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Saddle-node bifurcation: Appearance mechanism of pulses in the subcritical complex
Ginzburg-Landau equation
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We study stationary, localized solutions in the complex subcritical Ginzburg-Landau equation in the region
where there exists coexistence of homogeneous attractors. Using a matching approach, we report on the fact
that the appearance of pulses are related to a saddle-node bifurcation. Numerical simulations are in good
agreement with our theoretical predictions.
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Spatially extended nonequilibrium systems often sh
coherent or localized structures that may take the form
propagating kinks, oscillating pulses, or standing fronts,
mention a few~for a survey, see Ref.@1#!. The dynamics of
these localized structures may be either stationary, perio
or chaotic. A famous example is the motion of a localiz
and turbulent region surrounded by laminar flows, which
pears in many open flow experiments@2#, such as Taylor-
Couette flow with counter-rotating cylinder channel flow
@3#, plane Poiseuille flow@4,5#. At the onset of binary fluid
convection, standing and localized waves have also been
served@6–10#. Localized oscillations in vibrating granula
layer constitute another example@11,12#. More recently, ex-
periments in electroconvection of nematic liquid cryst
showed that localized structures may eventually bifurcate
chaos@13#. Hence, it appears quite important to understa
what are the mechanisms of creation, or the physical feat
necessary, to sustain such structures. Some approache
mit to describe the existence of these entities. For exam
pinning effect of local compact structures~periodic standing
wave in one spatial dimensions! permit to explain the exis-
tence of such localized entities@14,15#. Another approach is
the study of subcritical instabilities, where two stable sta
may coexist for some range of parameters, and this is
situation we consider here. We shall study the localized
cillating solutions observed in the subcritical Ginzbur
Landau equation that can be written as

] tA5mA1~b r1 ib i !uAu2A1~g r1 ig i !uAu4A1]xxA,
~1!

whereA(x,t)5r expif is a complex field. Here dispersiv
effects have been neglected and will be taken into acco
elsewhere. Great efforts have been devoted to the stud
this equation@16–24,26–29#. The signs of the parameter
b r.0 andg r,0 are chosen in order to guarantee that
bifurcation is subcritical and saturates to quintic order. Eq
tion ~1! admits a class of homogeneous time-periodic so
tions,

A1,25r 1,2exp@ i ~@b i r 1,2
2 1g i r 1,2

4 #t1w0!#, ~2!
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wherer 1,2
2 5(2b r6Ab r

224g rm)/2g r andw0 is an arbitrary
phase. The existence of solutionsA1,2 requires thatm
>b r

2/4g r . However, inside this range onlyA2 is stable
against small perturbations. It is easy to see thatA050 is
also a solution of Eq.~1!, but it is stable only form,0.
Therefore the stable solutionsA0 andA2 coexist forb r

2/4g r

<m<0. Inside this region, where the stable homogene
solutions coexist, numerically oscillating stable pulses ha
been observed@25–29#.

The aim of this paper is to present an explicit analy
approximation of these, pulses which also exhibits in a cl
way their mechanism of appearance, which is a saddle-n
bifurcation. This mechanism is well known in the variation
@16,17# and in the conservative limits@27#, and our approxi-
mation shows that far away from these two limit cases pul
appear and disappear through a saddle-node bifurcation.
strategy consists of calculating the pulse inside and out
the core and then to match the approximate solutions in
border of the regions, imposing there continuity of the a
plitude, the phase, and the derivative of the amplitude.

The starting point is the ansatzr 5R0(x), f5Vt
1u0(x), whereV is the oscillating frequency of the pulse
which is an unknown parameter to be determined. This
satz has been first introduced in Ref.@26#. We assume tha
the the tails of the pulses go to zero at infini
@ limuxu→`

R0(x)50#. Replacing this ansatz in Eq.~1!, we

obtain the following equations:

05mR01b rR0
31g rR0

51R0xx2R0u0x
2 , ~3!

VR05b iR0
31g iR0

512R0xu0x1R0u0xx . ~4!

To solve Eqs.~3! and~4! we proceed to separate the pul
in two regions, namely, inside the core and outside the c
of the pulse, and then we perform a matching. Inside the c
we suppose that the moduleR0(x) admits a Taylor expan-
sion, so that

R0~x!5Rm2ex21o~x4!, ~5!

where Rm is the greatest value ofR0(x), and the second
unknown. At leading order, the Taylor expansion of t
phase gradient is determined by
©2003 The American Physical Society01-1
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u0x~x!52ax1o~x3!. ~6!

We suppose that the pulse is not breaking the reflec
symmetry (x→2x). ReplacingR0(x) andu0x(x) in Eqs.~3!
and ~4!, we obtain

e5
1

2
~mRm1b rRm

3 1g rRm
5 !,

a5b iRm
2 1g iRm

4 2V. ~7!

Of course, we can include higher-order terms in Eqs.~5!
and ~6!, but they are not necessary for the purpose of t
paper.

At dominant order and outside the core of the pulse,
suppose that the phase gradientu0x(x) is determined by
u0x(x)5p for x,0 andu0x(x)52p for x.0. SinceR0(x)
goes asymptotically to zero, from Eqs.~3! and ~4!, we de-
duce

V52pA2m1p2. ~8!

We then see thatV is related top, and we remain finally
with two unknowns:Rm andp. Solving Eq.~3! in the bulk,
where the phase gradient is constant, we obtain

R0~x!5
2b1/4exp$A2m1p2~ uxu1x0!%

AS exp$2A2m1p2~ uxu1x0!%1
a

Ab
D 2

24

,

~9!

wherea523b r /2g r andb523(2m1p2)/g r .
Once we have calculatedR0(x) inside and outside the

core of the pulse, we proceed to match both functions at
point (x* ,r c)5(2p/a,Rm2ex

*
2 ), wherer c is the value of

R0(x) at the matching point. UsingR0(x) outside the core,
by inverting relation~9!, we get

u
*
2 52

a

Ab
1

2Ab

r c
2

1
2

r c
2
Ar c

42arc
21b, ~10!

where u* 5exp$2A2m1p2(x* 2x0)%. Then x05x*
1(ln u* /A2m1p2).

We now impose that the derivativedR0(x)/dx outside the
core@Eq. ~9!# and inside the core@Eq. ~5!# should be equal a
x5x* . This gives a first relation betweenRm andp, which
reads

A2
g r

3
r cAr c

42arc
21b12ex* 50. ~11!

From now on we shall refer to Eq.~11! as f (Rm ,p)50.
We need a second relation in order to be able to fix the
parameters$Rm ,p% of the ansatz, and it can be obtaine
~following Ref. @26#! by multiplying Eq. ~4! by R0(x) and
integrating in the whole domain. This gives
01560
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2`

0

R0
2dx

50. ~12!

The integrals in Eq.~12! can be evaluated, and one get

E
2`

0

R0
2dx5

Ab

2A2m1p2
lnUa1Ab~u

*
2 12!

a1Ab~u
*
2 22!

U2Rm
2 x*

1
2

3
Rmex

*
3 . ~13!

E
2`

0

R0
4dx52

~a224b!b1abAbu
*
2

A2m1p2@24b1~a1Abu
*
2 !2#

1

aAb lnUa1Ab~u
*
2 12!

a1Ab~u
*
2 22!

U
4A2m1p2

2Rm
4 x* 1

4

3
Rm

3 ex
*
3 .

~14!

E
2`

0

R0
6dx5

Ab

16A2m1p2@24b1~a1Abu
*
2 !2#2

3S 212aAb~a224b!224bu
*
2 ~a224b!~9a2

14b!212a~3a224b!b3/2u
*
4 14b2~23a2

14b!u
*
6 1~3a224b!@24b1~a1Abu

*
2 !2#2

3 lnUa1Ab~u
*
2 12!

a1Ab~u
*
2 22!

U D 2Rm
6 x* 12Rm

5 ex
*
3 .

~15!

The above integrals together with the value ofV given by
relations~8! and~12! enable us to obtain the second relatio
which from now on will be referred asg(Rm ,p)50. The
matching is accomplished by computing$Rm ,p%, such that
f 5g50.

With these schemes, two pulses are found in a finite
gion for negativem, and one pulse for positivem. We draw
the curvesf (Rm ,p)50 ~continuous line! and g(Rm ,p)50
~dashed line!, consideringm520.486 in Fig. 1~a!. It is seen
that the curves intersect twice, implying the existence of t
pulses. By further decreasingm, the curves do not cross a
any point, suggesting that the pulses do not exist anym
@see Fig.~1~b!#. At m5mc520.489, the two solutions dis
appear by coalescence. This disappearance is therefore
ciated to a saddle-node bifurcation occurring in the fun
tional space. Hence, after the bifurcation,m.mc , one
solution must be stable and the other one unstable. In su
case, the spectrum of the linearized operator at the unst
pulse has a unique positive eigenvalue. Hence
codimension-1 stable manifold of the unstable pulse must
1-2
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FIG. 1. ~a! For m520.486.mc the curves cut at two points
giving origin to pulses with (Rm50.708,p50.305) and (Rm

50.767,p50.366).~b! For m520.5,mc , the curves do not cut a
any point: there are no pulses. Values of the parameters arb r

53, b i51, g r522.75, andg i51. The value ofmc is 20.489.

FIG. 2. Bifurcation diagram for pulses. The thin continuous li
corresponds to stable pulses and the thin dashed line to uns
pulses. These two branches are computed from the analytica
proximation. The thick continuous line is computed with the bifu
cation softwareAUTO 2000. The values of the parameters are t
same as in Fig. 1.
01560
as a separatrix in functional space determining the nuclea
barrier that permits the creation of the stable pulse from
homogeneous state. To see explicitly the character of
saddle-node bifurcation, we calculateV as a function ofm
~see Fig. 2! using the bifurcation softwareAUTO 2000 @30#.
We obtain the two expected branches, and we compare t

ble
p-

FIG. 3. ~a! Shape of the stable pulse predicted by the analyt
approach~continuous line! and by numerics~dashed line!. ~b! The
gradient of the phase.

FIG. 4. ~a! Module of the stable pulse close to the Maxwe
point predicted by the analytical approach~continuous line! and by
a numerical simulation~dashed line!. Parameter values arem
2mM50.0286,b r53, b i50.343,g r522.75, andg i50. ~b! The
gradient of the phase.
1-3



d
ls

re
e

he
ic
n

ca

ap
r
ed
th

t

th
x

it.

n
t

ob-
4
ulse

na-
ob-
in

ted
rg-
re-

t
e ap-
the
ria-
th

la

c

e
are

RAPID COMMUNICATIONS

O. DESCALZI, M. ARGENTINA, AND E. TIRAPEGUI PHYSICAL REVIEW E67, 015601~R! ~2003!
with the analytical approximation. One of them correspon
to the stable pulses and the other one to the unstable pu

The lower branch appears atm50, and this is understood
as a bifurcation of the homogeneous stateA0. Since this
latter is subcritical, this means that the lower branch rep
sents unstable solutions. By further decreasing the param
m, the lower branch folds into the upper one: this is t
saddle-node bifurcation reported above. Direct numer
simulation show that points in the upper branch correspo
as expected, to stable pulses.

The analytical prediction is also checked with a numeri
integration of Eq.~1!: it results that form,20.468 there are
no stable pulses. This result agrees within 5% with our
proach. To compare the shape of the pulses, we conside
particular value ofm520.46 and the parameters mention
above. Our approximation predicts two pulses after
curves f (Rm ,p)50 and g(Rm ,p)50 cut in two points,
namely (p50.250,Rm50.643) and (p50.434,Rm50.821).

In Fig. 3 we show the shape and the phase gradient of
pulse obtained with our analytical approach~continuous line!
and with our numerical simulation~dashed line!. The values
of Rm , the asymptotical value of the phase gradient, and
sizes of the stable pulses agree within 1% with our appro
mation.

One interesting limit to be studied is the variational lim
As it is known from Ref.@16# in this limit, pulses exist inside
a finite interval limited by two saddle-node bifurcatio
curves. This interval converges to zero as we approach
Maxwell point (m→mM53b r

2/16g r ;b i→0;g i→0). Our
hy

ett

ys
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method generates pulses with a similar shape to those
tained directly from the numerical simulation. Figure
shows the module and the phase gradient of one stable p
close to the Maxwell point. We can see that the values ofRm
and the asymptotical value of the phase gradient of our a
lytical approximation are very close to the exact values
tained from the numerical simulation. Moreover, we obta
from our method that the width of the pulses diverges asm
→mM .

In conclusion, using a simple method we have construc
approximately pulses in the complex subcritical Ginzbu
Landau equation with nondispersive terms. However, this
striction may be overcome@31#, and the conservative limi
can then be approached using the same procedure. Th
proximation scheme presented here is valid through
whole intermediate range of parameters between the va
tional and the conservative limit, and remains valid in bo
limits as we have discussed.
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