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Abstract

A de Bruijn sequence over a finite alphabet of spanr a cyclic string such that all words of lengthappear exactly once as
factors of this sequence. We extend this definition to a subset of words of lengttaracterizing for which subsets exists a de
Bruijn sequence. We also study some symbolic dynamical properties of these subsets extending the definition to a language defir
by forbidden factors. For these kinds of languages we present an algorithm to produce a de Bruijn sequence. In this work we us
graph-theoretic and combinatorial concepts to prove these results.

0 2005 Elsevier B.V. All rights reserved.

Keywords:De Bruijn sequences; De Bruijn graphs; Eulerian labeled graphs; Combinatorics on words; Graph algorithms; Combinatorial problems

1. Introduction applications, such as memory wheels in computers and
other technological devices, network models, DNA al-
Given a setD of words of lengthn, a de Bruijn se- gorithms, pseudo-random number generation, modern
quence of span is a periodic sequence such that every public-key cryptographic schemes, to mention a few
word in D (and no othen-tuple) occurs exactly once.  (see [2-4]). Typically, de Bruijn sequences have been
Its first known description appears as a Sanskrit word studied over an arbitrary alphab&tconsidering the set
yamatarajabhanasalagamhich was a memory aid for  of all the n-tuples, that isA”. There is an exponential
Indian drummers, where the accented/unaccented sylla-number of de Bruijn sequences in this case, but only a
bles represent long/shorts beats, so all possible tripletsfew can be generated efficiently.
of short and long beats are included in the word. De In this work we generalize the definition of de Bruijn
Bruijn sequences are also known as “shift register se- sequence for any s@, characterizing those seffor
quences” and were originally studied by De Bruijn for - which a de Bruijn sequence exists. In Section 3 we study
D = {0,1}" [1]. These sequences have many different some symbolic dynamical properties of these sets, ex-
tending our results to languages defined by forbidding
maddressemoreno@dim.uchile.cI (E. Moreno). S.ome factors. Finally, in ?eCtion 4 we present ar_‘ algo-
1 Partially supported by ECOS COOEO3 (French-Chilean Coopera- 'thm to produce a de Bruijn sequence for these kinds of
tion), Fundacion Andes and CONICYT Ph.D. Fellowship. languages.
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2. Definitionsand generalizations

Let A be a finite set. Avord w on the alphabett
is a finite sequence of elements 4f For a wordw, its
length is denoted bjtv|.

A word p is said to be dactor of a wordw if there
exist wordsu, v € A* such thatw = upv. If u is the
empty word (denoted by), then p is called aprefix
of w, and ifv is empty then is called suffixof w.

Let D be a set of words of lengtlh+ 1. We call this
set adictionary. A de Bruijn sequence of span+ 1
for D is a cyclic wordBP of length|D| such that all the
words inD are factors of8”. In other words,

{(BP)i ... (BP)itn moaipy i =0,...,|D| =1} =D.

De Bruijn sequences are closely related to de Bruijn
graphs. Thale Bruijn graph of spam for D, denoted
by GP, is the directed graph with vertex set

V(GP) = {u € A" | u is a prefix or a suffix
of aword inD}

and arc set
E(GP)={(av,vB) | &, B € A,avp € D}.

This graph was first defined implicitly in 1894 by Flye
[5] and it was explicitly detailed in 1946 by de Bruijn
[1] and Good [6] independently. In both cases the dictio-
nary studied wa® = A"*1. The first use of this graph
for a subset ofA”*1 was given in [7].

From this definition, we can do a bijection between
the arcs ofGP and the words inD: to an arc go-
ing from av to vB we associate the wordvjs. Us-
ing this bijection we can interpret the gragh” as
the union of non-trivial components of the original de
Bruijn graph for A**1 after removing the arcs corre-
sponding to words not i® (see Fig. 1).

We label the grapiGP using the following func-
tion [: if e = (av, vB) thenli(e) = B. This labeling has
an interesting property:

Remark 1. Let P = ¢q...e, be a walk overGP of
lengthm > n. Then P finishes in a vertex if and only
if uis asuffix ofl(P)=1(eg)...l(ewn).
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This property is essential to understand de Bruijn
graphs and will be used in all the proofs in this work.
Therefore we mention a few important consequences of
this property:

Corollary 2. All the walks of lengtt: + 1 finishing at
vertexu have labekvu for somex € A.

Corollary 3. If u andv are vertices of a cycl€, thenu
andv are factors of the infinite wortl C)°.

These consequences and the bijection between arcs
and words inD explain the relation between de Bruijn
graphs and de Bruijn sequences:

Lemma 4. There exists a de Bruijn sequeng€ if and
only if GP is an Eulerian graph. Moreover, the labels
of Eulerian cycles ove6 P are the de Bruijn sequences
for D.

Proof. Let C be an Eulerian cycle o6, As we ex-
plained before, any wor@ € D has a corresponding
arce in GP. By Remark 1 any sub-walk of length+ 1
of C finishing with the are has label, therefore any
word inD is a factor of/(C). As the length ofC is the
number of words inD we conclude that(C) is a de
Bruijn sequence foD.

Conversely, letB be a de Bruijn sequence fdp.
Any factor of lengthn + 1 is a word ofD so there is
a corresponding arc i6 2. Moreover, two consecutive
factorsav andvp have two corresponding arcs such that
the head of the first is the tail of the second one. There-
fore B has a corresponding closed walk ov&P with
label B. Since every factor is different, every arc in the
walk is different, and since every word &f is a fac-
tor of B, every arc ofGP is in the walk. We conclude
that the closed walk ove6? is an Eulerian cycle of
labelB. O

By previous lemma, given a dictionafy, the exis-
tence of a de Bruijn sequence of spar- 1 is charac-
terized by the existence of an Eulerian cycle oGé?.

A graph has an Eulerian cycle if and only if it is strongly

Fig. 1. Examples in a binary alphabet: De Bruijn sequence of spélr:PZtor D ={000 001, 010,100,110} and its essential subgraph.
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connected and at each vertex the in-degree and the out{finite) words, we call these words “forbidden words”.

degree are equal. Therefore we can write these condi-

tions as restrictions oveP, characterizing the dictio-
naries with a de Bruijn sequence.

Corollary 5. A dictionaryD € A*+1 has a de Bruijn
sequence of span+ 1if and only if

(1) For anyu, v € D there exists a wordv € A* such
that u is a prefix ofw, v is a suffix ofw and any
factor of lengthm + 1 of w isin D.

(2) For any wordx € A" there exists a bijection be-
tween words irD havingx as a suffix, and words
in D havingx as a prefix.

Proof. By the bijection between arcs and wordsZin

the first condition assures the existence of a walk (of la-
belw) between any two arcs. Hen&? is strongly con-
nected. For any word, a word inD havingx as suffix
(prefix) has a corresponding arc terminating (starting)
atx. Therefore, the second condition assures that the in-
degree and the out-degree at any vertex are equal.

3. Symbolic dynamics

Symbolic dynamics gives a natural framework to
study the set® with a de Bruijn sequence.

A first class of dictionaries with a de Bruijn sequence
is given by the set of factors of length+ 1 in a bi-
infinite sequence over an alphabet. We denote this
setbyL,+1(u).

A factor v of lengthn in u is right extensible(re-
spectively left extensible) iba (respectivelyav) is in
L,y+1(u) for somea € A. These concepts have an im-
portant relation with the complexity of the sequence
(see [8]).

For any sequenag, is easy to see that the dictionary
D = L,11(u) satisfies the first condition of Corollary 5.
Also, the second condition is satisfied if and only if the
numbers of left and right extensions of any factor of
lengthn are equal. Therefore, we obtain the next the-
orem.

Theorem 6. Letu be a bi-infinite sequence. For any
the dictionaryD = £, +1(u) has a de Bruijn sequence if
and only if any factor of length has equal humber of
left and right extensions.

Another class of dictionaries with a de Bruijn se-
quence is given by the language of subshifts. Given an
alphabeta, a full shift AZ is the set of all bi-infinite se-
guences of symbols frord. Let F be a collection of

A shift X = X is the subset of sequences4sf which
do not contain any factor frort. If F is finite, we say
that X is a subshift of finite type.

Let £,(X) be the set of factors of sequenceskirof
lengthn. The language of a shiX is the setl of the
factors of any finite length of sequencesXn

(o)
LX) = L.(x).

n=0
A shift X is irreducible if for every pair of words, v €
L(X), there is aw € L(X) such thattwv € L(X).

Given a labeled grapty, let X be the set of labels

of all bi-infinite walks overG. It is known thatXs is a
(sofic) shift [9], however in the case of de Bruijn graphs,
we show thafX ;o is a subshift of finite type.

Lemma?7. LetD C A"+ be a dictionary. TheiX ;o is
a subshift of finite type. Moreover,

Xop =Xr with F= A"\ D,

Proof. Since £,+1(Xsp) € D we have thatX;p» C

X r. Letx € X £, any factor of lengtl + 1 of x isin D

so each factor has a corresponding ar6 fi. Moreover,

two consecutive factorgv andvg of lengthn + 1 have
two corresponding arcs ii” such thaw is the head of
the first and the tail of the second one. Therefore there
exists a walk oveG P with labelx, soOXF C Xgp. O

Corollary 8. Let F be a set of forbidden words of length
at mostn + 1. Then forD = £, 1(Xr) we have that

Proof. We can extendF to a subsetF’ € A"*+1 such
thatX r = X 7. SinceD = A"+1\ F' we conclude. O

A vertexv is strandedf either no arc starts ator no
arc terminates at. A subgraph iessentialf no vertex
of the graph is stranded (see Fig. 1). Obviously a bi-
infinite walk does not use stranded vertices, so for any
graphG there exists an essential subgraghsuch that
X = X¢'. Therefore in the rest of this work we only
consider set® such thaiG? is essential.

Note that ifGP is essential then for any word € D
there exists a walk ovag? with labelw.

In order to obtain set® with a de Bruijn sequence,
GP needs to be an Eulerian graph, in particular it needs
to be strongly connected. This property has an interpre-
tation in symbolic dynamics:

Lemma 9. Let D be a dictionaryX ;o is irreducible if
and only ifGP is strongly connected.
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Proof. SinceGP is essential, the strongly connected
components have size at least 2. D&tp be an irre-
ducible subshift of finite type. For any two aresf of
GP there are two corresponding words, wyrin D.
Since X ;p is irreducible, there exists a wonil such
thatw,ww  is a factor ofX;p. In other words, there
exists a walk oveiGP with label w,w ;. Therefore
there exists a walk with labelw ; connectinge to f,
soGP is strongly connected.

Conversely, ifX ;p is notirreducible, there exist fac-
tors w1, w2 such thatvz € A*, wizwo is not a factor
of X;p. Butwy is the label of a walk ove6? finish-
ing at a vertex; andwg is the label of a walk starting at
a vertexvo, therefore there is no walk ovéer® connect-
ing v1 to v2, henceGP is not strongly connected.oo

Let X+ be an irreducible subshift of finite type. If
D = £,+1(X ) then the corresponding grag’ is not
necessarily an Eulerian graph.

For example, forA = {0,1} and 7 = {11} a ver-
tex Owl has two in-going arcs (corresponding to words
00wl and 1@vl) but only one out-going arc (corre-
sponding to the word ©¥10). Therefore we will study
the subset operiodicwords in£,,+1(X ) because for
this set we obtain an Eulerian de Bruijn graph.

Let w € A* be a word, we say thab is aperiodic
word of X £ if and only if the bi-infinite sequence,
obtained by infinite concatenations®f is in X . The
set of periodic words of lengthis denoted byP, (X £).

Theorem 10. Let F be a set of forbidden words of
length at most: + 1 and D = P,1(Xr). If Xgo is
irreducible then there exists a de Bruijn sequence for
the dictionaryD.

Proof. By Lemma 9,G? is strongly connected. Let
u € A" be a vertex ofGP. Any arc leavingu with
labela corresponds to a wondx € D. Sinceuw is a pe-
riodic word, «u is also inD. Therefore there exists an
arc going intou corresponding to the wordu, which
implies that the in-degree af is greater or equal to
out-degree ofi. The same argument proves that the out-
degree of: is greater than or equal to the in-degrea of
concluding thatG™ is an Eulerian graph. o

Note that not all irreducible subshifts of finite type
have a de Bruijn sequence for= P, 1(X ). For ex-
ample, forA = {0, 1} and F = {010Q} the subshift of
finite type X r is irreducible butX ;» is not irreducible,
becauses? has two strongly connected components.
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4. Constructing a de Bruijn sequence for subshifts

Let X~ be a subshift of finite type arld =P, +1(X r)
such thatX ;o is irreducible. In this section we study an
efficient generation of a de Bruijn sequencefar

Even in the unrestricted case (whefe= ) this is
an interesting problem (see [10] for a survey on this sub-
ject). One of the most elegant and efficient solutions in
the unrestricted case is given in [11] and ukgadon
words

Let < be a linear order over alphabét The setd*
of all words on the alphabet is linearly ordered by
the lexicographical order induced by the ordeon A.

A word w is a Lyndon word if and only iVu, v such
thatw = uv, thenw < vu.

The algorithm of Fredricksen and Maiorana consists
of to concatenate in increasing lexicographical order the
Lyndon words of length dividing. This is a linear time
algorithm because the Lyndon words can be generated
efficiently (see [12]).

We always can construct the gragh” and apply
one of the known results about constructing an Eulerian
cycle to obtain a de Bruijn sequence, however the con-
struction ofG? is not efficient. Therefore in this section
we study the structure @ in order to obtain an algo-
rithm to construct a de Bruijn sequence only using the
words inD.

The set of arcs of an Eulerian graph can be par-
titioned in cycles. In the particular case 6f° these
cycles have a given length.

Theorem 11. Let F be a set of forbidden words of
length at most: + 1 andD = P, 11 (X ) such thatG?
is the de Bruijn graph of span for D. Then the cycles
of length dividing: + 1 partition the set of arcs of; 7.

Proof. We prove that any arc of the graph is in one and
only one cycle of length dividing.

Let e be an arc from the vertexu to the vertexub
with a,b € A (then,l(e) = b). By construction of the
graph, there is a walk of lengthfrom vertexub to ver-
tex au with labelau. Therefore, the union of this walk
with the arce produces a closed walk of length+ 1
with labelaub corresponding to one or more repetitions
of a cycle of length dividing: + 1, proving the existence
of one cycle.

Let us suppose now that there are two cyaeand
C’ of lengths dividingn + 1 using the are. Let f be
an arc ofC and g an arc ofC’ with tail at the same
vertexu and different heads. Sineeis in both cycles,
by Corollary 2 the walks of length from the head oé
to the tail ofe using only the arcs o€ and C’ must
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INPUT: L ={L%, ..., L¥} Lyndon words inZ(X £) of length dividingn + 1.
(1) Size< Y |L|
(2) u<«LiforanyL! e LsuchthaiL!|=n+1
(3) L<L\u
(4) B<«uu
(5) whileL £
(6) fora=1to|A| -1

(7) w(—Bj,n,]_...BjB]q,la

(8) w’ <= LYNDON(w)

(9) if w e L then

(10) B« By...Bjwqwy... Wy |—1Bj41--.
(11) L <« L\w

(12) end if

(13) end for

(14) endfor

(15) B < Bjp...Bsjze
wherea* =a + « mod|A| and LYNDON(w) return the Lyndon word such thag®® = w®°.

Algorithm 1. Produce a de Bruijn sequence using the Lyndon words of the language.

have the same label. Therefore the label(gf) =1(g) Now, a word with least period is a Lyndon word or
but in this case the head gfand the head of are the one of thed — 1 rotations of a Lyndon word of length
same vertex, producing a contradiction. This proves the Hence,

uniqueness of the cycles.O Z }{Words with least period}|
dn+1

= Y d-|{Lyndon words of length/}|.
d|n+1

Corallary 12. The set of Lyndon words of length divid-
ingn+1in L(X ) corresponds to a partition of the set
of arcs of GP.

Since|E(GP)| = |P,+1(X £)| we conclude. O

Proof. Let C be a cycle of lengthi with 4 dividing

o Now we are prepared to construct an algorithm pro-
n + 1 and let us label itv in such a way thatu, v such

ducing a de Bruijn sequence for= P, 11(X ).

thatw = uv, we have that eithen = vu or w < vu. We Given a partition in cycles of an Eulerian graph, the
only have to prove thab is not a repetition of a smaller following strategy produces an Eulerian cycle: we can
word u. ) start from an arc and follow the corresponding cycle

Letus assume that = ' foranintegei > 2andlet  in the partition, until we reach an intersection with an-

x andy be two vertices oC at distanceu| overC such  other cycle in the partition. At this point we follow the
that the walk ofC from x to y has label:. Since both  other cycle and when we return to the intersection we
vertices are irC, x andy are factors of length of the continue with the original cycle. Using this procedure

word w"+D/4_ Since the walk fronx to y has label, recursively we construct an Eulerian cycle.

u is a suffix ofy. Moreover, sincey "+ D/d — i(n+1/d By Corollary 12, we can reproduce this strategy in

uu is a suffix ofy thenu is also a suffix ofc, concluding terms of the Lyndon words of length diving+ 1 in

thatx = y. L(X ) obtaining Algorithm 1 producing a de Bruijn
Therefore, every cycle in the partition has a different sequence foD = P, +1(X ) without constructing the

label which is a Lyndon word of length dividing+ 1. graphGP.

It remains to prove that to each Lyndon word, one  The function lyNDON() in the algorithm can be im-
can associate a cycle. But this can be proved using cardi-plemented with an on-line automata accepting when a
nality considerations. Indeed, a periodic word of length suffix of B is a factor of length: of rotations of the

n + 1 has either least period+ 1 or least period with words in L, allowing to do this step in a constant time

d dividing n + 1. Therefore, (see [13]). Hence, steps (7)—(12) in the algorithm have
complexity O(n) and these steps are repeated at most

|’pn+l(X]_.)| — Z |{words with least period}|. |A| - |L| times. Therefore, the complexity of the algo-

dln+1 rithm is O(|A| - |L| - n). SinceSize= Y, |L!| is the
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size of the input (and also the size of the output) and
Sizeis at mostn - |L|, we conclude that our procedure
is a linear time algorithm. Note that the input of the al-
gorithm can also be constructed in an efficient way (see
[14]).
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