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Abstract

We study analytically a system sustaining stable moving localized structures, namely, the
one-dimensional quintic complex Ginzburg–Landau (G–L) equation with non-linear gradients.
We obtain approximate solutions for the stable moving pulse and its velocity. The results are in
excellent agreement with direct numerical simulations.
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1. Introduction

In the last decade experimental observation of stable spatially localized structures
in systems such as binary <uids mixtures [1,2], nematic liquid crystals [3], chemical
reactions [4] and granular media [5], has been reported. From a theoretical point of view
stable localized solutions have been found in generic equations near a weakly inverted
bifurcation to traveling waves, namely, the Ginzburg–Landau [6,7] and the Swift–
Hohenberg equations [8]. Since then a lot eCort has been devoted to study properties
of these dissipative–dispersive localized structures [9–17]. Mainly this work has been
focused on the quintic complex Ginzburg–Landau (G–L) equation without regarding
non-linear gradient terms. Some work has been done including these non-linearities

∗ Corresponding author. Facultad de IngenierEFa. Universidad de los Andes, Av. San Carlos de Apoquindo,
Santiago 2200, Chile.
E-mail address: oraziod@uandes.cl (O. Descalzi).

0378-4371/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2004.04.053

mailto:oraziod@uandes.cl


10 O. Descalzi, E. Tirapegui / Physica A 342 (2004) 9–15

[18–20], which can be useful in more general models with application in propagation of
ultra-short pulses in optical Kbers. Very recently we have developed a simple analytical
method which enables us to construct approximate expressions of localized solutions
and understand their appearance [21–23]. The aim of this article is to generalize this
technique to the quintic G–L equation including non-linear gradients.

2. Analytical approach

The one-dimensional quintic complex G–L equation including dissipation, dispersion
and non-linear gradients can be written as

9tA= �A+ �|A|2A+ �|A|4A+ D9xxA+ 	9x(|A|2A) + 
A9x(|A|2) : (1)

The subscript x denotes partial derivative with respect to x, A(x; t) = r exp i is a
complex Keld, and the parameters �, �, D, 	 and 
 are in general complex. Nevertheless,
Eq. (1) admits stable moving pulses with most parameters being real. In this article we
shall consider �, � and 	 real, �=�r+ i�i, D=1 and 
=0. The signs of the parameters
�r ¿ 0 and �¡ 0 are chosen in order to guarantee that the bifurcation is subcritical and
saturates to quintic order. Because of the parameter �i the system (without non-linear
gradients) is non-variational and admits stable localized structures. The parameter 	
breaks the parity symmetry x → −x leading to moving pulses. The inclusion of the
imaginary parts of the parameters �, D, 	 and 
 may lead to breathing and chaotic
localized structures [13,23].
Making the change of variables: y=x−vt; �= t, where v is the velocity of the pulse,

we assume that in the moving frame we can make the following Ansatz: r = R(y);
= ��+ �(y). Then Eq. (1) reduces to

− (v+ 3	R2)Ry = �R+ �rR3 + �R5 + Ryy − R�2y ; (2)

− (v+ 	R2)R�y = −�R+ �iR3 + 2Ry�y + R�yy : (3)

The strategy to calculate approximately R(y), �(y), � and v consists in considering
that �y(y) (the wave vector) is constant (+p1 for the left side, −p2 for the right
side) in almost all the domain (outside the core) except in a narrow domain around
the center of the pulse (core), where �y(y) is considered to be a straight line (see
Fig. 1(b)). Because of parity breaking the left and right sides of the pulse must be
studied separately.
Outside the core and for the left side (y¡ 0), Eqs. (2) and (3) lead to

0 = (�(1) − p2
1)R+ �(1)

r R3 + �(1)R5 + Ryy ; (4)

where �(1)=�− v2
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√
v2 + 4(p2
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which is a constant in (−∞; 0). For the right side (y¿ 0) one Knds the same
Eq. (4) with coeNcients �(1) = � − v2
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. For y → +∞ we get � =
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Fig. 1. Analytical approximation for the pulse in the moving frame. For the left (y¡ 0) and right sides
(y¿ 0) the space is divided in two regions: outside the core, where the wave vector is constant, and core,
where the wave vector is a straight line. (a) modulus of the pulse, (b) wave vector.

p2

√
v2 + 4(p2

2 − �), which is a constant in (0;+∞). Integrating Eq. (4) it is
possible to obtain an explicit expression for R(y):

R(y) =
2b

1
4 exp{

√
−�(1) + p2(|y| + y0)}√

(exp{2
√

−�(1) + p2(|y| + y0)} + a√
b
)2 − 4

; (5)

where a= −3�(1)r
2�(1) , b= −3(−�(1)+p2)

�(1) , y0 is a constant to be determined, p=p1 for y¡ 0
and p= −p2 for y¿ 0.
Inside the core and for the left side (y¡ 0) we assume that R(y)=R(left)

m −�y2−�y3

and �y = −�y, where R(left)
m is the highest value of the pulse constructed on the left

side. From Eqs. (2) and (3) we can calculate the values of �, � and �. Imposing
continuity of the amplitude R(y), the phase gradient �y(y), and the derivative of the
amplitude of the analytical expressions calculated inside and outside the core of the
pulse at y = y1 = −p1

� we determine y0 and a relation between R(left)
m and p1:

f1(R(left)
m ; p1) ≡

√
−�(1)

3
rc

√
r4c − ar2c + b+ 2�y1 + 3�y2

1 = 0 ; (6)

where rc = R(left)
m − �y2

1 − �y3
1.

In order to obtain a second relation between R(left)
m and p1 we use a consistency

relation by multiplying Eq. (3) by R(y) and integrating from −∞ to 0.

g1(R(left)
m ; p1)≡� − 1

(I (0)2 + I (1)2 )
{�i(I (0)4 + I (1)4 ) + v(p1I

(0)
2 + I (2)2 )

+	(p1I
(0)
4 + I (2)4 )} = 0 ; (7)

where I (0)2 ≡ ∫ y1
−∞ R2 dy; I (0)4 ≡ ∫ y1

−∞ R4 dy; I (1)2 ≡ ∫ 0
y1

R2 dy; I (1)4 ≡ ∫ 0
y1

R4 dy; I (2)2 ≡∫ 0
y1

R2�y dy and I (2)4 ≡ ∫ 0
y1

R4�y dy, which can be calculated explicitly.
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For the right side (y¿ 0) we proceed in an analogous way. We assume R(y) =
R(right)
m − �y2 − �y3 and �y = −�y. Once again �, � and � are calculated from

Eqs. (2) and (3). The matching between R(y) outside the core and R(y) inside the
core is carried out at y = y2 =

p2
� yielding a relation between R(right)

m and p2:

f2(R(right)
m ; p2) ≡

√
−�(1)

3
rc

√
r4c − ar2c + b − 2�y2 − 3�y2

2 = 0 ; (8)

where rc = R(right)
m − �y2

2 − �y3
2. The corresponding consistency relation is given by

g2(R(right)
m ; p2)≡� − 1

(I (0)2 + I (1)2 )
{�i(I (0)4 + I (1)4 ) − v(p2I

(0)
2 + I (2)2 )

−	(p2I
(0)
4 + I (2)4 )} = 0 ; (9)

where I (0)2 ≡ ∫ +∞
y2

R2 dy; I (0)4 ≡ ∫ +∞
y2

R4 dy; I (1)2 ≡ ∫ y2
0 R2 dy; I (1)4 ≡ ∫ y2

0 R4 dy;

I (2)2 ≡ ∫ y2
0 R2�y dy and I (2)4 ≡ ∫ y2

0 R4�y dy, which can be calculated explicitly.

Thus for Kxed values of Eq. (1) and v, expressions (6)–(9) give us R(left)
m , R(right)

m , p1

and p2, which enable us to determine the left and right parts of the localized structure.
Finally, the continuity of the pulse at y= 0 (or the condition R(left)

m = R(right)
m ) leads to

a unique value of v (the velocity of the pulse).

3. Example

To see how this method works in a concrete example we Kx the parameters of
Eq. (1): �=−0:38, �r=3, �i=1, �=−2:75, and 	=−0:1. Expressions (6) and (7) give
us values of R(left)

m and p1 for each value of v. In Fig. 2(a) we draw f1(R
(left)
m ; p1)= 0

(continuous line) and g1(R
(left)
m ; p1) (dashed line) for v = 0:087712. Fig. 2(b) shows

f2(R
(right)
m ; p2)=0 (continuous line) and g2(R

(right)
m ; p2) (dashed line) for the same value

of v. Varying v we see that there exists a unique value of v for which R(left)
m =R(right)

m (In
Fig. 3(a) we see that R(left)

m (v) and R(right)
m (v) intersect at a unique value v=0:087712).

Moreover we can study the relation between v and 	. We Knd analytically and from
direct numerical simulations that v varies linearly with 	 (see Fig. 3(b)). For |	|¿ 0:2
our method collapses for the parameters used in this example. The reason may be the
fact that for large v the renormalized parameters �(1), �(1)

r and �(1) lead to a pulse
outside the analytical stability tongue. Now we can construct the left and right parts
of the moving pulse. Fig. 4(a) shows the analytical approximation for the shape of
the pulse (continuous line). Dashed line represents the pulse obtained through a direct
numerical simulation. Fig. 4(b) shows a numerical space–time plot for the modulus of
the pulse, which leads to a numerical velocity of the pulse v = 0:084388. This result
agrees within 4% with our analytical approach. In Fig. 5 we show a 3-dimensional
representation of the analytical expression for the shape R(x; t) of the pulse (compare
with the numerical space–time plot given in Fig. 4(b)).
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Fig. 2. For the parameters �=−0:38, �r=3, �i=1, �=−2:75, 	=−0:1 and v=0:087712. (a) left side of the
pulse: f1(R

(left)
m ; p1)=0 is drawn as a continuous line and g1(R

(left)
m ; p1) as a dashed line. Intersection occurs

at p1 =0:489422, R(left)
m =0:967471, (b) right side of the pulse: f2(R

(right)
m ; p2)=0 is drawn as a continuous

line and g2(R
(right)
m ; p2) as a dashed line. Both curves intersect at p2 = 0:482878, R(right)

m = 0:967471.
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Fig. 3. (a) The intersection between the curves R(left)
m (v) and R(right)

m (v) selects the velocity of the pulse.
For parameters � = −0:38, �r = 3, �i = 1, � = −2:75 and 	 = −0:1 the selected velocity is v = 0:087712,
(b) Linear relation between v and 	. The continuous line shows the analytical prediction for the dependence
of velocity of the pulse v with 	. The dashed line stands for the numerical simulation.

4. Conclusions

We have studied from an analytical point of view a system with broken parity
sustaining moving localized structures, namely, the one-dimensional quintic complex
Ginzburg–Landau equation with non-linear gradients. Using a matching approach we
have been able to obtain approximate expressions for the stable moving pulse and its
velocity. Our results are in good agreement with direct numerical simulations.
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Fig. 4. (a) The analytical shape of the pulse is shown as a continuous line. Direct numerical simulation is
represented by a dashed line. (b) Numerical space–time plot for the shape of the pulse.
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Fig. 5. 3-dimensional plot of the analytical expression for the shape R(x; t) of the moving pulse in the
interval (−20; 60) × (0; 474).
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