
Load Balancing Distributed Inverted Files: Query Ranking

Carlos Gomez-Pantoja Mauricio Marin
Yahoo! Research, Santiago

University of Chile

Abstract

Search engines use inverted files as index data structures
to speed up the solution of user queries. The index is dis-
tributed on a set of processors forming a cluster of com-
puters and queries are received by a broker machine and
scheduled for solution in the cluster. The broker must use a
scheduling algorithm to assign queries to processors since
the computations associated with the ranking of documents
that form part of the solutions to queries can take a sig-
nificant fraction of the total running time. The cost of this
task can be highly variable and depends on the particular
user preferences for words when formulating queries in a
given period of time. Thus the scheduling algorithm must
be able to cope efficiently with a highly dynamic and very
large amount of jobs being assigned in an on-line manner
to the processors. In this paper we evaluate a number of
scheduling algorithms proposed in the literature in the con-
text of scheduling queries on a search engine.

1 Introduction

Search engines account for about 5% of the time spent by
hundreds of millions of users on the Web. They are systems
devised to support thousands of queries per second which
are executed on billions of Web documents. Query response
times are kept small by properly indexing data and distribut-
ing them on thousands of Linux boxes forming clusters of
computers. To this end, the algorithmic design and imple-
mentation of current Web Search Engines is based on the
asynchronous message passing approach to parallel com-
puting in which each newly arriving query is serviced by
an independent thread in a classical multiple masters/slaves
scheme.

On the other hand, the amount of work demanded by
the solution of queries follows the so-called Zipf’s law
which in practice means that some queries, in particular
the ones composed of most popular terms, can demand
large amounts of processing times whereas others contain-
ing less frequent terms can require a comparatively much

smaller processing time. Thus under this asynchronous ap-
proach and hardware latencies a given query can easily re-
strain smaller queries by consuming comparatively larger
amounts of resources in processor cycles, disk and inter-
processors network bandwidths.

This makes a case for proper consideration of the way in
which the operations related to the solution of queries are
scheduled onto the cluster processors. We have found that a
careful design of the major steps involved in the processing
of queries can allow its decomposition in such a way that we
can let every query share the cluster resources evenly in a
round-robin manner. We have observed that this scheme can
be particularly useful in preventing unstable behavior under
unpredictable variations in the query traffic arriving to the
search engine. We implement this round-robin scheme on
top of the bulk-synchronous model of parallel computing
[19] though a semi-synchronous MPI approach is also fea-
sible with similar performance.

In particular, we have observed for the standard asyn-
chronous method of query processing that sudden peaks in
the query traffic can be very detrimental to overall perfor-
mance due to the Zipf’s law distribution of the workload per
query. We have also observed that the round-robin method
of query processing solves this problem efficiently and the
reason comes from the fact that each query is granted an
equally sized fraction of the resources. However, in the
Sync mode and for low traffic of queries it is not efficient to
barrier synchronize processors and pack together messages
for just a few queries being processed into the cluster as
required in the bulk-synchronous model [19].

Thus in [17] we proposed a method to allow the search
engine to automatically switch between the Async and Sync
modes of operation. In the Async mode each query is ser-
viced by a different thread which in turn send messages to
threads located in other processors in order to gather the re-
quired information to produce the respective answer. In the
Sync mode the number of threads is reduced drastically and
query processing is performed in batches. In this case we
decompose the solution of queries in iterations and assign to
each query a similar amount of resources in each iteration.

In [18] we proposed a method to schedule query process-

ing under a search engine operating in the Sync mode. In
this paper we extend those results for the case of a search
engines operating in the Async mode. A reasonable conjec-
ture is that the bulk-synchronous method presented in [18]
to predict running time and schedule queries can also be
applied to the Async mode. However we have not studied
it in detail so far. Here the underlying assumption is that
the model can also predict fairly well the average work per-
formed by the Async machine. Nevertheless, as queries in
the Async mode can be seen as independent jobs, namely
they do not interfere each other in terms of resource com-
petition in a significant manner under low query traffic, in
this paper we adopt a more standard approach by studying
the comparative performance of a number of scheduling al-
gorithms by assuming that queries are jobs to be placed in
a set of machines. Namely we ignore the effect of commu-
nication and resource competition arising under high traffic
of queries.

Search engines use inverted files as index data struc-
tures to speed-up the processing of queries. An inverted
file is composed of a vocabulary table and a set of posting
lists. The vocabulary table contains the set of relevant terms
found in the text collection. Each of these terms is associ-
ated with a posting list which contains the document iden-
tifiers where the term appears in the collection along with
additional data used for ranking purposes. To solve a query,
it is necessary to get the set of documents associated with
the query terms and then perform a ranking of these docu-
ments in order to select the top K documents as the query
answer.

The amount of work required to solve a query is propor-
tional to the sum of the lengths of the posting lists associ-
ated with the respective terms. Also queries are received
by a broker machine which is in charge of routing them to
the cluster processors. Thus the broker can roughly pre-
dict the running time of queries by using the length of the
posting lists. We use this feature to let the broker sched-
ule the queries onto the cluster processors. We also ignore
communication costs since in our actual implementations of
inverted files running on cluster of computers, we have ob-
served that they are much less relevant with respect to the
cost of query ranking. Thus in this paper we focus on algo-
rithms devised to schedule ranking of queries efficiently.

2 Experiments

The results were obtained using a 12GB sample of the
Chilean Web taken from the www.todocl.cl search engine.
Queries were selected at random from a set of 250,000
queries taken from the todocl log. The experiments were
performed on a cluster with dual processors (2.8 GHz). We
used BSP, MPI and PVM realizations of the distributed in-
verted files. The scheduling algorithms were executed to

generate the queries to be injected in each processor during
the runs.

To evaluate the performance of the different scheduling
algorithms we have used a set of metrics which we define
in the following.

• Average Response Time (ART), is the average time
elapsed between the query arrival and its departure
from the search engine.

• Makespan (MS), is maximum load observed in any
processor at a given instant of time.

• Current Makespan/Optimum (MAO), which is MS di-
vided by the optimal job assignment (the average load
considering all machines).

• Load Balancing (LB), is the MS divided by the ma-
chine with the least load.

We evaluated the performance of a number of so-called
on-line scheduling algorithms since these algorithms are de-
vised to process a stream of queries arriving, in our case, to
the broker machine. That is, the decision of where to place
a given query is taken at the time the queries arrives to the
broker independently of the queries to arrive in the future.
The algorithms we evaluated are (A) Albers [1], (B) Avidor
et. al [2], (C) Bartal et. al [3], (D) Galambos et. al [10],
(E) Graham [12], (F) Gomez [11], (G) Karger et. al [14],
(H) Leischer et. al [9], and (I) Round-robin, that is, circular
assignment of queries to processors.

We run the scheduling algorithms assuming different
number P of processors (machines), namely P= 8, 32, 128,
and 512.

In table 2 we show results for the average response time
(ms) for the different algorithms and number P of proces-
sors. The results show that the algorithms by Albers (A),
Graham (E) and Gomez (F) present the smaller response
times respectively.

The figure 1 shows results for the efficiency metric MAO
where values closer to 1 indicate better performance. For
large number of processor the Graham (E) strategy presents
a better and more stable performance than the other two
strategies. This metric tell us which strategies are best
suited to improve the overall throughput of the query pro-
cessing. The load balance metric (LB) shows similar con-
clusions in figure 2. Namely the Graham algorithm keeps a
better load balance than the others with the advantage that
the response time is still competitive (about 20%). A key
issue here is that the Albers’ algorithm requires the manual
setting of operational parameters whereas Graham’s algo-
rithm does not require any tuning.

We also for the Sync search engine in [18] we evaluated
scheduling algorithms which are dynamic and static ones
[13, 16, 5, 8, 6, 12]. We reproduce here the main results.

Algorithm P=8 32 128 512
A 161,2 41,8 10,2 2,4
B 198,4 57,2 13,0 3,4
C 242,0 63,1 16,9 3,9
D 228,0 52,6 13,1 3,2
E 198,9 50,5 12,9 3,0
F 198,2 50,6 13,2 3,0
G 382,7 95,0 24,4 5,9
H 235,5 62,5 15,4 3,8
I 200.1 52.8 14.0 3.2

Table 1. Results for the average response
time per query ranking

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50000 100000 150000 200000 250000

M
A

O

Tasks

MAO on 32 Processors

G

H
CI A

B D
F,E

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50000 100000 150000 200000 250000

M
A

O

Tasks

MAO on 512 Processors

G

C
H

I

A
B

D,E
F

Figure 1. The MAO metric using 32 and 512
processors respectively.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50000 100000 150000 200000 250000

L
B

Tasks

LB on 32 Processors

D

H
CA,B

F,E
I

 0

 1

 2

 3

 4

 5

 6

 7

 0 50000 100000 150000 200000 250000

L
B

Tasks

LB on 512 Processors

D

H

I

CA,B
F,E

Figure 2. Performance for the Load Balance
metric for 32 and 512 processors respec-
tively.

 100

 150

 200

 250

 300

 350

A8A7A6A5A4A3A2A1 A8A7A6A5A4A3A2A1

R
un

ni
ng

 T
im

e
(s

ec
)

Scheduling Algorithms

q= 8 q= 32

4 Procs
8 Procs

16 Procs
32 Procs

Figure 3. Total running time for 10,000
queries per processor using small queries
under high and low traffic of queries.

Notice that in some cases we even gave them the advantage
of exploring the complete query log used in our experiment
in order to formulate a schedule of the queries. In others
we allowed them to take batches of q P queries to make the
scheduling where q indicates the query traffic intensity. The
algorithms evaluated are the following: (A1) Round-robin,
namely distribute circularly the queries onto the processors
(labeled I in the Async experiments), (A2) Graham algo-
rithm (least loaded processor, labeled E in the Async ex-
periments), (A3) Gomez algorithm (labeled F in the Async
experiments, (A4) Optimal limit algorithm considering in-
formation in all processors, (A5) LPT (longest processing
time) [7], (A6) FFD (first-fit decreasing) [4, 13, 15], (A7)
BFD (best-fit decreasing) [4, 13, 15], and (A8) Alder’s al-
gorithm [1].

The following figures show running times for the bulk-
synchronous realizations of distributed inverted files.

The figure 3 shows that the strategies A1, A2, A5, A6
and A7 achieve similar performance. A3 and A4 show
poor performance. In most cases queries contain one or
two terms. To see if the same holds for more terms per
query we artificially increased the number of terms by us-
ing composite queries obtained by packing together several
queries selected uniformly at random from the query log to
achieve an average of 9 terms per query. This can represent
a case in which queries are expanded by the search engine
to include related terms such as synonyms. The results are
presented in figures 4 which also shows that A1, A2, A5, A6
and A7 achieve similar performance. Among all the algo-
rithms considered, A1 is the simplest to implement and its
efficiency is outstanding. However, its performance in the
Async case is not satisfactory, then we recommend using

 200

 300

 400

 500

 600

 700

 800

A8A7A6A5A4A3A2A1 A8A7A6A5A4A3A2A1

R
un

ni
ng

 T
im

e
(s

ec
)

Scheduling Algorithms

q= 8 q= 32

4 Procs
8 Procs

16 Procs
32 Procs

Figure 4. Total running time for 10,000
queries per processor using large queries
under high and low traffic of queries.

the Graham algorithm, namely E or A2.

3 Concluding remarks

We have presented an empirical evaluation of a num-
ber of general purpose job scheduling algorithms that can
be used in the context of query processing in search en-
gines. The most important feature of this application is that
scheduling has to be done in a on-line manner as queries ar-
rive to the broker machine. Another crucial issue is that the
algorithm must be very efficient to avoid the broker become
a bottleneck. Both in (standard) asynchronous search en-
gines and synchronous search engines the classic Graham’s
algorithm happens to be a good choice for this application
domain, both in response time of individual queries and
overall query throughput of the search engine. This algo-
rithm works well both in the asynchronous and synchronous
modes of operation of the search engine.

The Graham’s algorithm is extremely simple and fast,
it just assigns the query ranking to the processor with the
least load at the time instant in which the query is sent to
processing onto the cluster processors. The broker can keep
a table with the length of the posting lists associated with
the query terms and use this as a measure of the amount of
work required to process the query. In addition, the broker
can keep a priority queue organized by the amount of work
(posting lists lengths) assigned to each processor.

Acknowledgment: Partially funded by Millennium Nu-
cleus Center for Web Research, Grant P04-067-F, Mide-
plan, Chile.

References

[1] Susanne Albers. Better bounds for online scheduling.
SIAM Journal on Computing, 29(2):459–473, 1999.

[2] Adi Avidor, Yossi Azar, and Jiri Sgall. Ancient and
new algorithms for load balancing in the p norm. Al-
gorithmica, 29(3):422–441, 2001.

[3] Yair Bartal, Amos Fiat, Howard Karloff, and Rakesh
Vohra. New algorithms for an ancient scheduling
problem. J. Comput. Syst. Sci., 51(3):359–366, 1995.

[4] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. Mc-
Geoch, and L. A. McGeoch. Some unexpected ex-
pected behavior results for bin packing. In STOC ’84:
Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 279–288, New York,
NY, USA, 1984. ACM.

[5] Jon Louis Bentley, David S. Johnson, Frank Thomson
Leighton, Catherine C. McGeoch, and Lyle A. Mc-
Geoch. Some unexpected expected behavior results
for bin packing. In STOC, pages 279–288, 1984.

[6] Onno J. Boxma. A probabilistic analysis of the lpt
scheduling rule. In Performance, pages 475–490,
1984.

[7] Onno J. Boxma. A probabilistic analysis of the lpt
scheduling rule. In Performance ’84: Proceedings of
the Tenth International Symposium on Computer Per-
formance Modelling, Measurement and Evaluation,
pages 475–490, Amsterdam, The Netherlands, The
Netherlands, 1985. North-Holland Publishing Co.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation algorithms (ed. D. Hochbaum), chap-
ter Approximation algorithms for bin packing - a sur-
vey. PWS, 1997.

[9] Rudolf Fleischer and Michaela Wahl. Online schedul-
ing revisited. In European Symposium on Algorithms,
pages 202–210, 2000.

[10] Gábor Galambos and Gerhard J. Woeginger. An on-
line scheduling heuristic with better worst case ra-
tio than graham’s list scheduling. SIAM J. Comput.,
22(2):349–355, 1993.

[11] Carlos Gómez. Gestión de brokers en bases de datos
paralelas y distribuidas. Master’s thesis, Universidad
de Santiago de Chile, November 2004.

[12] Ronald L. Graham. Bounds on multiprocessing tim-
ing anomalies. SIAM Journal of Applied Mathematics,
17(2):416–429, 1969.

[13] David S. Johnson, Alan J. Demers, Jeffrey D. Ullman,
M. R. Garey, and Ronald L. Graham. Worst-case per-
formance bounds for simple one-dimensional packing
algorithms. SIAM J. Comput., 3(4):299–325, 1974.

[14] David R. Karger, Steven J. Phillips, and Eric Torng. A
better algorithm for an ancient scheduling problem. J.
Algorithms, 20(2):400–430, 1996.

[15] F T Leighton and P Shor. Tight bounds for minimax
grid matching, with applications to the average case
analysis of algorithms. In STOC ’86: Proceedings of
the eighteenth annual ACM symposium on Theory of
computing, pages 91–103, New York, NY, USA, 1986.
ACM.

[16] Frank Thomson Leighton and Peter W. Shor. Tight
bounds for minimax grid matching, with applications
to the average case analysis of algorithms. In STOC,
pages 91–103, 1986.

[17] M. Marin and V. Gil-Costa. (Sync|Async)+ MPI
Search Engines. In PVM/MPI, pages 117–124, Oct.
2007. Lecture Notes in Computer Science 4757.

[18] Mauricio Marin and Carlos Gomez. Load balancing
distributed inverted files. In WIDM ’07: Proceedings
of the 9th annual ACM international workshop on Web
information and data management, pages 57–64, New
York, NY, USA, 2007. ACM.

[19] L.G. Valiant. A bridging model for parallel computa-
tion. Comm. ACM, 33:103–111, Aug. 1990.

