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Abstract We give a necessary and sufficient condition for a difference of convex
(DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our
criterion relies on the intersection of the ε-subdifferentials of the involved functions.

Keywords DC functions · Lipschitz continuity · Integration formulas ·
ε-subdifferential

1 Introduction

Classical integration formulas [1, 2] have been first established in the Banach spaces
setting for proper lower semicontinuous (lsc, for short) convex functions using the
usual Fenchel subdifferential. These results have been extended outside the Banach
space [3, 4] and the non-convex settings [5] by using the approximate (epsilon) sub-
differential mapping.

In this paper, we exploit an idea, recently used in [6], to establish several char-
acterizations for the Lipschitz character of the difference of convex (DC, for short)
functions. As a consequence, if the Lipschitz constant is equal to 0, then we obtain
an integration formula guaranteeing the coincidence of the involved functions up to
an additive constant. The main result is presented in Theorem 2.1 in a slightly more

A. Hantoute
Centro de Modelamiento Matemático (CMM), Universidad de Chile, Avda Blanco Encalada 2120,
Piso 7, Santiago, Chile
e-mail: ahantoute@dim.uchile.cl

J.E. Martínez-Legaz (�)
Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona, 08193
Bellaterra, Spain
e-mail: juanenrique.martinez.legaz@uab.cat

mailto:ahantoute@dim.uchile.cl
mailto:juanenrique.martinez.legaz@uab.cat


674 J Optim Theory Appl (2013) 159:673–680

general form, valid in the locally convex spaces setting, which characterizes the dom-
ination of the variations of DC functions by means of a convex continuous functions.
The desired integration formula is obtained in Theorem 2.2.

2 The Main Result

In this paper, we work with a (Hausdorff) real locally convex topological vec-
tor space X, whose dual is denoted by X∗. The duality product is denoted by
〈·, ·〉 : X × X∗ −→ R, and the zero vector (in X and X∗) by θ . Given an ex-
tended real-valued function f : X → R ∪ {+∞} and a point x in the domain of
f,domf := {x ∈ X : f (x) < +∞}, the Fenchel subdifferential of f at x is defined
as

∂f (x) := {
x∗ ∈ X∗ : f (y) − f (x) ≥ 〈

y − x, x∗〉 for all y ∈ X
}
.

For ε > 0, the ε-subdifferential of f at x is given by

∂εf (x) := {
x∗ ∈ X∗ : f (y) − f (x) ≥ 〈

y − x, x∗〉 − ε for all y ∈ X
}
.

The desired results providing the characterization of Lipschitz DC functions will be
given in Theorem 2.2, which is a consequence of the following general Theorem.
Hereafter f,g : X −→ R ∪ {+∞} are two given functions with a common domain

D := f −1(R) = g−1(R),

assumed nonempty and convex.

Theorem 2.1 Let h : X −→ R be a given continuous convex function such that
h(θ) = 0. Then, the following statements are equivalent:

(i) f and g are convex, lsc on D, and satisfy

f (x) − g(x) ≤ f (y) − g(y) + h(x − y) for all x, y ∈ D.

(ii) For each x ∈ D

∅ �= ∂εf (x) ⊂ ∂εg(x) + ∂εh(θ) for all ε > 0.

(iii) For each x ∈ D there exists δ > 0 such that

∅ �= ∂εf (x) ⊂ ∂εg(x) + ∂εh(θ) for all ε ∈ ]0, δ[.
(iv) For each x ∈ D

∂εf (x) ∩ (
∂εg(x) + ∂εh(θ)

) �= ∅ for all ε > 0.

(v) For each x ∈ D there exists δ > 0 such that

∂εf (x) ∩ (
∂εg(x) + ∂εh(θ)

) �= ∅ for all ε ∈ ]0, δ[.
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Proof (i) =⇒ (ii). Since f is proper (domf �= ∅), convex and lsc on D, for any given
ε > 0 the ε-subdifferential operator ∂εf is nonempty on D [7, Proposition 2.4.4(iii)].
For x ∈ D, we define the function g̃ : X −→ R∪{+∞} as

g̃ := g + f (x) − g(x)

so that by (i) the inequality f ≤ g̃ + h(· − x) holds, as well as

f (x) = g̃(x) + h(θ) = g̃(x).

Note that cl g̃ = clg + f (x) − g(x), where “cl” refers to the corresponding lsc en-
velope. Hence, as g is lsc on D, cl g̃ coincides with g + f (x) − g(x) on D, which
implies that it is proper. Therefore, since [8, Lemma 15]

cl
(
g̃ + h(· − x)

) = cl g̃ + h(· − x) = clg + h(· − x) + f (x) − g(x)

and ∂δ(cl g̃)(x) = ∂δg̃(x) = ∂δg(x) (for all δ > 0), by appealing to the sum rule of the
ε-subdifferential (e.g., [7]) we get

∂εf (x) ⊂
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1(cl g̃)(x) + ∂ε2h(θ)

)

=
⋃

ε1,ε2≥0
ε1+ε2=ε

(
∂ε1g(x) + ∂ε2h(θ)

) ⊂ ∂εg(x) + ∂εh(θ);

showing that (ii) holds.
The implications (ii) =⇒ (iii) =⇒ (v) and (ii) =⇒ (iv) =⇒ (v) are obvious.
(v) =⇒ (i). We fix x, y ∈ D and take an arbitrary number ε > 0. For m = 1,2, . . .

we denote

xm,i := x + i

m
(y − x) for i = 0,1, . . . ,m.

Then, by invoking the current assumption (v) for each i and m, there exists some
γm,i ∈ ]0,m−1[ such that

∂m−1γ εf (xm,i) ∩ [
∂m−1γ εg(xm,i) + ∂m−1γ εh(θ)

] �= ∅ for all γ ∈ ]0, γm,i[.
Set

γm := min
i∈{1,...,m}γm,i,

so that γm > 0, and choose u∗
m,i ∈ ∂m−1γmεf (xm,i), v∗

m,i ∈ ∂m−1γmεg(xm,i) and w∗
m,i ∈

∂m−1γ εh(θ) such that u∗
m,i = v∗

m,i + w∗
m,i for i = 1, . . . ,m − 1. In this way, if u∗ ∈

∂εf (x) and v∗ ∈ ∂εg(y) are given, we write

f (xm,1) − f (x) ≥ 1

m

〈
y − x,u∗〉 − ε

f (xm,i+1) − f (xm,i) ≥ 1

m

〈
y − x,u∗

m,i

〉 − m−1γmε (i = 1, . . . ,m − 1)
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g(xm,i−1) − g(xm,i) ≥ − 1

m

〈
y − x, v∗

m,i

〉 − m−1γmε (i = 1, . . . ,m − 1)

g(xm,m−1) − g(y) ≥ − 1

m

〈
y − x, v∗〉 − ε.

Adding up these inequalities and using the facts that xm,m = y and xm,0 = x, together
with u∗

m,i = v∗
m,i + w∗

m,i , we obtain

f (y) − f (x) + g(x) − g(y) ≥ 1

m

〈
y − x,u∗ − v∗〉 + 1

m

m−1∑

i=1

〈
y − x,w∗

m,i

〉

− 2(m − 1)m−1γmε − 2ε.

Thus, since w∗
m,i ∈ ∂m−1γ εh(θ), we deduce that

f (y) − f (x) + g(x) − g(y) ≥ 1

m

〈
y − x,u∗ − v∗〉 − m − 1

m
h(x − y)

− 2(m − 1)m−1γmε − 2ε,

which gives us, as m goes to ∞ (recall that 0 < γm ≤ m−1),

f (y) − f (x) + g(x) − g(y) ≥ −h(x − y) − 2ε.

Hence, by letting ε go to 0 we get

f (x) − g(x) ≤ f (y) − g(y) + h(x − y);
that is, (i) follows. �

The particular case h ≡ 0 in Theorem 2.1 yields a new integration result, which
relies on the intersection of the ε-subdifferentials of the nominal functions. We will
denote by fD and gD the restrictions of f and g to D, respectively.

Corollary 2.1 (Cf. [9, Corollary 2.5]) The following statements are equivalent:

(i) f and g are convex, lsc on D, and fD − gD is constant.
(ii) For each x ∈ D

∅ �= ∂εf (x) ⊂ ∂εg(x) for all ε > 0.

(iii) For each x ∈ D there exists δ > 0 such that

∅ �= ∂εf (x) ⊂ ∂εg(x) for all ε ∈ ]0, δ[.
(iv) For each x ∈ D

∂εf (x) ∩ ∂εg(x) �= ∅ for all ε > 0.

(v) For each x ∈ D there exists δ > 0 such that

∂εf (x) ∩ ∂εg(x) �= ∅ for all ε ∈ ]0, δ[.
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The following corollary, giving a criterion for integrating the Fenchel sub-
differential, is an immediate consequence of Corollary 2.1 in view of the straightfor-
ward relationships ∂f (x) ⊂ ∂εf (x) and ∂g(x) ⊂ ∂εg(x) for every x ∈ D and every
ε > 0.

Corollary 2.2 (Cf. [6, Theorem 1]) The following statements are equivalent:

(i) For each x ∈ D

∅ �= ∂f (x) ⊂ ∂g(x).

(ii) For each x ∈ D

∂f (x) ∩ ∂g(x) �= ∅.

(iii) For each x ∈ D

∅ �= ∂f (x) = ∂g(x).

If these statements hold, then f and g are convex, lsc on D, and fD −gD is constant.

Remark 2.1

(a) The preceding results remain true if X is an arbitrary locally convex real topo-
logical vector space (not necessarily Hausdorff). Indeed, the equivalence be-
tween the convex and the lsc character of a function and the nonemptiness of
its ε-subdifferentials is a reformulation of the Fenchel–Moreau Theorem, the
validity of which in non-Hausdorff spaces has been proved by S. Simons [10,
Theorem 10.1].

(b) The equivalence between (i) and (ii) in Corollary 2.1 also follows from a well-
known characterization of global minima of DC functions due to J.-B. Hiriart-
Urruty [11, Theorem 4.4]. Indeed, according to this characterization, if f and g

are convex, then one has ∂εf (x) ⊂ ∂εg(x) for all ε > 0 if and only if x is a global
minimum of fD − gD . Hence, that condition holds for every x ∈ D if and only if
every x ∈ D is a global minimum of fD − gD , which is obviously equivalent to
fD − gD being constant on D.

From now on, we suppose that X is a normed space with a norm ‖ · ‖; the dual
norm is denoted by ‖ · ‖∗. We use B∗(θ,K) to denote the closed ball in (X∗,‖ · ‖∗)
with center θ and radius K ≥ 0, and for A,B ⊂ X∗, we set

d(A,B) := inf
{‖a − b‖∗ : a ∈ A, b ∈ B

}
,

with the convention that d(A,B) := +∞ if A or B are empty.
At this moment, we easily get the main result of the paper from Theorem 2.1 when

h is a multiple of the norm function.
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Theorem 2.2 Let K ≥ 0. Then, the following statements are equivalent:

(i) f and g are convex, lsc on D, and fD − gD is Lipschitz with constant K .
(ii) For each x ∈ D

∅ �= ∂εf (x) ⊂ ∂εg(x) + B∗(θ,K) for all ε > 0.

(iii) For each x ∈ D there exists δ > 0 such that

∅ �= ∂εf (x) ⊂ ∂εg(x) + B∗(θ,K) for all ε ∈ ]0, δ[.
(iv) For each x ∈ D

∂εf (x) ∩ [
∂εg(x) + B∗(θ,K)

] �= ∅ for all ε > 0.

(v) For each x ∈ D there exists δ > 0 such that

∂εf (x) ∩ [
∂εg(x) + B∗(θ,K)

] �= ∅ for all ε ∈ ]0, δ[.
(vi) For each x ∈ D

d
(
∂εf (x), ∂εg(x)

) ≤ K for all ε > 0.

(vii) For each x ∈ D there exists δ > 0 such that

d
(
∂εf (x), ∂εg(x)

) ≤ K for all ε ∈ ]0, δ[.

Proof The proofs of the equivalences

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v)

follow from Theorem 2.1 by observing that ∂ε(K‖ · ‖)(θ) = B∗(θ,K). Since the
implications (iv) =⇒ (vi) =⇒ (vii) are obvious, we need only to prove that (vii) =⇒
(i). Given x ∈ D, we note that (vii) implies the existence of δ > 0 such that, for all
γ > 0,

∂εf (x) ∩ [
∂εg(x) + B∗(θ,K + γ )

] �= ∅ for all ε ∈ ]0, δ[.
Hence, by the equivalence between (v) and (i), f and g are convex, lsc on D, and
fD − gD is Lipschitz with constant K + γ . Therefore, since γ is arbitrary, fD − gD

is Lipschitz with constant K . �

Observing that statements (i), (iv), (v), (vi) and (vii) in Theorem 2.2 are symmetric
in f and g, it turns out that, under the assumptions of this theorem, statements (ii)
and (iii) are also symmetric; therefore, if one has

∅ �= ∂εf (x) ⊂ ∂εg(x) + B∗(θ,K) for all ε > 0

for each x ∈ D, then one also has

∅ �= ∂εg(x) ⊂ ∂εf (x) + B∗(θ,K) for all ε > 0

for each x ∈ D. We thus obtain the following corollary:
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Corollary 2.3 Let K ≥ 0. If some (hence all) of the statements (i)–(vii) of Theo-
rem 2.2 holds, then, for every x ∈ D and every ε > 0, the Hausdorff distance between
∂εf (x) and ∂εg(x) does not exceed the constant K .

Corollary 2.4 The following statements are equivalent:

(i) f and g are convex, lsc on D, and fD − gD is constant.
(ii) For each x ∈ D

d
(
∂εf (x), ∂εg(x)

) = 0 for all ε > 0.

(iii) For each x ∈ D there exists δ > 0 such that

d
(
∂εf (x), ∂εg(x)

) = 0 for all ε ∈ ]0, δ[.

From the previous result we obtain a complement to Corollary 2.2:

Corollary 2.5 The following statements are equivalent:

(i) For each x ∈ D

∅ �= ∂f (x) = ∂g(x).

(ii) For each x ∈ D

d
(
∂f (x), ∂g(x)

) = 0.

3 Conclusion

This paper provides criteria for Lipschitz continuity of DC functions defined in Ba-
nach spaces, involving ε-subdifferentials. The key of the proof of the main result
(Theorem 2.1), traced out from [6], allowed us to work in the more general setting of
locally convex spaces. The use of ε-subdifferentials rather than (exact) subdifferen-
tials is suitable in the current paper, since it deals with (proper lsc) convex functions
which are not necessarily continuous.
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8. Hantoute, A., López, M.A., Zălinescu, C.: Subdifferential calculus rules in convex analysis: a unifying

approach via pointwise supremum functions. SIAM J. Optim. 19(2), 863–882 (2008)
9. Burachik, R.S., Martínez-Legaz, J.E., Rocco, M.: On a sufficient condition for equality of two maxi-

mal monotone operators. Set-Valued Var. Anal. 18(3–4), 327–335 (2010)
10. Simons, S.: Banach SSD spaces and classes of monotone sets. J. Convex Anal. 18(1), 227–258 (2011)
11. Hiriart-Urruty, J.-B.: From convex optimization to nonconvex optimization. Necessary and sufficient

conditions for global optimality. In: Nonsmooth Optimization and Related Topics, Erice, 1988. Ettore
Majorana Internat. Sci. Ser. Phys. Sci., vol. 43, pp. 219–239. Plenum, New York (1989)


	Characterization of Lipschitz Continuous Difference of Convex Functions
	Abstract
	Introduction
	The Main Result
	Conclusion
	Acknowledgements
	References


