L. E. Ramírez - C. Palacios • B. Townley •<br>M. A. Parada - A. N. Sial • J. L. Fernandez-Turiel -<br>D. Gimeno - M. Garcia-Valles • B. Lehmann

# The Mantos Blancos copper deposit: an upper Jurassic breccia-style hydrothermal system in the Coastal Range of Northern Chile 

Received: 26 April 2005 / Accepted: 6 February 2006 / Published online: 22 April 2006

(C) Springer-Verlag 2006


#### Abstract

The Upper Jurassic Mantos Blancos copper deposit ( 500 Mt at $1.0 \% \mathrm{Cu}$ ), located in the Coastal Range of northern Chile, displays two superimposed hydrothermal events. An older phyllic alteration probably related to felsic magmatic-hydrothermal brecciation at $\sim 155 \mathrm{Ma}$, and younger (141-142 Ma) potassic, propylitic, and sodic alterations, coeval with dioritic and granodioritic stocks and sills, and dioritic dikes. Main ore formation is genetically related to the second hydrothermal event, and consists of hydrothermal breccias, disseminations and stockwork-style mineralization, associated with sodic alteration. Hypogene sulfide assemblages show distinctive vertical and lateral zoning, centered on magmatic and hydrothermal breccia bodies, which constitute the feeders to mineralization. A barren pyrite root zone is overlain by


[^0]pyrite-chalcopyrite, and followed upwards and laterally by chalcopyrite-digenite or chalcopyrite-bornite. The assemblage digenite-supergene chalcocite characterizes the central portions of high-grade mineralization in the breccia bodies. Fluid inclusions show evidence of boiling during the potassic and sodic alteration events, which occurred at temperatures around $450-460^{\circ} \mathrm{C}$ and $350-410^{\circ} \mathrm{C}$, and salinities between 3-53 and 13-45 wt \% NaCl eq., respectively. The hydrothermal events occurred during episodic decompression due to fluid overpressuring, hydrofracturing, and sharp changes from lithostatic to hydrostatic conditions. Sulfur isotope results of hypogene sulfide minerals fall in a narrow range around 0 per mil, suggesting a dominance of magmatic sulfur. Carbon and oxygen isotopic data of calcites from propylitic alteration suggest a mantle-derived carbon and oxygen isotope fractionation due to low-temperature alteration.

Keywords Cu mineralization • Upper jurassic •
Coastal range - Northern Chile

## Introduction

This paper presents the results of a comprehensive and updated study of the Mantos Blancos ore deposit, in the Coastal Range of northern Chile (Fig. 1). Pre-mining resources of this deposit are estimated at 500 million metric tons with $1.0 \% \mathrm{Cu}$, of which 200 million tons were extracted between 1960 and 2002 (Maksaev and Zentilli 2002). The remaining ore reserves stand at 142 million tons with $0.86 \% \mathrm{Cu}$, and a resource of 156 million tons with $0.89 \% \mathrm{Cu}$ (Anglo Base Metals Report, May 2003).

The Coastal Range is host to Upper Jurassic to Lower Cretaceous copper deposits of volcanic-hosted stratabound type, and Cretaceous, generally heavily eroded porphyry-type systems, which constitute a NS-trending metallogenetic province (Camus 2003). The volcanichosted strata-bound ore bodies are mainly associated with hydrothermal breccia feeder structures, in which the hydrothermal breccias contain at least $50 \%$ of the economic


Fig. 1 Geological map of the Coastal Cordillera, Northern Chile, and location of the Mantos Blancos ore deposit (star) and the Upper Jurassic volcanic-hosted copper deposits (diamonds). In grey are the Middle to Upper Jurassic volcanic rocks of the La Negra Formation, crosses represent Jurassic plutonic rocks. Modified after Maksaev and Zentilli (2002)
mineralization and the highest ore grades. The hydrothermal breccias are coeval with barren and generally incipiently altered stocks and sills of mainly dioritic composition, and are intruded by late mineralization dioritic dikes.

Sulfide mineralization consists of chalcocite, digenite, bornite, chalcopyrite, and pyrite related to sodic hydrothermal alteration (Palacios 1990; Wolf et al. 1990). Most of these deposits are relatively small, with resources between 10 to 50 million tons grading $1 \% \mathrm{Cu}$ (Espinoza et al. 1996). The porphyry-copper-type mineralization is associated with granodioritic porphyries and hydrothermal breccias, in which the hypogene mineralization consists of chalcopyrite, pyrite, and minor bornite and molybdenite, and occurs coeval with potassic and phyllic alteration (Camus 2003).

The Mantos Blancos ore body, located 30 km NE of Antofagasta, was described in the past as disseminated copper mineralization in a bimodal rhyolite-andesite
sequence by Chávez (1985), but, in general, has been considered as a strata-bound Cu deposit in recent reviews (Espinoza et al. 1996; Maksaev and Zentilli 2002). No detailed studies have been performed since 1985, when Mantos Blancos comprised a series of open pits and underground mines. During the past 20 years, the mine has been transformed into a large open-pit operation, which now provides much better geological exposures and more detailed information.

The aim of this paper is to present new data on the geology, hydrothermal alteration and mineralization, fluid inclusions, and stable isotopes, and to discuss the metallogeny and origin of the deposit.

## Tectonic and geologic setting

During the Jurassic to Early Cretaceous, a subductionrelated magmatic belt was established along the present Coastal Range of northern Chile. It is represented by a 7,000-m thick basaltic to andesitic volcanic pile (La Negra Formation) and granitic to dioritic plutonic rocks. The volcanic sequence evolved with time from an initial stage of tholeiitic affinity to a calc-alkaline composition (Palacios 1984; Rogers and Hawkesworth 1989; Pichowiak et al. 1990; Kramer et al. 2005). Based on radiometric age data and paleontological arguments, the extrusive event occurred between the Lower Jurassic to the Oxfordian (Rogers and Hawkesworth 1989; Gelcich et al. 2004; Kramer et al. 2005). The Jurassic volcanic pile was deposited without significant relief building, indicating considerable crustal subsidence, probably related to crustal thinning in an extensional setting (Dallmeyer et al. 1996; Maksaev and Zentilli 2002).

The intrusive rocks, also of calc-alkaline composition, include granites, tonalites, granodiorites, and diorites of Lower Jurassic to Early Cretaceous age (200-130 Ma; Scheuber and Gonzalez 1999; Oliveros 2005). Tectonic evolution of the Coastal Range during the Jurassic is interpreted in terms of coupling and decoupling between the subducting oceanic and overriding continental plates (Scheuber and Gonzalez 1999). From 195 to 155 Ma , an intra-magmatic belt was widespread, spatially related to the north-south trending, sinistral strike-slip dominant Atacama Fault Zone. However, at the end of Jurassic time, due to foundering of the subducting plate, subduction rollback, and decoupling, an east-west-trending extensional regime developed. At the end of the Jurassic to the Early Cretaceous, seismic coupling of the subducted plate is suggested by the return of the sinistral strike-slip style of deformation (Scheuber and Gonzalez 1999).

## Geology of the deposit

Rock units recognized within the Mantos Blancos ore deposit consist of a rhyolitic dome and its magmatichydrothermal breccias, intruded by dioritic and granodioritic stocks and sills. The dioritic and granodioritic stocks
locally grade upwards into magmatic-hydrothermal breccias. These rock units are all mineralized to variable degrees. Late mafic dikes crosscut all previously mentioned rock units and are essentially barren. All the above rock units are informally grouped as the Mantos Blancos Igneous Complex (MBIC; Fig. 2). The local structural framework at deposit scale is characterized by three groups of faults: 1) NE- and NW-trending subvertical faults with evidence of sinistral and dextral movements respectively, 2) $\mathrm{NS} / 50-80^{\circ} \mathrm{W}$ normal faults, and 3 ) $\mathrm{NS} / 50-80^{\circ} \mathrm{E}$ normal faults.

The MBIC consists of the following major rock units:

## Rhyolitic porphyry dome

The central part of the deposit consists of a rhyolitic dome (Figs. 2 and 3). The dome structure is partially preserved in the open-pit walls, but its geometry has been roughly defined from drill core logs and samples of the early stages of exploitation of the ore deposit (Chávez 1985), and later lithological modeling. Due to pervasive alteration, the contacts between different internal flows are very difficult to observe; however, near-horizontal and vertical flow
laminations are typical, varying between 1 to 4 cm in thickness. West of the pit, the felsic dome is intercalated with felsic tuffs and andesitic lava flows, and is intruded by dioritic and granodioritic sills. The rhyolitic dome consists of a rhyolite porphyry with fragments of corroded quartz and feldspar phenocrysts ( $1-5 \mathrm{~mm}$ ) in an intensively altered felsic groundmass.

Rhyolitic magmatic-hydrothermal breccia system
Several sub-vertical monomictic and matrix-supported rhyolitic magmatic and hydrothermal breccia bodies, have been recognized within the felsic dome intrusion (Figs. 2 and 3). They consist of irregular bodies, about 100 to 250 m in vertical extent, and semi-oval to circular sections, 50 to 100 m in diameter. The matrix is composed of rhyolitic rock flour with intense alteration and disseminated sulfide minerals (Fig. 4a). The fragments are altered, irregular in shape, poorly sorted, and vary in size between 1 cm and several meters. In the centre of the ore deposit, the rhyolitic magmatic and hydrothermal breccias are intruded by late dioritic to granodioritic magmatic-hydrothermal breccias.


Fig. 2 Geological map of the Mantos Blancos ore deposit


Fig. 3 E-W profile of the Mantos Blancos ore deposit. For symbols, and location of profile see Fig. 2

## Bimodal stock and sill system

The rhyolite dome is intruded by a subvolcanic complex of porphyritic dioritic and granodioritic stocks and sills. At least five gently dipping sills of both rock types occur in the mine, varying in thickness between 10 and 50 m . The feeder relationship between the stocks and sills has been locally observed (Fig. 3). The granodiorite porphyry is composed of 10 to $30 \%$ phenocrysts of hornblende, plagioclase, quartz, and biotite, in a groundmass of quartz, feldspars, biotite, and hematite microlites. The diorite porphyry has 5 to $10 \%$ pyroxene and minor amphibole phenocrysts in a groundmass of fine-grained pyroxene, plagioclase, and magnetite. In both rock types, the porphyritic texture grades to aphanitic near the intrusive margins. The diorite porphyry has millimeter-size amygdules filled with quartz and quartz-sulfide. Mutual intrusive relationships between both granodioritic and dioritic rocks are common, and enclaves of one in the other have been frequently observed. The dioritic enclaves show convolute to flame-like contacts (Fig. 4b) with the host granodiorite, whereas, the granodioritic enclaves exhibit sharp or brecciated contacts with the surrounding diorite. Backveining between the two lithological types is also observed. Recent ${ }^{40} \mathrm{Ar}{ }^{\beta 9} \mathrm{Ar}$ data on amphibole provide ages of $142.18 \pm 1.01 \mathrm{Ma}$ for the granodiorite, and $141.36 \pm 0.52 \mathrm{Ma}$ for the diorite (Oliveros 2005).

Dioritic to granodioritic magmatic-hydrothermal breccia system

Two polymictic and matrix-supported pipe-like magmatichydrothermal breccias hosted within the rhyolitic dome, at the top of some dioritic and granodioritic stocks and spatially related with NS-trending faults, are recognized (Figs. 3 and $4 \mathrm{c}-\mathrm{e}$ ). The central and largest breccia body is crosscut by at least three metric-size sills; two dioritic and one granodioritic in composition. The breccias form nearvertical bodies, with a vertical extent of about 700 m , and diameters between 100 and 500 m . It is likely that these bodies did not reach the upper levels of the ore deposit, as
they were not observed and described in the earlier study by Chávez (1985). The upper part of the breccia pipes exhibit hydrothermal characteristics as evidenced by the presence of a matrix mainly composed of hydrothermal gangue and ore minerals. The breccia consists of altered angular and subrounded fragments of the rhyolitic dome and the granodioritic and dioritic porphyries. They are poorly sorted and range in size from 1 cm to 15 m . Downwards in the breccia bodies, magmatic features are progressively evident, with granodioritic fragments in an altered and mineralized dioritic matrix, as well as dioritic fragments in a granodioritic matrix (Fig. 4f).

## Mafic dyke swarm

Intruding all the rock units in Mantos Blancos deposit, partially altered late-ore dioritic dikes were emplaced. They are subvertical and have orientations preferentially NNE, and subordinate NS-NNW. The dikes are 1 to 12 m wide and represent about $15 \%$ of the total rock volume in the deposit. They exhibit porphyritic texture, composed of $10-$ $25 \%$ phenocrysts of altered plagioclase, amphibole, and minor pyroxene, in a very fine-grained groundmass of feldspar, amphibole, and minor biotite and magnetite. An ${ }^{40} \mathrm{Ar}{ }^{39}{ }^{9} \mathrm{Ar}$ date on amphibole from a late-mineral dike in the mine is $142.69 \pm 2.08 \mathrm{Ma}$ of age (Oliveros 2005).

## Hydrothermal alteration and mineralization

Two hydrothermal events have been recognized, based on the superimposition of alteration minerals and relationship between different stages of veinlets. The first event is represented by the rhyolitic magmatic-hydrothermal brecciation hosted by the rhyolitic dome. The second event, which represents the main stage of mineralization, is hosted mostly within the dioritic to granodioritic mag-matic-hydrothermal breccias, dioritic sills, and the rhyolitic dome, and may be genetically associated with the intrusion of dioritic and granodioritic stocks.

Fig. 4 Photographs of: a rhyolitic magmatic-hydrothermal breccia, $\mathbf{b}$ dioritic enclave within the granodiorite showing convolute contacts, $\mathbf{c}, \mathbf{d}$, and e dioritic to granodioritic mag-matic-hydrothermal breccias in which hydrothermal features dominate, $\mathbf{f}$ dioritic to granodioritic magmatic-hydrothermal breccia with dominating magmatic features, and $\mathbf{g}$ pebble dike


First hydrothermal event
The first hydrothermal event is characterized by the assemblage chalcopyrite, bornite, pyrite, quartz, and sericite. This assemblage occurs: 1) disseminated in the matrix of irregular and sub-vertical bodies of rhyolitic magmatichydrothermal breccias, 2) planar veinlets, 3) disseminated within the rhyolitic dome and in fragments of the hydrothermal breccias, and 4) as isolated crystals or as rim assemblages within and on quartz phenocrysts of the
rhyolitic dome. In the rhyolitic magmatic-hydrothermal breccias, chalcopyrite and bornite are the most abundant sulfides. Around these bodies the sulfides are chalcopyrite and pyrite. The phyllic veinlets contain the sulfide minerals as open space filling within fractures, and often display weak alteration halos of sericite and quartz. Due to the intense and widespread superimposition of the main (second) hydrothermal event, it was not possible to establish the extent and intensity of this first event. It probably extended to all rocks of the rhyolitic dome. An
${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age on sericite from this first hydrothermal event yields an age of $155.11 \pm 0.786 \mathrm{Ma}$ (Oliveros 2005).

## Second hydrothermal event

The main hydrothermal alteration and mineralization event at Mantos Blancos is centered on the dioritic to granodioritic magmatic-hydrothermal breccias and is considered syngenetic with both breccia formation and emplacement of the granodioritic and dioritic stocks and sills. The mineralized zone extends discontinuously for 3 km in an $\mathrm{E}-\mathrm{W}$ direction, has a width of up to 1 km and depth of 600 m . The hypogene mineralization occurs between the elevations of 720 and 450 m asl. (Fig. 3). Primary mineralization developed mainly within and around the magmatic-hydrothermal breccia pipes, yet the ore deposit exhibits a discontinuous lateral ore grade distribution. The highest Cu grades occur within the breccias with lateral zoning to progressively lower concentrations. This fact suggests that the magmatichydrothermal breccia pipes served as the feeder bodies of the main mineralization.

In the second hydrothermal event, the early alteration stage was potassic and propylitic, followed by sodic alteration. The potassic and propylitic mineral assemblages are centered on the dioritic to granodioritic magmatichydrothermal breccias, affecting all lithologies of the deposit. These alteration types developed pervasively, disseminated, filling amygdules within the dioritic sills, and as weak halos around flame-like veinlets that crosscut the first generation phyllic veinlets in the rhyolitic dome.

The potassic alteration is characterized by K-feldspar, quartz, tourmaline, biotite-chlorite, magnetite, chalcopyrite, digenite, and minor pyrite (Fig. 5). Relicts of K-


Fig. 5 Hypogene mineral assemblage of the hydrothermal events at the Mantos Blancos ore deposit
feldspar, tourmaline, and biotite are observed in most locations, suggesting that potassic alteration was initially widespread, but was subsequently overprinted and obliterated by later alteration stages. Dioritic and granodioritic sills, that contain amygdules filled with quartz, chlorite, digenite, chalcopyrite, and traces of K-feldspar and tourmaline, intruded the magmatic-hydrothermal breccias.

Propylitic alteration occurs extensively in the whole deposit, affecting all of the rocks (including sills and dikes), and overprinting and obliterating the potassic alteration assemblage. It occurs as disseminations and veinlets of quartz, chlorite, epidote, calcite, albite, sericite, hematite and minor chalcopyrite, galena, and pyrite. These minerals also fill amygdules within dioritic sills and dikes. Laterally, propylitic alteration consists of quartz, chlorite, epidote, and pyrite, forming a ring around the orebody at least 2 km wide. From elevations of 600 m to the upper part of the deposit, a swarm of $\mathrm{N} 25-30^{\circ} \mathrm{E}$ striking and subvertical pebble-dikes have been observed. These pebbledikes are $10-$ to $20-\mathrm{cm}$ thick and consist of rounded fragments of the rhyolitic dome, dioritic and granodioritic rocks, set in a matrix of quartz, epidote, calcite, galena, and pyrite (Fig. 4g).

Both potassic and propylitic alterations were followed by sodic alteration, containing albite (replacing feldspar), hematite, pyrite, chalcopyrite, and Ag-rich digenite, with minor amounts of quartz. This mineral assemblage is very extensive, centered on the magmatic and hydrothermal breccias, and occurs as disseminations, cavity fillings, and sharp veinlets. Sodic alteration and mineralization affected all lithological types between elevations of 500 m to the surface and spatially coinciding with the current commercial ore zone. Above the elevation of 500 m , the dioritic sills that intruded the magmatic-hydrothermal breccias exhibit intense stockwork with a sodic alteration mineral assemblage. As the syn-mineralization granodioritic and dioritic stocks and sills have been dated at $142.18 \pm 1.01$ and $141.36 \pm 0.518 \mathrm{Ma}$ (Oliveros 2005), respectively, and a lateore dike yields an age of $142.69 \pm 2.083$ (Oliveros 2005), the age of the main hydrothermal event is constrained between 141 and 142 Ma .

Supergene oxide mineralization has been mined, with only patches of atacamite, chrysocolla, and malachite remaining. This supergene mineralization was described in detail by Chávez (1985). Although he reported primary chalcocite (late within the hypogene assemblage), our data indicate the presence of only secondary chalcocite (Fig. 6). The secondary sulfides are mainly chalcocite (forming zones of high-grade copper mineralization centered over the magmatic--hydrothermal breccia bodies, with bornitedigenite), and weak layers of covellite, together with cuprite-native copper and tenorite.

## Fluid inclusion studies

Fluid inclusion studies were carried out on quartz crystals of the second hydrothermal event. Samples include quartz crystals from potassic, propylitic, and sodic veinlets, and

Fig. 6 Microphotographs of a digenite relict in chalcocite, $\mathbf{b}$ and $\mathbf{c}$ digenite with hematite flakes replaced by chalcocite, d chalcocite with inclusions of hematite flakes, e chalcopyrite replaced by covellite (blue), and f native copper in cuprite (red internal reflections in grey) with replacement rim of tenorite

from potassic and propylitic amygdules of the dioritic sills and stocks. A total of 23 samples were taken from the central part of the deposit (Fig. 7), from which 153 microthermometric measurements of primary inclusions were done. Vertical sampling extends to a depth of 850 m . Heating and freezing experiments were conducted on a Linkam THMS600 stage for homogenization temperatures $\left(T_{\mathrm{h}}\right)$ up to $450^{\circ} \mathrm{C}$ and on a Linkam TS1500 stage for $T_{\mathrm{h}}$ above $450^{\circ} \mathrm{C}$. The uncertainty for heating runs is about $\pm 2^{\circ} \mathrm{C}$ at $400^{\circ} \mathrm{C}$.

Three fluid inclusion types were recognized, following the classification scheme of Nash (1976): I (liquiddominant inclusions without halite daughters), II (vapordominant inclusions without halite daughters), and IIIb (vapor-dominant inclusions with halite daughters). All fluid inclusions types have mostly rounded shapes and ranged from 5 to $15 \mu \mathrm{~m}$. No evidence was observed for
either liquid $\mathrm{CO}_{2}$ or clathrate formation, freezing point depression measurements rule out the presence of significant $\mathrm{CO}_{2}$. Apparent salinities are reported in weight percent NaCl equivalent (wt\% eq.), based on the halite solubility equation for halite-saturated inclusions and on the final ice-melting temperature for halite-undersaturated inclusions (Bodnar and Vityk 1994). The fluid inclusion microthermometric data are presented in Table 1 and Fig. 8. The highest temperatures were measured in types II and IIIb inclusions trapped in quartz from veinlets of the potassic alteration assemblage within the matrix of the magmatic-hydrothermal breccia at elevations between 239 and 260 m . The type-II inclusions homogenize between 550 and $608^{\circ} \mathrm{C}$ and have salinities of 9.9 to $10.1 \mathrm{wt} \% \mathrm{NaCl}$ eq., whereas, the IIIb-type inclusions have $T_{\mathrm{h}}$ values between 530 and $590^{\circ} \mathrm{C}$ and salinities ranging from 52 to $74 \mathrm{wt} \% \mathrm{NaCl}$ eq. The coexistence of both types of


Fig. 7 N-S profile of the Mantos Blancos deposit showing the location samples used in the fluid inclusions study. For symbols, and location of profile, see Fig. 2

Table 1 Microthermometry data of fluid inclusions from the second hydrothermal event

| Sample | Elevation <br> (m.a.s.1.) | Size <br> ( $\mu \mathrm{m}$ ) | $\begin{aligned} & \text { Th (L-v) } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Th (Halite) $\left({ }^{\circ} \mathrm{C}\right)$ |  | $\begin{aligned} & \text { \%V } \\ & (\% \mathrm{in}) \end{aligned}$ | \% <br> Halite | Tm (ice) $\left({ }^{\circ} \mathrm{C}\right)$ | Salinity (wt\% <br> NaCl equiv) | Remarks | $\mathrm{N}^{\circ}$ of inclusions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q-1 | 239 | 5-8 | $601 \pm 7$ |  | $24 \pm 9$ | $76 \pm 9$ |  | $-6.5 \pm 0.5$ | $9.9 \pm 0.7$ | Veinlets of K-assemblage in MHB | 5 |
|  | 239 | 5-9 | $500 \pm 20$ | $580 \pm 10$ | $10 \pm 5$ | $30 \pm 4$ | $60 \pm 5$ |  | $71 \pm 3.0$ |  | 5 |
| Q-104 | 247 | 8-10 | $505 \pm 15$ |  | $20 \pm 5$ | $20 \pm 5$ |  | $-18.0 \pm 2$ | $19.4 \pm 3.0$ | Veinlets of K-assemblage in sill of dioritic porphyry | 9 |
| Q-1-1 | 260 | 5-10 | $564 \pm 14$ | $550 \pm 20$ | $23 \pm 8$ | $77 \pm 8$ |  | $-6.7 \pm 0.8$ | $10.1 \pm 1.0$ | Veinlets of K-assemblage in MHB | 5 |
|  | 260 | 5-10 | $490 \pm 10$ |  | $20 \pm 10$ | $20 \pm 10$ | $60 \pm 10$ |  | $62 \pm 10.0$ |  | 7 |
| Q-105 | 260 | 8-10 | $465 \pm 12$ |  | $19 \pm 6$ | $81 \pm 5$ |  | $-15.0 \pm 3.5$ | $18.5 \pm 3.0$ | Veinlets of K-assemblage in sill of dioritic porphyry | 5 |
| Q-2 | 684 | 5-10 | $390 \pm 12$ | $449 \pm 20$ | $11 \pm 4$ | $51 \pm 6$ | $38 \pm 4$ |  | $52.4 \pm 1.6$ | Veinlets of K-assemblage in MHB | 5 |
|  |  | 6-10 | $462 \pm 8$ |  | $15 \pm 10$ | $85 \pm 10$ |  | $-1.5 \pm 0.5$ | $2.5 \pm 0.8$ |  | 3 |
| Q-3 | 684 | 5-8 | $404 \pm 6$ | $464 \pm 6$ | $10 \pm 2$ | $50 \pm 10$ | $40 \pm 8$ |  | $53.5 \pm 0.5$ | Veinlets of K-assemblage in MHB | 3 |
|  |  | 10 | $455 \pm 6$ |  | $10 \pm 5$ | $90 \pm 5$ |  | $-2.0 \pm 1$ | $3.3 \pm 2.5$ |  | 2 |
| Q-100 | 720 | 5-10 | $413 \pm 13$ |  | $20 \pm 10$ | $80 \pm 10$ |  | $-19.4 \pm 1.4$ | $22.2 \pm 10$ | Amygdules filled by Kassemblage in dioritic sill | 5 |
| Q-101 | 720 | 10-15 | $380 \pm 15$ |  | $25 \pm 10$ | $75 \pm 10$ |  | $-19.4 \pm 1.4$ | $22.1 \pm 10$ | Amygdules filled by Kassemblage in dioritic sill | 5 |
| Q-4 | 696 | 8-10 | $302 \pm 16$ | $349 \pm 26$ | $15 \pm 6$ | $50 \pm 5$ | $35 \pm 8$ |  | $42.2 \pm 1.9$ | Veinlets of Albitic assemblage in matrix of MHB | 6 |
|  |  | 8-10 | $357 \pm 23$ |  | $10 \pm 6$ | $90 \pm 6$ |  | $9.9 \pm 0.9$ | $13.9 \pm 1.1$ |  | 5 |
| Q-5 | 696 | 8 | $349 \pm 20$ | $349 \pm 20$ | $6 \pm 5$ | $60 \pm 10$ | $35 \pm 5$ |  | $42.3 \pm 1.6$ | Veinlets of Albitic assemblage in MHB | 2 |
|  |  | 8-15 | $346 \pm 6$ |  | $9 \pm 3$ | $90 \pm 7$ |  | $-9.4 \pm 1.2$ | $13.4 \pm 1.4$ |  | 5 |
| Q-6 | 696 | $7-10$ | $362 \pm 8$ |  | $10 \pm 5$ | $90 \pm 5$ |  |  | $13.2 \pm 1.8$ | Veinlets of Albitic assemblage in MHB | 5 |
| Q-7 | 708 | 7-10 | $356 \pm 11$ |  | $8 \pm 2$ | $92 \pm 2$ |  | $-9.7 \pm 1.2$ | $14.0 \pm 1.4$ | Veinlets of Albitic assemblage in MHB | 5 |
| Q-8 | 720 | 8-10 | $376 \pm 25$ | $413 \pm 2$ | $10 \pm 4$ | $50 \pm 2$ | $40 \pm 6$ |  | $47.8 \pm 0.3$ | Veinlets of Albitic assemblage in MHB | 3 |
|  |  | 5-15 | $351 \pm 23$ |  | $10 \pm 5$ | $90 \pm 5$ |  | $-8.8 \pm 1.8$ | $12.6 \pm 2.2$ |  | 3 |
| Q-9 | 720 | 8 | 371 | 423 | $8 \pm 2$ | $50 \pm 4$ | $42 \pm 5$ |  | 48.7 | Veinlets of Albitic assemblage in MHB | 1 |
|  |  | 8-10 | $313 \pm 15$ |  | $11 \pm 7$ | $89 \pm 4$ |  | $-8.5 \pm 1.0$ | $12.3 \pm 1.3$ |  | 5 |
| Q-103 | 768 | 5-10 | $358 \pm 3$ |  | $75 \pm 10$ | $25 \pm 10$ |  | $-12.5 \pm 5.0$ | $15.3 \pm 2.5$ | Veinlets of K-assemblage in sill of dacitic porphyry | 6 |
| Q-10 | 720 | 8-10 | $301 \pm 1$ |  | $90 \pm 5$ | $10 \pm 5$ |  | $7.1 \pm 0.1$ | $10.6 \pm 1.0$ | Veinlets of Propylitic assemblage in sill of dioritic porphyry | 2 |
| CP-1-22 | 760 | 8-12 | $218 \pm 25$ |  | $65 \pm 8$ | $35 \pm 8$ |  | $-19 \pm 6.8$ | $20 \pm 2.4$ | Amygdules in dioritic porphyry filled by Propylitic assemblage | 11 |
| Q-11 | 780 | 8-15 | $269 \pm 11$ |  | $70 \pm 10$ | $30 \pm 10$ |  | $-6.6 \pm 0.6$ | $9.8 \pm 0.9$ | Veinlets of Propylitic assemblage in RPD | 4 |
| Q-12 | 780 | 7-12 | $249 \pm 5$ |  | $68 \pm 12$ | $32 \pm 12$ |  | $-7.9 \pm 1.3$ | $12.0 \pm 2.4$ | Veinlets of Propylitic assemblage in RPD | 5 |
| Q-102 | 792 | 8-10 | $335 \pm 5$ |  | $90 \pm 4$ | $10 \pm 6$ |  | $-10.5 \pm 0.5$ | $14.5 \pm 0.5$ | Veinlets of Propylitic assemblage in sill of dioritic porphyry | 2 |

Table 1 (continued)

| Sample | Elevation <br> (m.a.s.l.) | Size <br> ( $\mu \mathrm{m}$ ) | Th (L-v) <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Th (Halite) <br> $\left({ }^{\circ} \mathrm{C}\right)$ |  | $\begin{aligned} & \text { \%V } \\ & (\% \text { in) } \end{aligned}$ | \% <br> Halite | Tm (ice) $\left({ }^{\circ} \mathrm{C}\right)$ | Salinity (wt\% <br> NaCl equiv) | Remarks | $\mathrm{N}^{\circ}$ of inclusions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q-13 | 792 | 8-10 | $247 \pm 3$ |  | $70 \pm 5$ | $30 \pm 5$ |  | $-6.5 \pm 0.5$ | $9.8 \pm 0.7$ | Veinlets of Propylitic assemblage in RPD | 6 |
| CP-1-15 | 816 | 7-11 | $187 \pm 35$ |  | $65 \pm 10$ | $35 \pm 10$ |  | $-8.8 \pm 5.6$ | $12 \pm 5.1$ | Amygdules in dioritic porphyry filled by Propylitic assemblage | 6 |
| CP-1-22 | 816 | 6-9 | $318 \pm 15$ |  | $80 \pm 10$ | $20 \pm 10$ |  | $-10.1 \pm 1.3$ | $14.1 \pm 1.2$ | Veinlets of Propylitic assemblage in dioritic porphyry | 2 |

Th ( $L+v$ ) Liquid-Vapor homogenization temperature, Th (Halite) halite dissolution temperature, $T m$ (ice) melting temperature of ice, $\% L, V$, Halite abundance of phases at room conditions, MHB magmatic and hydrothermal breccia, $R P D$ rhyolitic porphyry dome
inclusions within the same growth zone of a quartz crystal, is considered as indicative of deposition from boiling fluids. In these brines, $T_{\mathrm{h}}$ (halite) values are at least $60^{\circ} \mathrm{C}$ greater than $T_{\mathrm{h}}(1-\mathrm{v})$ values in the same samples (Fig. 9). Fluid inclusion observations of samples from potassic alteration assemblages at an elevation of 684 m also display evidence of boiling: Type-IIIb inclusions have $T_{\mathrm{h}}$ values between 449 to $464^{\circ} \mathrm{C}$ and salinities between 52.4 and 53.5 NaCl eq., and co-exist with vapor-rich type-II inclusions (with $T_{\mathrm{h}}$ between 462 and $415^{\circ} \mathrm{C}$, and salinities between 2.5 and $3.3 \mathrm{wt} \% \mathrm{NaCl}$ eq.). Also in these brines, $T_{\mathrm{h}}$ (halite) values are at least $65^{\circ} \mathrm{C}$ greater than $T_{\mathrm{h}}(\mathrm{l}-\mathrm{v})$ values in the same samples. Quartz crystals from potassic alteration assemblage in amygdules and veinlets from sills in the diorite contain type I and II inclusions. In these samples, $T_{\mathrm{h}}$ values decrease systematically with an increase in elevation (from an average of $515^{\circ} \mathrm{C}$ at 360 m to $365^{\circ} \mathrm{C}$ at 720 m ). In contrast, salinities remain relatively constant (19-22 wt $\%$ NaCl eq.). Fluid inclusions associated with propylitic alteration assemblages have been measured in samples from elevations of 720 to 816 m . They correspond to type-I


Fig. 8 Homogenization temperature vs salinity of fluid inclusions
inclusions, in which $T_{\mathrm{h}}$ values vary between 340 and $150^{\circ} \mathrm{C}$ and salinities between 9 and $22 \mathrm{wt} \% \mathrm{NaCl}$ eq.

Fluid inclusions in quartz related to the sodic assemblage were difficult to measure due to the limited amounts of albite-bearing quartz veinlets. Fluid inclusions in quartz obtained from these veinlets in the matrix of the magmatichydrothermal breccia at elevations between 696 and 768 m , are mainly of types II and IIIb. Evidence of boiling has been recognized at elevations of 696 to 720 m asl, in which both types of inclusions coexist in growth zones of similar hydrothermal quartz crystals. The brines have $T_{\mathrm{h}}$ values between 349 and $423^{\circ} \mathrm{C}$ and salinities ranging between 42 and $48 \mathrm{wt} \% \mathrm{NaCl}$ eq., whereas, the vapor-rich-two phase inclusions have $T_{\mathrm{h}}$ values between 313 and $364^{\circ} \mathrm{C}$ and salinities between 13 and $14 \mathrm{wt} \% \mathrm{NaCl}$ eq. Brines in the


Fig. 9 Halite dissolution temperature versus liquid-vapor homogenization temperature of boiled fluid inclusion samples from potassic and sodic alteration
same sample exhibit halite dissolution temperatures greater than the vapor homogenization temperatures.

## Stable isotope studies

Sulfur
Seventeen sulfide samples from the second hydrothermal event were analyzed for $\delta^{34} \mathrm{~S}$ at the Scientific-Technical Services of the University of Barcelona. Sulfide samples were separated mechanically to obtain splits with $50-80 \mu \mathrm{~g}$ of sulfur. Between 100 and $300 \mu \mathrm{~g}$ of pure sulfide were mixed with $\mathrm{V}_{2} \mathrm{O}_{5}$ (1:1), homogenized and packed into high-purity tin cups. The sulfur isotopic composition was analyzed using a Continuous Flow-Isotope Ratio Mass Spectrometry (CF-EA-IRMS). Samples were combusted in an elemental analyzer (Carlo Erba EA 1108) connected to a Finnigan MAT Delta C gas mass spectrometer via a Finnigan MAT Conflo II interface. Results are expressed in the per mil notation relative to the international ViennaCanyon Diablo troilite (VCDT) standard. The reproducibility of measurements was $\pm 0.3 \%$. The $\delta^{34} \mathrm{~S}$ values of 11 samples of pyrite, five samples of chalcopyrite, and one sample of digenite are reported in Table 2 and Fig. 10. All samples were taken in the central part of the deposit, between elevations of 450 and 780 m asl. The analyzed sulfides exhibit $\delta^{34} \mathrm{~S}$ values ranging from -5 to 1.2 per mil, with a mean value of $-1.4 \%$ and a standard deviation of $1.8 \%$. Results are similar to those previously reported by Sasaki et al. (1984) and Vivallo and Henriquez (1998). Pyrite shows the widest sulfur isotope range in comparison to the Cu -sulfides, and the variation is independent of alteration types or host rock lithology (Fig. 10).

Carbon and oxygen
Eighteen calcite samples were analyzed for $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ at the stable isotope laboratory (LABISE) of the Department of Geology, Federal University of Pernambuco, Brazil. $\mathrm{CO}_{2}$ gas was extracted from micro-drilled powder, in a high-vacuum line after reaction with $100 \%$ orthophosphoric acid at $25^{\circ} \mathrm{C}$ for 1 day. $\mathrm{CO}_{2}$ released, after cryogenic cleaning, was analyzed in a double inlet, triple collector SIRA II mass spectrometer. Results are reported relative to PDB, in per mil notation. The uncertainties of the isotope measurements were better than $0.1 \%$ for carbon and $0.2 \%$ for oxygen, based on multiple analyses of an internal laboratory standard (BSC). Values of $\delta^{13} \mathrm{C}$ and $\delta^{18} \mathrm{O}$ of calcite samples from propylitic alteration stage (of the second hydrothermal mineralization event) are reported in Table 3 and Fig. 11. All samples were taken in the central part of the deposit, between elevations of 172 and 900 m asl. The carbon isotope values of calcites vary between -4.37 and $-6.71 \%$, whereas, the $\delta^{18} \mathrm{O}$ values fluctuate between 13.08 to $23.49 \%$.

## Discussion

Based on available radiometric ages and geological observations described in this study, the Mantos Blancos ore deposit was formed by two superimposed Upper Jurassic hydrothermal events. The older event occurred at $\sim 155 \mathrm{Ma}$, coeval with the rhyolitic magmatic-hydrothermal brecciation and phyllic alteration. The younger event represents the main hydrothermal mineralization ( $\sim 141-142 \mathrm{Ma}$ ) and is genetically related to dioritic and granodioritic stocks and sills and coeval magmatic-hydrothermal brecciation. Probably, both hydrothermal events contributed to extensive but irregularly distributed ore grades of hypogene mineraliza-

Table 2 Sulfur isotope of sulfides from the main hydrothermal event at the Mantos Blancos ore deposit
${ }^{\text {a }}$ Hydrothermal alteration stage associated with the analyzed sulfide
${ }^{\mathrm{b}}$ Host rock of the sulfide MHB Magmatic Hydrothermal Breccia

| Sample no. | Mineral | $\delta^{34} \mathrm{~S}_{\mathrm{CDT}}(\%)$ | Hydrothermal alteration $^{\mathrm{a}}$ | Lithology $^{\mathrm{b}}$ |
| :--- | :--- | :--- | :--- | :--- |
| M-25 | Pyrite | -2.0 | Propylitic | Granodiorite |
| CPM-54 | Pyrite | -1.9 | Potassic | Diorite |
| CP-122 | Pyrite | -2.6 | Sodic | Diorite |
| CPM-53 | Pyrite | -4.0 | Propylitic | Rhyolitic dome |
| M-3 | Pyrite | 1.2 | Propylitic | MHB |
| M-4-A | Pyrite | 0.7 | Propylitic | MHB |
| BC-708 | Pyrite | -0.1 | Potassic | MHB |
| P-2-1 | Pyrite | -0.3 | Potassic | MHB |
| C-684 | Pyrite | -1.1 | Potassic | MHB |
| N-684 | Pyrite | -1.2 | Potassic | MHB |
| M-24 | Pyrite | -5.0 | Propylitic | MHB |
| M-25 | Chalcopyrite | -2.1 | Propylitic | Granodiorite |
| CPM-54 | Chalcopyrite | -0.5 | Potassic | Diorite |
| CPM-54a | Chalcopyrite | -2.0 | Potassic | Diorite |
| CPM-53 | Chalcopyrite | -4.5 | Potassic | Rhyolitic dome |
| BC-708 | Chalcopyrite | -1.3 | Potassic | MHB |
| CPM-54a | Digenite | -3.2 | Potassic | Diorite |





Fig. $10 \delta^{34} \mathrm{~S}(\%)$ values of sulfides from the main hydrothermal event at the Mantos Blancos ore deposit (a). Diagrams $\mathbf{b}$ and $\mathbf{c}$ show the types of alteration and host rock, with which the sulfides are related
tion. High-ore-grade mineralization is restricted to the upper part of the magmatic-hydrothermal breccias from the second hydrothermal event. The radiometric ages for the two hydrothermal events reported by Oliveros (2005) agree with previous ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ (total gas in albite) and whole rock $\mathrm{Rb}-\mathrm{Sr}$ (errorchrons in strongly altered samples) radiometric ages (150-146 Ma; Munizaga et al. 1991; Tassinari et al. 1993).

The younger event is characterized by three types of alteration and mineralization: an early potassic, a propyl-

Table 3 C and O isotope analyses (\%) of calcites from the Mantos Blancos ore deposits

| Sample | ${ }^{18} \mathrm{O}_{\text {SMOW }}(\%)$ | ${ }^{18} \mathrm{O}_{\text {PDB }}(\%)$ | ${ }^{13} \mathrm{C}_{\text {PDB }}(\%)$ |
| :--- | :--- | :--- | :--- |
| $56-585$ | 14.98 | -15.40 | -6.16 |
| $56-590$ | 17.42 | -13.04 | -6.69 |
| VB-1 | 18.74 | -11.71 | -5.50 |
| $97-230$ | 23.49 | -7.14 | -6.58 |
| VB-2 | 17.60 | -12.86 | -5.36 |
| $06-268$ | 13.27 | -16.44 | -5.13 |
| $06-335$ | 15.87 | -14.54 | -6.27 |
| BC-1 | 13.91 | -16.44 | -5.13 |
| $33-200$ | 16.72 | -13.71 | -6.91 |
| $33-257$ | 20.81 | -9.75 | -5.72 |
| $33-288$ | 19.87 | -10.66 | -4.37 |
| 33-298 | 13.08 | -17.25 | -6.02 |
| DV-1 | 14.59 | -15.78 | -5.09 |
| 1-14B | 16.51 | -13.92 | -6017 |
| 696-41 | 13.88 | -16.47 | -6.17 |
| 1-14C | 16.68 | -13.75 | -5.42 |
| CPM1-21 | 16.85 | -13.60 | -4.75 |

itic, and a late sodic stage. The potassic and propylitic alteration stages occurred coeval with dioritic and granodioritic porphyry stock intrusions, magmatic--hydrothermal breccias and late sill and dike emplacements. The late sodic alteration that developed centered around the magmatic-hydrothermal breccias, associated with intense fracturing and brecciation (including in the sills) and the main mineral deposition. The ore grade, alteration, and the copper sulfide mineral zoning indicate that the magmatichydrothermal breccia bodies represent the feeders to the hydrothermal system. The hydrothermal activity, was followed by the intrusion of a dioritic dike swarm. An indication of local subsidence is the common occurrence of sills intruded by vertical dikes as part of the same magmatic event. Because the magmatic pressure must exceed the least main horizontal stress and the tensile strength of the rock cover to form discordant intrusions, these intrusive


Fig. $11 \delta^{13} \mathrm{C}(\%)$ vs $\delta^{18} \mathrm{O}(\%)$ diagram showing the distribution of calcites from the Mantos Blancos ore deposit. Fields and arrows after Taylor et al. (1967) and Keller and Hoefs (1995)
relationships between sills and dikes are an indication that sufficiently thick magmatic overburden was progressively formed to produce a change of the least principal stress from vertical to horizontal (Parada et al. 1997). As this silldike relationship has been observed at Mantos Blancos, it is suggested that the tectonic setting during mineralization corresponded to a local extensional regime, probably related to a transtensional faulting within the Atacama Fault System.

Evidence of boiling associated with potassic alteration has been found in samples up to an elevation of 684 m asl. At this elevation, fluid inclusions $T_{\mathrm{h}}$ values exceed $450^{\circ} \mathrm{C}$. At such temperatures, rocks in the hydrothermal system behave in a ductile manner: with strain rates smaller than $10^{-14} / \mathrm{s}$, rocks of dioritic or granodioritic compositions behave quasiplastically, making brittle fracturing difficult and allowing fluid pressure to approach lithostatic values (Fournier 1991, 1999). As a consequence, the magmatichydrothermal breccias most likely did not reach the paleosurface, and the hydrothermal system mostly formed at lithostatic pressure. The hydrothermal fluids within the magmatic-hydrothermal breccias evolved along a cooling trend, as indicated by the fluid inclusion data in quartz of the propylitic assemblage.

The emplacement of dioritic and granodioritic sills crosscutting the magmatic-hydrothermal breccias at different levels, sealed the hydrothermal system, overpressured the fluids, hydrofractured the rocks, and produced the sodic boiling. The thermodynamic evolution of brine into the field of gas+solid salt at $350-400^{\circ} \mathrm{C}$ (conditions under which sodic alteration associated boiling occurred), has important implications regarding the concentration of HCl that may be transported when and if steam escapes into the overlying rocks. Fournier and Thompson (1993) noted an abrupt increase in the concentration of $\mathrm{HCl}^{\circ}$ in steam when NaCl begins to precipitate at pressures below 300 bars. This increase occurs because hydrolysis reactions that produce $\mathrm{HCl}^{\circ}$ and NaOH by the reaction of NaCl with $\mathrm{H}_{2} \mathrm{O}$ become important only at pressures sufficiently low for halite (and probably also NaOH ) to precipitate (Fournier and Thompson 1993). In addition, an order of magnitude higher than $\mathrm{HCl}^{\circ}$ concentration is obtained at comparable pressures and temperatures when quartz is present. This occurs because quartz reacts with NaOH to form albite at the expense of K feldspar or plagioclase (Fournier and Thompson 1993). The limited amounts of quartz-bearing albite veinlets in the deposit support this model.

In addition, as fluids migrated away from the early heat source (the magmatic-hydrothermal breccias) and down a thermal gradient, K-feldspar was the stable alteration mineral, as reflected by potassic alteration. The reverse reaction operated when fluids migrated away from a second heat source (intrusion of sills), conditions under which the albite stability field expanded at the expense of K-feldspar (Hezarkhani et al. 1999; Simmons and Browne 2000). Both processes probably occurred at Mantos Blancos, in which the entire evolution points to a prograde (potassic and propylitic)-retrograde (sodic) hydrothermal
sequence. These results can be interpreted as boiling events and associated decompression occurring episodically due to fluid over-pressuring, hydrofracturing, and sharp changes from lithostatic to hydrostatic conditions.

The sulfur isotopic results from hypogene sulfides suggest a largely magmatic source for sulfide sulfur and indicate a co-genetic relationship for the analyzed sulfide minerals. $\mathrm{C}-\mathrm{O}$ isotopes in fresh calcite crystals reported in this paper suggest C of magmatic origin, probably of mantle provenance (Cartigny et al. 1998), and fractionation of O following the trend of low-temperature alteration caused by magmatic-hydrothermal fluids.

Acknowledgements This study was funded by a FONDEF (CONICYT, Chile), grant DO1-1012, awarded to the authors and the Mantos Blancos division of Anglo American Chile. Permission for publication was granted by the University of Chile, the Chilean Government, and AngloAmerican Chile. We thank the Mantos Blancos mine geology staff, especially to Jorge Pizarro, with whom we had the pleasure of working. Special acknowledgement to Jens Wittenbrink for his constructive comments to the manuscript. Finally, this paper was improved through the valuable reviews of Shoji Kojima, Robert King and Larry Meinert.

## References

Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for $\mathrm{H}_{2} \mathrm{O}-\mathrm{NaCl}$ fluid inclusions. In: De Vivo B, Frezzotty ML (eds) Fluid inclusion in minerals: methods and applications. VPI, Blackburg, Virginia, pp 117-130
Camus F (2003) Geología de los sistemas porfíricos en los Andes de Chile. SERNAGEOMIN, Chile, p 267
Cartigny P, Harris JW, Javoy M (1998) Eclogitic diamond formation at Jwaneng: no room for a recycled component. Science 280:1421-1424
Chávez W (1985) Geological setting and the nature and distribution of disseminated copper mineralization of the Mantos Blancos district, Antofagasta Province, Chile. Ph.D Thesis, University at California, Berkeley, USA, p 142
Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites-genesis and evolution. Unwin Hyman, London, pp 301-359
Dallmeyer RD, Brown M, Grocott J, Taylor GK, Treolar PJ (1996) Mesozoic magmatic and tectonic events within the Andean plate boundary zone, $26^{\circ}-27^{\circ} 30^{\prime}$ S, North Chile: Constraints from ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ mineral ages. J Geol 104:19-40
Espinoza S, Véliz H, Esquivel J, Arias J, Moraga A (1996) The cupriferous province of the Coastal Range, Northern Chile. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Econ Geol, Spec Publ 5:19-32
Fournier RO (1991) The transition from hydrostatic to greater than hydrostatic fluid pressure in present active continental hydrothermal systems in crystalline rock. Geophys Res Lett 18: 955-958
Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193-1212
Fournier RO, Thompson JM (1993) Composition of steam in the system NaCl-KCl-H2O-quartz at $600^{\circ} \mathrm{C}$. Geochim Cosmochim Acta 57:4365-4375
Gelcich S, Davis DW, Spooner ET (2004) Onset of Early Jurassic magmatism in northern Chile: precise $\mathrm{U}-\mathrm{Pb}$ zircon ages for the La Negra Formation and the Flamenco Pluton in the Coastal Cordillera of Chañaral. Proc. IAVCEI General Assembly, Pucón, Chile (Electronic version)

Hezarkhani A, Williams-Jones AE, Gammons CH (1999) Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Miner Depos 34: 770-783
Keller J, Hoefs J (1995) Stable isotope characteristics of recent carbonatites. In: Bell K, Keller J (eds) Carbonatite volcanism. Proc Volc 4:113-123
Kramer W, Siebel W, Romer R L, Haase G, Zimmer M, Ehrlichmann R (2005) Geochemical and isotopic characteristics and evolution of the Jurassic volcanic arc between Arica ( $18^{\circ}$ $30^{\prime} \mathrm{S}$ ) and Tocopilla ( $22^{\circ} \mathrm{S}$ ), North Chilean coastal range. Chemie der Erde. Geochemistry 65:47-78
Maksaev V, Zentilli M (2002) Chilean stratabound $\mathrm{Cu}-(\mathrm{Ag})$ deposits: an overview. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective 2 . PCG, pp 185-205
Munizaga F, Ramírez R, Drake R, Tassinari C, Zentilli M (1991) Nuevos antecedentes geocronológicos del yacimiento Manos Blancos, Región de Antofagasta, Chile. In: Proceedings of the 6th congress on geology, vol. 1. Chile, pp 221-224
Nash JT (1976) Fluid-inclusion petrology. Data from porphyry copper deposits and applications to exploration. USGS Prof Paper 907D, p 16
Oliveros V (2005) Les formations magmatiques jurassiques et mineralisation du nord Chili, origine, mise en place, alteration, metamorphisme: etude geochronologique et geochemie. Ph.D Thesis. Universite de Nice-Sophia Antipolis, France, p 285
Palacios C (1984) Considerations about the plate tectonic models, volcanism, and continental crust in the southern part of the Central Andes. Tectonophysics 108:205-214
Palacios C (1990) Geology of the Buena Esperanza copper-silver deposit, northern Chile. In: Fontbote L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Berlin Heidelberg New York, pp 313-318
Parada M, Palacios C, Lahsen A (1997) Jurassic extensional tectono-magmatism and associated mineralization of the El Faldeo polymetallic district, Chilean Patagonia: geochemical and isotopic evidence of crustal contribution. Miner Depos 32:547-554

Pichowiak S, Buchelt M, Damm KW (1990) Magmatic activity and tectonic setting of early stages of Andean cycle in northern Chile. Geol Soc Am(Specl Paper) 241:127-144
Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Lett 91:271-285
Sasaki A, Ulriksen C, Sato K, Ishihara S (1984) Sulphur isotope reconnaissance of porphyry copper and Manto type deposits in Chile and the Philippines. Bull Geol Surv Jpn 35:615-622
Scheuber E, Gonzalez G (1999) Tectonics of the Jurassic-Early Cretaceous magmatic arc of the North Chilean Coastal Cordillera $\left(22-26^{\circ} \mathrm{S}\right)$ : a story of crustal deformation along a convergent plate boundary. Tectonics 18:895-910
Simmons SF, Browne PR (2000) Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Econ Geol 95:971-1000
Tassinari C, Munizaga F, Ramírez R (1993) Edad y geoquímica isotópica $\mathrm{Rb}-\mathrm{Sr}$ del yacimiento de cobre Mantos Blancos: relación temporal con el magmatismo jurásico. Rev Geol Chile 20:193-205
Taylor HP, Frechen J, Degens ET (1967) Oxygen carbon isotope studies of carbonatites from the Laachersee district West Germany and Alno district, Sweden. Geochim Cosmochim Acta 31:407-430
Vivallo W, Henriquez F (1998) Genesis comun de los yacimientos estratoligados y vetiformes de cobre del Jurásico Medio a Superior en la Cordillera de la Costa, Region de Antofagasta, Chile. Rev Geol Chile 25:199-228
Wolf FB, Fontboté L, Amstutz GC (1990) The Susana copper (-silver) deposit in northern Chile, hydrothermal mineralization associated with a Jurassic volcanic arc. In: Fontbote L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Berlin Heidelberg New York, pp 319-338


[^0]:    Editorial handling: R. King
    L. E. Ramírez ( $\triangle$ ) C. Palacios • B. Townley • M. A. Parada

    Departamento de Geología, Universidad de Chile,
    P.O. Box 13518-21, Santiago, Chile
    e-mail: lramirez@cec.uchile.cl
    Tel.: +56-2-9780233
    Fax: +56-2-6963050
    A. N. Sial

    NEG LABISE Department of Geology,
    Federal University of Pernambuco,
    C. P. 7852,

    Recife-PE, 50.732-970, Brazil

    ## J. L. Fernandez-Turiel

    Institute of Earth Sciences J. Almera, CSIC,
    Sole i Sabaris,
    08028, Barcelona, Spain
    D. Gimeno • M. Garcia-Valles

    Faculty of Geology, University of Barcelona, Marti i Franques, 08028, Barcelona, Spain

    ## B. Lehmann

    Institut für Mineralogie und Mineralische Rohstoffe,
    Technische Universität Clausthal,
    Adolph Roemer Strasse 2 A,
    38678 Clausthal-Zellerfeld, Germany

