [30], Theorem 8.1) κ(i, η) = p2n−m, where m =
|i|, n = |i ∧ η|. In particular, if |i ∧ η| = 0, we get p−m = κ(i, η) = Pi {Xζ ∈Ck(η)}

Pr {Xζ ∈Ck(η)} =
Pi{Tr < ∞}, where k ≥ 1. In a similar way we obtain Pi{Ti− < ∞} = p−1.

With respect to the potential V we have from (4.1)

Vrj − Vrr = Vrr

(
Pj {Tr < ∞} − 1

) = 1 −
∫

UjηPr {Xζ ∈ dη}.

We get

Vrr = p

(p + 1)(p − 1)
and more generally Vjr = p1−|j |

(p + 1)(p − 1)
.

A simple argument based on time reversal shows that Pr{Tj < ∞} = Pj {Tr < ∞} =
p−|j |, and in general Pi{Tj < ∞} = p−|geod(i,j)|. Since Vjr = Pr {Tj < ∞}Vjj , one

deduces Vjj = p
(p+1)(p−1)

. Analogously one finds Vij = p1−|geod(i,j)|
(p+1)(p−1)

. Finally, from
(4.1) we get that

∫

Ujη Pi{Xζ ∈ dη} = |i ∧ j | + 1 + p1−|i| − p1−|geod(i,j)|

(p + 1)(p − 1)
.
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5 Ultrametricity

There is a wide literature concerning ultrametricity, but it is not a common notion
in potential theory. So, we supply some basic properties which are a consequence of
the ultrametric inequality. The core of this section is Sect. 5.3 , where we construct
the Markov semigroup associated to an ultrametric matrix, in terms of a minimal tree
matrix extension. We also study the representation of harmonic functions in Sect. 5.4.

5.1 Basic Notions and the Minimal Rooted Tree Extension

We give conditions in order that an ultrametric matrix can be immersed in a countable
and locally finite tree. It is known that a tree structure is behind an ultrametric (for a
deep study of this relation, see [16]), but we prefer here to give an explicit construc-
tion because it allows a better understanding of the main results of this section.

Most of the properties we present are easily deduced from the ultrametric inequal-
ity, so they are established without a proof. We note that up to Lemma 5.2 the set I

will have no restriction.

Definition 5.1 U = (Uij : i, j ∈ I ) is an ultrametric arrangement if it is symmetric,
that is, Uij = Uji for any couple i, j ∈ I and verifies the ultrametric inequality

Uij ≥ min{Uik,Ukj } for any i, j, k ∈ I.

In particular, Uii ≥ Uij for any i, j ∈ I , so Uij = Uii ⇒ Ujj ≥ Uii . Observe that
for any triple i1, i2, i3 ∈ I, there exists a permutation ϕ of {1,2,3} such that

Uiϕ(1)iϕ(2)
= min{Uiϕ(2)iϕ(3)

,Uiϕ(3)iϕ(1)
}.

Hence, Uik > Ukj ⇒ Uik > Ukj = Uij and Uik = Ukj ⇒ Uij ≥ Uik = Ukj .
Consider the equivalence relation

i ∼ j ⇐⇒ (∀k ∈ I : Uik = Ujk).

Notice that i ∼ j ⇐⇒ Uii = Uij = Ujj . Let us introduce the relation

i 	 j ⇐⇒ Uij = Uii .

From Ujk ≥ min{Uji,Uik} = min{Uii,Uik} = Uik we get

i 	 j ⇐⇒ Ui• ≤ Uj• (that is, ∀k ∈ I : Uik ≤ Ujk),

so the relation 	 is a preorder, and its associated equivalence relation is ∼. On the
other hand, i 	 j ⇒ Uii ≤ Ujj .

The left and right intervals defined by i ∈ I are respectively

[i,∞)U = {j ∈ I : i 	 j} and (−∞, i]U = {j ∈ I : j 	 i}.
Notice that for any i ∈ I, the set (−∞, i]U is totally preordered by 	, that is, for all
j, k ∈ (−∞, i]U , it holds j 	 k or k 	 j .
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In the sequel we will assume the following separation condition:

i ∼ j ⇐⇒ i = j. (H1)

Property (H1) is equivalent to the fact that 	 is an order or equivalently to the relation
i �= j ⇒ Uij < max{Uii,Ujj }. We point out that if I is finite and U > 0, condition
(H1) is equivalent to the nonsingularity of U (see [12, 25], or [27]).

We denote W = {Uij : i, j ∈ I } the set of values of U . To every w ∈ W , we asso-
ciate the nonempty set J (w) = {i ∈ I : Uii ≥ w} and the relation

i ≡w j ⇐⇒ Uij ≥ w.

The ultrametric inequality implies that ≡w is an equivalence relation in J (w). By
Ew we mean the equivalence class of ≡w , and Ew

i denotes the equivalence class
containing i ∈ J (w). In the case Uii < w, that is, i /∈ J (w), we put Ew

i = ∅. As
usual, J (w)/ ≡w denotes the set of equivalence classes of elements of J (w).

Let us introduce the following set

Ĩ = {(
Ew,w

) : Ew ∈ J (w)/ ≡w,w ∈ W
}
.

The function

iU : I → Ĩ , iU(i) = (
E

Uii

i ,Uii

)

is one-to-one. In fact, if iU(i) = iU(j), then Uij ≥ Uii = Ujj . From condition (H1)

we deduce i = j . In this way we identify i ∈ I with iU(i) = (E
Uii

i ,Uii) ∈ Ĩ .

Observe that E
Uii

i = [i,∞)U for every i ∈ I . Also it holds

[
w ≤ w′ ⇒ Ew′ ⊆ Ew

]
and

[(
w ≤ w′,Ew′ �= Ew

) ⇒ w < w′].

Lemma 5.1 If Ew′ �⊆ Ew and Ew �⊆ Ew′
, then

∀k, k′ ∈ Ew, ∀�, �′ ∈ Ew′ : Uk� = Uk′�′ < min{w,w′} and Ew ∩ Ew′ = ∅.

Proof Let k ∈ Ew \ Ew′
and l ∈ Ew′ \ Ew . Also take k′ ∈ Ew , l′ ∈ Ew′

. Since
≡w,≡w′ are equivalent relations on their respective domains, we get Ukl′ < w′ and
Uk′l < w. In particular, Ukl < min{w,w′}. On the other hand, the definition of Ew

implies Ukk′ ≥ w. Using the ultrametric property, we get Uk′l ≥ min{Uk′k,Ukl} = Ukl

and similarly Ukl ≥ Uk′l , from which the equality Ukl = Uk′l holds. In an analogous
way the equality Ukl = Ukl′ is deduced, and we get that

k′ ∈ Ew \ Ew′
and l′ ∈ Ew′ \ Ew.

This implies that Ew ∩ Ew′ = ∅. By using again the ultrametricity we find

Uk′l′ ≥ min{Uk′l ,Ull′ } = Uk′l = Ukl.

By exchanging the roles of k with k′ and l with l′ we deduce the result. �
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The previous result implies that either two classes Ew and Ew′
are disjoint or one

is included in the other. Now we define Ũ , an extension of U to Ĩ .

Definition 5.2 Let ı̃ = (Ew,w) ∈ Ĩ , j̃ = (Ew′
,w′) ∈ Ĩ . If Ew′ ⊆ Ew or Ew ⊆ Ew′

,
we put Ũı̃j̃ = min{w,w′}. If, on the contrary, Ew ∩ Ew′ = ∅, we put Ũı̃j̃ = Uk�,
where k ∈ Ew and � ∈ Ew′

.

By Lemma 5.1, Ũ is well defined. On the other hand, it is straightforward to prove
that for any i, j ∈ I , it holds Uij = ŨiU (i) iU (j). In this way Ũ is an extension of U .

Also, if i ∈ Ew, j ∈ Ew′
, then Uij ≥ Ũαβ , where α = (Ew,w), β = (Ew′

,w′).

Lemma 5.2 Ũ = (Ũı̃ j̃ : ı̃, j̃ ∈ Ĩ ) is ultrametric.

Proof For u,v,w ∈ W, consider the following elements of Ĩ : ı̃ = (Eu,u), j̃ =
(Ev, v), and k̃ = (Ew,w). Take i ∈ Eu, j ∈ Ev, k ∈ Ew . The proof is divided into
two cases.

Case 1. We assume that Eu ∩ Ev = ∅. The ultrametric property satisfied by U

and the definition of Ũ imply Ũı̃j̃ = Uij ≥ min{Uik,Ukj } ≥ min{Ũ
ı̃k̃

, Ũ
k̃j̃

}. Then the
property holds.

Case 2. We assume, without loss of generality, that Eu ⊆ Ev and v ≤ u. If Ew ∩
Ev = ∅, one gets that Ũ

j̃ k̃
= Ujk < v = Ũı̃j̃ , and the property is verified. Finally, if

Ew ∩ Ev �= ∅, then Ũ
j̃ k̃

= min{v,w} ≤ v = Ũı̃j̃ . �

In the sequel we shall assume that I is countable and the following hypothesis
holds:

W = {Uij : i, j ∈ I } ⊂ R
∗+ has no finite accumulation point. (H2)

We put W = {wn : n ∈ N}, where (wn) increases with n ∈ N, w0 > 0. Under (H2),

we are able to define in Ĩ the following binary relation T̃ . For u,v ∈ W , we set

((
Eu,u

)
,
(
Ev, v

)) ∈ T̃ ⇐⇒ ∃n ∈ N : {u,v} = {wn,wn+1} and Eu ∩Ev �= ∅.

Two points ı̃, j̃ ∈ Ĩ are said to be neighbors in T̃ if (ı̃, j̃ ) ∈ T̃ .
Observe that if ((Ewn,wn), (E

wn+1 ,wn+1)) ∈ T̃ , then Ewn+1 ⊆ Ewn . The strict
inclusion Ewn+1 �= Ewn holds if and only if there exists a unique i ∈ Ewn such that
wn = Uii . Indeed, it suffices to show the uniqueness. Let i ∈ Ewn \Ewn+1 ; then wn ≤
Uii < wn+1. For any other k ∈ Ewn for which Ukk = wn, it holds Uik ≥ wn. We get
i ∼ k, and from (H1) we conclude that i = k.

It is easy to see that (Ĩ , T̃ ) is a tree rooted at r̃ , where Ũr̃ r̃ = w0. This point r̃ exists
(and is unique) because either there exists i0 ∈ I verifying Ui0i0 = w0, in which case
r̃ = ı̃0, or in the contrary, our construction adds a point r̃ ∈ Ĩ \ I such that Ũr̃ r̃ = w0.

By construction Ũ is the minimal tree matrix extending U , that is, we can immerse
Ũ in any other tree extension of U . The tree (Ĩ , T̃ ) supporting this minimal extension
is locally finite if and only if the following assumption is verified:

∀w ∈ W , it holds
∣
∣J (w)/ ≡w

∣
∣ < ∞. (H3)
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Since (Ĩ , T̃ ) is a rooted tree, all the concepts defined in the Introduction apply
to it. In particular we denote by 	̃ the order relation introduced in (1.1); by ∧̃ the
associated minimum, by [ı̃,∞) the branch born at ı̃, and by geod(ı̃, j̃ ) the geodesic
between two points in Ĩ . Since we have identified i ∈ I with iU(i) ∈ Ĩ , all these
concepts have a meaning for elements in I . In particular 	̃ is an extension of the
order relation 	, and we have the equality [i,∞)U = [i,∞) ∩ I .

Observe that the 	̃−minimum in (Ĩ , T̃ ) is characterized as follows. Take
(Eu,u), (Ev, v) ∈ Ĩ , and any i ∈ Eu; then (Eu,u)∧̃(Ev, v) = Ew

i , where w =
sup{z ∈ W : z ≤ u, Ez

i ⊇ Ev}. Notice that E
w0
i = I .

5.2 Neighbor Relation

We will assume that hypotheses (H1)–(H3) are fulfilled. The next definition is a
notion of neighbor on I giving a better understanding of the embedding I in Ĩ and,
in particular, describing how the elements in Ĩ \ I are surrounded by I .

Definition 5.3 Let i ∈ I .

(i) The set V (i) = {j ∈ I : j �= i,geod(i, j) ∩ I = {i, j}} is called the set of U -
neighbors of i. We also put V ∗(i) = V (i) ∪ {i}.

(ii) The set B(i) = {j̃ ∈ Ĩ : geod(i, j̃ ) ∩ I ⊆ {i, j̃}} is called the attraction basin of i.

Notice that V ∗(i) ⊆ B(i). In the next result we summarize some useful properties
of B(i), V (i), and V ∗(i).

Lemma 5.3

(i) j̃ ∈ B(i) \ V (i) if and only if geod(j̃ , i) ∩ I = {i}. Moreover, V ∗(i) = B(i) ∩ I

and B(i) \ V ∗(i) = B(i) \ I .
(ii) If j̃ ∈ B(i) \ V ∗(i), then all its neighbors in (Ĩ , T̃ ) belong to B(i). Thus,

(B(i), T̃ |B(i)×B(i)) is a tree. If we fix the root of this tree at i, then the set of
leaves is V (i).

(iii) For every j̃ /∈ B(i), there exists a unique k = k(i) ∈ V (i) such that geod(i, j̃ ) ∩
V ∗(i) = {i, k}. This unique k also verifies that k ∈ geod(l̃, j̃ ) ∩ V ∗(i) for every
l̃ ∈ B(i).

(iv) For every j̃ ∈ Ĩ , there exists i ∈ I such that j̃ ∈ B(i).
(v) For j ∈ V (i), either (i, j) ∈ T̃ , that is, i, j are neighbors on T̃ , or there is a

unique k̃ ∈ Ĩ \ I such that (k̃, i) ∈ T̃ and k̃ ∈ B(j) ∩ geod(i, j).

Proof (i) and (ii) are straightforward from the definitions.
(iii) Take j̃ /∈ B(i). If geod(j̃ , i) ∩ V ∗(i) = {i}, then geod(j̃ , i) ∩ I = {i}. In fact,

if this intersection contains another point � ∈ I and if we take m ∈ (geod(�, i) ∩ I ) \
{i}, the closest point to i, we obtain m ∈ V ∗(i), which is a contradiction. Therefore,
geod(j̃ , i) ∩ I = {i} and then j̃ ∈ B(i), which is also a contradiction.

Thus we can assume that |geod(j̃ , i) ∩ V ∗(i)| ≥ 2. If this intersection has at least
three points, from the inclusion geod(j̃ , i) ⊆ geod(�̃, j̃ )∪geod(�̃, i) for any �̃ ∈ Ĩ we
would find a point k ∈ V ∗(i) for which geod(k, i) ∩ I contains at least three points.
This is a contradiction, and the result follows.
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(iv) For j̃ and k ∈ I, we consider geod(j̃ , k). The first point in this geodesics
(when starting from j̃ ) belonging to I makes the job.

(v) If i, j are not neighbors in T̃ , then geod(i, j) contains strictly {i, j}. Take
k̃ �= i the closest point to i in geod(i, j). Clearly k̃ ∈ Ĩ \ I , otherwise j /∈ V ∗(i). By
the same reason geod(k̃, j) ∩ I = {j}, and therefore k̃ ∈ B(j). �

Let us fix some j̃ ∈ Ĩ \ I . By Lemma 5.3 there exists i ∈ I such that j̃ ∈ B(i).
Then the following set is well defined, and the following equality holds:

Ĩ (j̃ ) :=
⋂

i∈I :j̃∈B(i)

B(i) = {
k̃ ∈ Ĩ : geod(j̃ , k̃) ∩ (

I \ {k̃}) = ∅}
. (5.1)

The set Ĩ (j̃ ) endowed with the set of edges T̃ ∩ (Ĩ (j̃ ) × Ĩ (j̃ )) is the small-
est subtree containing j̃ , and the set of extremal points E (j̃ ) = {k̃ ∈ Ĩ (j̃ ) :
k̃ has a unique neighbor in Ĩ (j̃ )} is contained in I .

The property that every point in I has a finite number of U -neighbors supplies a
good example for the next section. Observe that the sets V (i) are finite for i ∈ I if
and only if B(i) are finite for i ∈ I . This property can be easily expressed in terms
of U .

Lemma 5.4 The sets B(i) are finite for all i ∈ I if and only if

∀w ∈ W ∃Iw ⊂ I finite such that:

∀i ∈ I \ Iw, max
{
Uij : j ∈ Iw,Uij = Ujj

}
> w. (5.2)

Proof Assume that B(i) are finite. Clearly, it is enough to prove (5.2) for large
w ∈ W . We shall assume that the finite set L = {j ∈ I : Ujj ≤ w} is nonempty, and
we define Iw = ⋃

j∈L V ∗(j).
Fix i0 ∈ L as one of the closest points in I to the root r̃ . For i ∈ I \ Iw , the

geodesic geod(i, r̃) must contain points on Iw , otherwise geod(i, i0) = {i, i0}, which
implies i ∈ V ∗(i0) given a contradiction. Take k ∈ geod(i, r̃) ∩ Iw the farthest point
from r̃ . It is clear that Uik = Ukk . Assume that Ukk ≤ w, so k ∈ L. If geod(k, i) ∩
I = {k, i}, then i ∈ Iw, which is a contradiction. Therefore, there is at least one
m ∈ (geod(k, i) ∩ I ) \ {i, k}. Take m the closest of such points to k. Clearly m ∈
V ∗(k) ⊆ Iw, contradicting the maximality of k. Then Ukk > w, proving the desired
property.

Conversely, take i ∈ I and consider w = Uii . We shall prove that V ∗(i) ⊆ Iw . In
fact, take j ∈ V ∗(i) \ Iw . By hypothesis there is k ∈ Iw such that Ukk = Ujk > w.
Since Ujj ≥ Ujk = Ukk > w = Uii and j ∈ V ∗(i), we conclude k ∈ geod(i, j) and
k �= i. Since k �= j , because k ∈ Iw , we arrive to a contradiction with the definition
of V ∗(i), proving the result. �

5.3 Generator and Harmonic Functions of an Ultrametric Matrix

In this section we associate to an ultrametric matrix U a q-matrix through its exten-
sion Ũ . Consider the q-matrix Q̃ given by (2.2), which satisfies Q̃Ũ = ŨQ̃ = −IĨ .
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We can also assume that Q̃ is defined in Ĩ ∪ ∂r̃ as in (3.1). Further, we consider the
Markov process X̃ associated to Q̃ with lifetime ζ̃ .

We assume that X̃ is transient. We denote by μ̃ the probability measure defined
on ∂̃∞, the boundary of (Ĩ , T̃ ), that is proportional to the exit distribution of X̃.

In the sequel we consider

τ := inf{t > 0 : X̃t ∈ I ∪ ∂r̃ } ∧ ζ̃ . (5.3)

We point out that X̃τ belongs to I ∪ ∂r̃ ∪ ∂̃∞ with probability one. Notice that if
X̃0 = j̃ ∈ Ĩ \ I, then τ = inf{t > 0 : X̃t ∈ E (j̃ ) ∪ ∂r̃ } ∧ ζ̃ .

Our main assumption is

∀j̃ ∈ Ĩ \ I : Pj̃ {X̃τ ∈ I ∪ ∂r̃} = 1. (H4)

We can also write (H4) as Pj̃ {τ < ζ̃ } = 1 for every j̃ ∈ Ĩ \ I . This is also equivalent
to Pj̃ {X̃τ ∈ ∂̃∞} = 0 for every j̃ ∈ Ĩ \ I .

In the next theorem we associate a q-matrix to a general ultrametric matrix veri-
fying (H1)–(H4).

Theorem 5.1 Assume that U satisfies (H1)–(H4). Then there exists a matrix Q :
I × I → R such that QU = UQ = −II . Moreover, Qij �= 0 if and only if j ∈ V ∗(i),
and we have

Qij = Q̃ij +
∑

k̃∈Ĩ\I
Q̃

ik̃
P

k̃
(X̃τ = j). (5.4)

For i �= j , this formula takes the form

Qij = Q̃ij if (i, j) ∈ T̃ and Qij = Q̃
ik̃

P
k̃
(X̃τ = j) if (i, j) /∈ T̃ , j ∈ V ∗(i),

where k̃ ∈ Ĩ \ I is the unique neighbor of i in T̃ that belongs to geod(i, j).

Proof We set A = Q̃II , B = Q̃I,Ĩ\I , and V = ŨĨ\I,I . Since ŨII = U, we get AU +
BV = −II .

The crucial step in the proof is to get a (Ĩ \ I ) × I matrix Z with summable rows
and verifying ZU = V , which means

Ũj̃ i =
∑

k∈I

Zj̃kUki for all j̃ ∈ Ĩ \ I, i ∈ I.

For any j̃ ∈ Ĩ \ I, consider the subtree J̃ := Ĩ (j̃ ) given by (5.1). We denote by E ⊂ I

the set of extremal points of J̃ . Note that J̃ \ E ⊆ Ĩ . We consider the following q-
matrix on J̃ × J̃ :

C
l̃k̃

= Q̃
l̃k̃

if l̃ ∈ J̃ \ E and C
l̃k̃

= 0 otherwise.

By definition of the random time τ in (5.3), the Markov process induced by C is just
the stopped process X̃τ . From the property Q̃Ũ = −IĨ we deduce that for each i ∈ I,
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the restriction of U•i to J̃ is a C-harmonic function. Therefore,

Uj̃i = Ej̃ (UX̃τ i) =
∑

k∈E
Pj̃ (X̃τ = k)Uki,

which gives the desired matrix Z with Zj̃k = Pj̃ (X̃τ = k)1E (k) for j̃ ∈ Ĩ \ I, k ∈ I .
Since B is finitely supported and the rows of Z are summable, we get

(A + BZ)U = −II ; (5.5)

then Q = A + BZ should be the desired q-matrix. The explicit formula for Q is

Qij = Q̃ij +
∑

k̃∈Ĩ\I
Q̃

ik̃
Z

k̃j
= Q̃ij +

∑

k̃∈Ĩ\I
Q̃

ik̃
P

k̃
(X̃τ = j). (5.6)

From the structure of Q̃ the last sum in (5.6) runs over k̃ ∈ Ĩ \ I which are neighbors
of i with respect to T̃ . From the shape of Z these values of k̃ are further restricted
to the set V ∗(j). According to the Lemma 5.3, part (v), the set of such points is not
empty when (i, j) /∈ T̃ , and moreover this set contains exactly one point k̃ ∈ Ĩ . In
summary, we have for i �= j ,

Qij = Q̃ij if (i, j) ∈ T̃ and Qij = Q̃
ik̃

P
k̃
(X̃τ = j) if (i, j) /∈ T̃ , j ∈ V (i),

where in the last case, k̃ is the unique neighbor of i in T̃ belonging to geod(i, j).
From this formula we deduce that for i �= j, we have Qij > 0 if and only if j ∈ V (i).
From (5.5) we deduce that Qii < 0. Also, we get

Qii = Q̃ii +
∑

k̃∈Ĩ : (k̃,i)∈T̃

Q̃
ik̃

P
k̃
(X̃τ = i).

Now, let us prove that Q is a q-matrix. Let k ∈ V (i) be such that Uki = min{Uji : j ∈
V (i)}. This minimum is attained because the set {w ∈ W : w ≤ Uii} is finite. From the
ultrametric property of U we have Ujk ≥ min{Uji,Uik} = Uik for j ∈ V ∗(i). Then,
by using (5.5) we deduce that

0 ≥ QiiUik +
∑

j∈V (i)

QijUjk ≥ Uik

(∑

j∈I

Qij

)

.

Hence Q is a q-matrix.
To finish the proof it is enough to show that Q is a symmetric matrix. This is

equivalent to prove that

Q̃
ik̃

P
k̃
(X̃τ = j) = Q̃

j l̃
P

l̃
(X̃τ = i) for j ∈ V (i), (j, i) /∈ T̃ , (5.7)

where k̃ (respectively l̃) is the unique neighbor in T̃ of i (of j, respectively) given by
Lemma 5.3, part (v). The probabilities appearing in (5.7) can be computed in terms
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of Ỹ = (Ỹn : n ∈ N), the discrete skeleton of the Markov chain on X̃ taking values
on Ĩ . The transition probabilities for this discrete time chain are

P(Ỹ1 = y1|Ỹ0 = y0) = Q̃y0y1

(−Q̃y0y0)
.

If we define N = min{n ∈ N : Ỹn ∈ I ∪ {∂r̃}}, then P
k̃
(X̃τ = j) = P

k̃
(ỸN = j).

This last probability can be computed by summing up all possible trajectories
Ỹ0 = k̃, Ỹ1 = y1, . . . , Ỹn−2 = yn−2, Ỹn−1 = �̃, Ỹn = j , which do not visit I at any
intermediate state. The probability of such a trajectory is

Q̃
k̃y1

(−Q̃
k̃k̃

)

Q̃y1y2

(−Q̃y1y1)
· · ·

Q̃
yn−2�̃

(−Q̃yn−2yn−2)

Q̃
�̃j

(−Q̃
�̃�̃

)
.

The probability of the reverse trajectory Ỹ0 = �̃, Ỹ1 = yn−2, . . . , Ỹn−2 = y1, Ỹn−1 =
k̃, Ỹn = i, is

Q̃
�̃yn−2

(−Q̃
�̃�̃

)

Q̃yn−2yn−3

(−Q̃yn−2yn−2)
· · · Q̃

y1k̃

(−Q̃y1y1)

Q̃
k̃i

(−Q̃
k̃k̃

)
.

The symmetry of Q̃ implies that (5.7) holds. Therefore, Q is symmetric, and we
deduce that UQ = −II . This finishes the proof. �

As usual, we say that a function h : I → R is Q-harmonic if Qh = 0. Our main
result in relation with harmonic functions for ultrametric matrices is the following
one.

Theorem 5.2 Assume that U satisfies (H1)–(H4). Given a bounded Q-harmonic
function h defined on I, there exists a unique Q̃-harmonic function h̃ defined on Ĩ

which is an extension of h.

Proof Consider the function h̃(ı̃) = Eı̃ (h(X̃τ )), ı̃ ∈ Ĩ , where τ is given by (5.3).
Clearly h̃ is an extension of h. Using the strong Markov property for the time of first
jump of X̃, we deduce that h̃ is Q̃-harmonic at every j̃ ∈ Ĩ \ I . Now, for i ∈ I, we
have

∑

j̃∈Ĩ

Q̃ij̃ h̃(j̃ ) =
∑

j∈I

Q̃ij h(j) +
∑

j̃∈Ĩ\I
Q̃ij̃ h̃(j̃ ) =

∑

j∈I

Q̃ij h(j) +
∑

j̃∈Ĩ\I
Q̃ij̃Ej̃

(
h(X̃τ )

)

=
∑

j∈I

Q̃ij h(j) +
∑

j̃∈Ĩ\I
Q̃ij̃

(∑

k∈I

Pj̃ (X̃τ = k)h(k)

)

=
∑

j∈I

(

Q̃ij +
∑

k̃∈Ĩ\I
Q̃

ik̃
P

k̃
(X̃τ = j)

)

h(j) =
∑

j∈I

Qijh(j),
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where the last equality follows from (5.4). Since h is Q-harmonic, we get
∑

j̃∈Ĩ Q̃ij̃ ×
h̃(j̃ ) = 0. Then h̃ is Q̃-harmonic at i ∈ I . �

5.4 The Boundary of an Ultrametric Matrix

The boundary ∂̃∞ can be identified with

∂̃∞ = {
(ı̃n : n ∈ N) : ı̃0 = r̃ ,∀n ∈ N, |ı̃n| = n and (ı̃n, ı̃n+1) ∈ T̃

}
,

and it is endowed with the topology generated by the sets C̃ = {̃∂∞(ı̃) = [ı̃,∞]∩ ∂̃∞ :
ı̃ ∈ Ĩ }. We denote by F̃∞ the associated σ -field. We denote by F∞ the σ -field on ∂̃∞
generated by the sets {̃∂∞(i) : i ∈ I }. We have F∞ ⊆ F̃∞, and this inclusion can be
strict.

The following definition of the boundary ∂U∞ associated to an ultrametric ma-
trix extends the one for a tree. An infinite path (in : n ∈ N) in I is called a 	-
chain if in ≺ in+1 for every n ∈ N, and the 	-chain is maximal if we cannot add
any element of I to it in such a way that it continues to be a 	-chain. In a tree
a 	-chain (in : n ∈ N) is maximal if and only if i0 = r and |in| = n for every
n ∈ N. The boundary of I with respect to the ultrametric matrix U is defined as
∂U∞ = {(in : n ∈ N) is a maximal 	-chain }. We endowed ∂U∞ with the trace topology
from ∂̃∞. The equality

∂U∞ =
⋂

n∈N

( ⋃

m≥n

⋃

i∈I :|i|=m

{
ξ ∈ ∂̃∞ : ξ(m) = i

}
)

,

shows that ∂U∞ ∈ F̃∞.
The function

iU∞ : ∂U∞ → ∂̃∞, iU∞
(
(in : n ∈ N)

) = (ı̃n : n ∈ N)

⇐⇒ {in : n ∈ N} ⊆ {ı̃n : n ∈ N}, (5.8)

is well defined and is one-to-one. We will identify ∂U∞ and iU∞(∂U∞). In general, iU∞ is
not onto, and ∂U∞ is small compared to ∂̃∞. But, as the following result shows, under
(H4), it has full μ̃-measure.

Lemma 5.5 Property (H4) is equivalent to μ̃(∂U∞) = 1.

Proof First notice that if for some j̃ ∈ Ĩ \ I, it holds Pj̃ {X̃τ ∈ I ∪ ∂r̃ } < 1, then
Pj̃ {X̃ζ̃ ∈ ∂̃∞ \ ∂U∞} > 0. Hence, the condition is necessary for (H4). For the recipro-

cal, assume that μ̃(̃∂∞ \ ∂U∞) > 0. Therefore there exists n ∈ N such that Pr̃{An} > 0,
where An = ⋂

m≥n

⋂
i∈I :|i|=m{ξ ∈ ∂̃∞ : ξ(m) �= i}. Take any ı̃ ∈ Ĩ \ I , |ı̃| = n, such

that ∂̃ı̃ (∞) ∩ An has positive Pr̃ -measure. Then we have Pı̃{X̃ζ̃ ∈ ∂̃∞, X̃ζ̃ (�) /∈ I ,
∀� ≥ 0} > 0, which contradicts hypothesis (H4). �

Theorem 5.3 Assume that U satisfies (H1)–(H4). Let h be a bounded Q-harmonic
function such that limi→ξ h(i) = ϕ(ξ) for every ξ ∈ ∂U∞. Then, there exists ϕ̃ =
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lim h̃ μ̃-a.e., where h̃ is the harmonic function associated to h in Theorem 5.2. More-
over, if ϕ̃ is in the domain of W̃−1, then h has the representation

h(i) =
∫

∂̃∞
Ui,η

(
W̃−1ϕ̃

)
(η)μ̃(dη). (5.9)

Proof From Lemma 5.5 we have ∂U∞ = ∂̃∞ μ̃-a.e., and therefore (almost) every
point ξ ∈ ∂̃∞ verifies |{n ∈ N : ξ(n) ∈ I }| = ∞. Also, by the hypothesis there exists
a = lim n→∞

ξ(n)∈I
h(ξ(n)). For the first part of the statement, it suffices to show that a =

limn→∞ h(ξ(n)). Let us consider the subsequence k(n) = max{m ≤ n : ξ(m) ∈ I }.
We have limn→∞ k(n) = ∞. On the other hand, for large n, V (ξ(n)) ⊂ [ξ(k(n)),∞);
then h̃(ξ(n)) = Eξ(n)(h(X̃τ )) belongs to the convex closure of the set {h(ξ(m)) :
ξ(m) ∈ I,m ≥ k(n)}. Hence the result follows.

Now we are able to show relation (5.9). It suffices to notice that, for every
i ∈ I ∪ ∂̃∞ and μ̃-a.e. η ∈ ∂̃∞, it holds Ũiη = Uiη. Then the proof follows from
Corollary 3.1. �

Remark 5.1 From a topological point of view, ∂U∞ is dense in ∂̃∞ if for all i ∈ I,

there exists j ∈ I, j �= i, such that Uij = Uii (that is, if for all i ∈ I, the set [i,∞)U is
infinite). Indeed, by the definition of the minimal tree, for all ξ ∈ ∂̃∞ and n ≥ 1, there
exists some i ∈ I such that i ∈ ∂̃∞(ξ(n)). The desired density follows by taking any
η ∈ ∂U∞ hanging from i.

Remark 5.2 The referee has put the following problem. Consider the tree (I, T ) as in
Sect. 2. What happens with the results of the work if the strictly increasing function
w is defined on the set I of tree vertices rather than on N? To give a partial answer
to it, let us consider a strictly increasing function w∗ : I → R+ (that is, i ≺ j implies
w∗(i) < w∗(j)) satisfying w∗(r) = 0. Define Uij = w∗(i ∧ j). Then, the tree struc-
ture implies that U = (Uij : i, j ∈ I ) is an ultrametric matrix. Hence, the results of
this section can be applied. Condition (H1) holds, and condition (H2) reads: the set
{w∗(i) : i ∈ I } has no finite accumulation points, and it implies (H3), while (H4)

holds anyways.

Acknowledgement The authors are indebted to the anonymous referee whose suggestions helped us to
improve the article.
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