Multidimensional symbolic dynamics

(Minicourse – Lecture 3)

Michael H. Schraudner

Centro de Modelamiento Matemático Universidad de Chile

mschraudner@dim.uchile.cl
www.cmm.uchile.cl/~mschraudner

1st French-Chilean conference in Dynamics and Combinatorics January 26th, 2012 – Cap Hornu, Baie de Somme

Subsystems of $\mathbb Z$ SFTs and $\mathbb Z$ sofics

Non-trivial mixing $\mathbb Z$ SFTs and $\mathbb Z$ sofics have a rich family of subsystems:

Theorem [Krieger's embedding theorem (1981)]:

Let X be a mixing \mathbb{Z} SFT and let Y be a \mathbb{Z} subshift such that $h_{top}(X) > h_{top}(Y)$ and $Per(Y) \hookrightarrow Per(X)$ then there exists an embedding $\phi : Y \hookrightarrow X$. marker-filler method hence Y can be thought of as a subsystem of X and this result describes all symbolic subsystems

Moreover, given a proper subsystem $Z \subsetneq X$ of a mixing \mathbb{Z} SFT X the embedding can be chosen to be disjoint from the subsystem Z, i.e. $\phi : Y \hookrightarrow X \setminus Z$.

Similar statement in the measurable setting by the **Jewett-Krieger theorem**: Every measurable \mathbb{Z} system with finite entropy can be realized by a uniquely ergodic \mathbb{Z} subshift.

Corollary: The same results hold for mixing \mathbb{Z} sofics S.

S contains an increasing family of mixing \mathbb{Z} SFTs $(X_n \subsetneq S)_{n \in \mathbb{N}}$ such that $h_{top}(S) = \lim_{n \to \infty} h_{top}(X_n)$

Positive entropy mixing \mathbb{Z} SFTs and \mathbb{Z} sofics are equally rich in subsystems; contain a tremendous collection of **pairwise disjoint** (minimal) subsystems with dense/nearly full entropies.

Subsystems of \mathbb{Z}^d SFTs and \mathbb{Z}^d sofics

Similar embedding result for a special subclass of \mathbb{Z}^d SFTs:

Theorem [Lightwood's embedding theorem (2003)]:

Let X be a topologically mixing \mathbb{Z}^2 SFT having the **square-filling** property and let Y be a \mathbb{Z}^2 subshift **without periodic points** such that $h_{top}(X) > h_{top}(Y)$ then there exists an embedding $\phi : Y \hookrightarrow X$.

Let X be a \mathbb{Z}^d SFT having the uniform filling property and containing a fixed point and let Y be a \mathbb{Z}^d subshift **without periodic points** such that $h_{top}(X) > h_{top}(Y)$ then there exists an embedding $\phi : Y \hookrightarrow X$.

There is an analogous Jewett-Krieger theorem for \mathbb{Z}^d shifts (Rosenthal) as well as several results on existence of completely positive entropy measures and Bernoulli measures in the presence of the uniform filling property (Robinson-Sahin).

A rare completely general \mathbb{Z}^d result:

Theorem [Desai (2006)]:

Any \mathbb{Z}^d SFT X with $h_{top}(X) > 0$ contains a family of \mathbb{Z}^d subSFTs with entropies dense in the interval $[0, h_{top}(X)]$.

Any \mathbb{Z}^d sofic S with $h_{top}(X) > 0$ contains a family of \mathbb{Z}^d subsofics with entropies dense in the interval $[0, h_{top}(S)]$.

Moreover every real number in the interval $[0, h_{top}(X)]$ resp. $[0, h_{top}(S)]$ is the entropy of some \mathbb{Z}^d subshift subsystem of X resp. S.

nice, simple proof without actually computing the entropies, using colored grid plus excluding a large pattern

Hence again there are lots of subsystems.

Desai also proved that every \mathbb{Z}^d sofic S has a \mathbb{Z}^d SFT cover X which is ε -close in entropy, i.e. for every $\varepsilon > 0$ exists \mathbb{Z}^d SFT X with $h_{top}(X) < h_{top}(S) + \varepsilon$ such that there is a factor map $\phi : X \twoheadrightarrow S$.

Open question (Weiss): Does every \mathbb{Z}^d sofic S have an equal entropy \mathbb{Z}^d SFT cover X such that $\phi : X \twoheadrightarrow S$ is an entropy preserving factor map?

True for \mathbb{Z} sofics (Coven-Paul). Classes of entropies of \mathbb{Z}^d SFTs and \mathbb{Z}^d sofics coincide (Hochman-Meyerovitch).

Optimality of Desai's results – Non-separation of subsystems for \mathbb{Z}^d sofics

Desai's result does NOT guarantee disjointness of subsystems nor the existence of a family of \mathbb{Z}^d subSFTs with dense entropies for the case of \mathbb{Z}^d sofics. In fact:

Theorem [Boyle-Pavlov-S]:

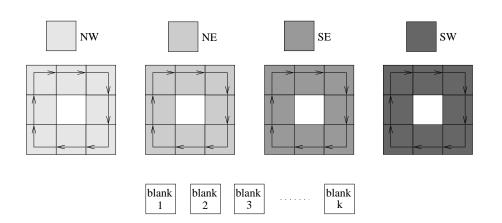
Suppose $d \ge 2$ and we are given $0 < M \in \mathbb{R}$, then there exists a \mathbb{Z}^d sofic S with $h_{top}(S) > M$ such that:

- S does contain a **unique minimal subsystem** being a fixed point. no other periodic points
- All subsystems of S have to contain this fixed point and thus can not be disjoint.
- S does contain a unique \mathbb{Z}^d subSFT. again the unique fixed point
- S has an equal entropy \mathbb{Z}^d SFT cover X with $\phi : X \twoheadrightarrow S$ (entropy preserving factor map) such that the ϕ -preimage of the unique fixed point in S is a zero entropy \mathbb{Z}^d subSFT $K \subsetneq X$ containing all minimal subsystems and again every subsystem of X has to intersect K.

Moreover (at least) for d = 2 the \mathbb{Z}^2 sofic S and its \mathbb{Z}^2 SFT cover X can be chosen **topologically** mixing and of **topologically completely positive entropy**.

for d > 2 construction extends the technique of Hochman-Meyerovitch (2007) + example of Quas-Sahin + new ideas

The non-separation example in \mathbb{Z}^2



	>=	>	>	>	>	->	>	>	>	>	->	>	->	>	->	>	->	\downarrow
٨		>>	>	>	->	->	\uparrow	->	V		>	->	->	^	>	->	V	V
Λ	1		>	->			\rightarrow	V	V	٨		->	V		>	V	V	V
			blank	blank	V	Λ	blank	V				blank	V	٨	blank	V	V	V
			blank	blank	V	Λ	blank	V				<	<	^	<	<	V	V
			<	<	<	1	<	<		1		\rightarrow	V		->	V	V	V
				\rightarrow	V		\rightarrow	V		٨		blank	V	٨	blank	V	V	V
		Λ	blank	blank	V	Λ	blank	V	V	1	$ \uparrow$	blank	V	٨	blank	٧		V
		1	<	<	<	1	<	<	V			<	<	<u>^</u>	<	<		V
		<	<	<	<	<	<	<	<	1	<	<	<	<	<	<	<	V
۸ ا		>_>		\rightarrow	>	\rightarrow	\rightarrow	_>	V			->	_>	_>	_>	->	V	V
٨				V		->	\rightarrow	V	V			->	V		->	V	V	V
			blank	l v		blank	blank		V			blank	V		blank	V		V
Â			blank	L V		blank	blank		V			blank	V		blank	V		V
_			<	<		<	<	<	V			<	<		<	<	V	V
_^				Ý		->	_>	V	V			>	V		\wedge	V	V	V
			blank	۷		blank	blank	V	V			blank	V		blank	V	V	V
			blank	V		blank	blank		V			blank	V		blank	V	V	V
\			<	<	1	<	<	<	V			<	<	Λ	<	<	V	V
\		<	<	<	<	<	<	<	<	<u> </u>	<	<	<	<	<	<	~	V
	_<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	\prec

Non-trivial mixing $\mathbb Z$ SFTs and $\mathbb Z$ sofics have a rich family of subshift factors:

Theorem [Boyle's lower entropy factor theorem (1983)]: Let S be a mixing \mathbb{Z} sofic and X a mixing \mathbb{Z} SFT such that $h_{top}(S) > h_{top}(X)$. If $Per(S) \downarrow Per(X)$ then there exists a factor map $\phi : S \to X$. uses again Krieger's marker-filler method

Theorem [Equal entropy full shift factors, Marcus (1979)]:

Let $N \in \mathbb{N}$. If Y is a \mathbb{Z} SFT with $h_{top}(Y) \ge \log N$ then there exists a factor map from Y onto the full \mathbb{Z} -shift on N symbols.

Question: Can we obtain those (similar) factoring results also for the \mathbb{Z}^d setting? open in general

Question [Madden-Johnson]: What about \mathbb{Z}^d full shift factors? In particular, given $N \in \mathbb{N}$ does every \mathbb{Z}^d SFT X with $h_{top}(X) \ge \log N$ factor onto the \mathbb{Z}^d full shifts on N symbols? there we have some results

interesting to identify factors (=building blocks) of a given system topological analogue (for \mathbb{Z}^d SFTs) of Sinai's measurable factor theorem

Lower entropy full shift factors of \mathbb{Z}^d SFTs and \mathbb{Z}^d sofics

A negative lower entropy full shift factor result:

Examples of \mathbb{Z}^d SFTs with non-separated subsystems yield an obstruction to the existence of factors with large number of disjoint subsystems.

Disjoint subsystems in a factor can only come from disjoint subsystems in the cover.

Theorem [Boyle-Pavlov-S]:

Suppose $d \ge 2$ and we are given $0 < M \in \mathbb{R}$, then there exists a \mathbb{Z}^d SFT X with entropy $h_{top}(X) > M$ which has

- no non-trivial block gluing \mathbb{Z}^d subshift factor. block gluing subshifts have disjoint subsystems
- no non-trivial \mathbb{Z}^d full shift factor.
- only \mathbb{Z}^d subshift factors Y for which the orbit closure $Y_{\mathsf{Min}} \subseteq Y$ of its minimal subsystems has zero entropy $h_{\mathrm{top}}(Y_{\mathsf{Min}}) = 0$
- an equal entropy, proper \mathbb{Z}^d sofic factor with topologically completely positive entropy.

Moreover (at least) for d = 2 the \mathbb{Z}^2 SFT X can be chosen topologically mixing and with topologically completely positive entropy. Use the non-separation examples seen before

Similarly the \mathbb{Z}^d sofics with non-separated subsystems immediately give the following negative factor results:

Theorem [Boyle-Pavlov-S]:

Suppose $d \ge 2$ and we are given $0 < M \in \mathbb{R}$, then there exists a \mathbb{Z}^d sofic S of entropy $h_{top}(S) > M$ which has

- a unique \mathbb{Z}^d SFT factor being the unique fixed point in S. The same holds for all factors of S.
- no non-trivial block gluing \mathbb{Z}^d subshift factor.
- in particular no non-trivial full shift factor.
- an equal entropy \mathbb{Z}^d sofic factor of topologically completely positive entropy.

Question: Are there any (general) positive results?

A positive lower entropy full shift factor result:

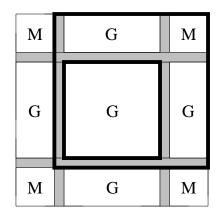
Theorem [Boyle-Pavlov-S]:

Let $N \in \mathbb{N}$. Any block gluing \mathbb{Z}^d subshift X with $h_{top}(X) > \log N$ factors onto

- the full \mathbb{Z}^d shift on N symbols.
- a family of strongly irreducible \mathbb{Z}^d SFTs with entropies dense in the interval $[0, h_{top}(X)]$.
- all lower entropy \mathbb{Z}^d SFTs which have a safe symbol.

constructive proof using markers and a coding argument

Again these results emphasize the **importance of a uniform mixing condition**.



Definition: A \mathbb{Z}^d subshift Y has a **safe symbol** if its alphabet contains an element $a \in \mathcal{A}$ such that for any point $y \in Y$ replacing the symbol at any coordinate in \mathbb{Z}^d by the symbol a yields again a point in Y.

Equal entropy full shift factors of \mathbb{Z}^d SFTs

Conceptual problem: There are not a lot of \mathbb{Z}^d SFT examples where the entropy is known to be $\log N$ with $N \in \mathbb{N}$.

One class of those \mathbb{Z}^d SFTs are algebraic group shift over an alphabet being a finite group $\mathcal{A} = G$: An **algebraic** \mathbb{Z}^d **group shift** $X \leq G^{\mathbb{Z}^d}$ is a closed, shift-invariant subgroup.

Facts: \mathbb{Z}^d algebraic group shifts

- are \mathbb{Z}^d SFTs.
- have dense periodic points, thus in particular the undecidability questions vanish.
- have entropy $\log N$ for $N \in \mathbb{N}$ being the cardinality of a certain normal subgroup of G.

Theorem [Boyle-S]:

Let X be a \mathbb{Z}^d algebraic group shift then there exists an entropy preserving factor map from X to the corresponding \mathbb{Z}^d full shift. plus much stronger results for G abelian*

^{*}The strongest, most developed \mathbb{Z}^d theory exists for algebraic group shifts built over an alphabet which is a finite abelian group using Pontryagin duality principles and the structure of Noetherian modules. Work by Schmidt, Einsiedler, Ward, ...

First negative equal entropy full shift factor result:

Theorem [Boyle-S]:

Let $d \ge 2$ and $N \in \mathbb{N}$. There exist \mathbb{Z}^d SFTs X with $h_{top}(X) = \log N$ which do **not** factor onto the full \mathbb{Z}^d shift on N symbols.

proof again uses techniques of Hochman-Meyerovitch to produce a contradiction for measures of clopen sets

Question: Is this only an artifact of not having strong enough mixing?

Theorem [Pavlov-S]:

Let $d \ge 3$ and $N \in \mathbb{N}$. There exist block gluing \mathbb{Z}^d SFTs X with $h_{top}(X) = \log N$ which do not factor onto the full \mathbb{Z}^d shift on N symbols. construction uses upgradability of certain non-block gluing \mathbb{Z}^d SFTs – produces non-entropy minimal block gluing examples – however does not work for UFP or strongly irreducible \mathbb{Z}^d SFTs

Hence it seems the equal entropy full shift factor problem is more complicated.

compare with general equal entropy factor problem in $\ensuremath{\mathbb{Z}}$

Sketch of proof: Produce a measure-of-clopen-sets-obstruction.

For our obstruction pick a prime p that divides N > 1 and choose K > N not divisible by p.

Start with the result of Hochman-Meyerovitch (2007):

The **upper frequency** of $\mathcal{A}' \subsetneq \mathcal{A}$ in a point $x \in X$ is defined to be $\limsup_{n \to \infty} \frac{1}{\operatorname{card} F(n)} \operatorname{card} \{ \vec{j} \in F(n) : x_{\vec{j}} \in \mathcal{A}' \}$ where $F(n) := \{ \vec{i} \in \mathbb{Z}^d \mid \|\vec{i}\|_{\infty} \leq n \}$. If the lim sup is a limit, then it gives the **frequency** of \mathcal{A}' in x.

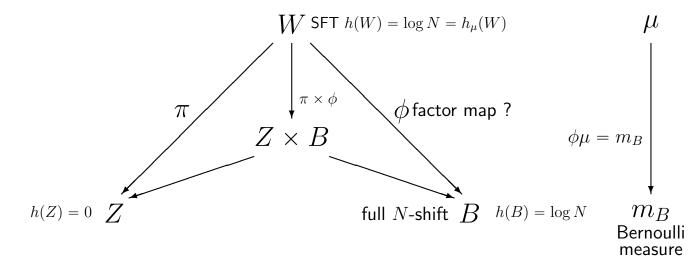
Theorem [Hochman-Meyerovitch]: Suppose $r \in [0,1]$ is right recursively enumerable. Then there exists a zero entropy \mathbb{Z}^d SFT Z and a subset $\mathcal{A}' \subsetneq \mathcal{A}$ of the alphabet of Z such that:

- for any point $z \in Z$, the upper frequency of \mathcal{A}' is at most r.
- there exists a point of Z in which \mathcal{A}' has frequency r.

Take $r = (\log N)/(\log K)$ for our example (right recursively enumerable by log power series).

Now replace the symbols of \mathcal{A}' in every point $z \in Z$ independently with one of K copies. Define $\widetilde{\mathcal{A}} = (\mathcal{A} \setminus \mathcal{A}') \cup \{(a, i) : a \in \mathcal{A}' \land i \in \{1, \dots, K\}\}$

Define the subshift W consisting of all configurations $w \in \widetilde{\mathcal{A}}^{\mathbb{Z}^d}$ such that the one-block code $\pi : \widetilde{\mathcal{A}} \to \mathcal{A}$ given by $a \mapsto a$ if $a \notin \mathcal{A}'$ and $(a, i) \mapsto a$ if $a \in \mathcal{A}'$ sends W onto Z.



Given μ on W we denote by $\{\mu_z\}$ the ν -a.e. unique family of Borel probabilities on the fibers $\pi^{-1}z$ such that $\mu(E) = \int \mu_z(E \cap \pi^{-1}z) d\nu(z)$, for all Borel sets E.

Given $\nu = \pi \mu$ on Z, let $\tilde{\nu}$ be the unique lift of ν such that $\tilde{\nu}_z = \beta_z$ for ν -a.e. z.

Lemma: Suppose Z is a \mathbb{Z}^d subshift; W, π and $\tilde{\nu}$ as above; $\mu \in \mathcal{M}(W)$; and $\pi \mu = \nu$. Then $h_{\mu}(W) \leq h_{\nu}(Z) + \nu \left(\bigcup_{a \in \mathcal{A}'} [a]_0\right) \log K$ with accuration if and achoic $\omega = \tilde{\omega}$

with equality holding if and only if $\mu = \widetilde{
u}$.

By the Lemma and the variational principle, we have $h(W) = \log N$ and $\mu = \tilde{\nu}$.

Using the disjointness of zero entropy and Bernoulli we get for ν -almost all points $z \in Z$ that the factor map $\phi|_{\pi^{-1}z}$ maps $\tilde{\nu}_z$ to m_B .

Pick such a
$$z \in Z$$
.
 $p \mid N \implies \qquad \exists C \subset B \text{ clopen: } m_B(C) = \frac{1}{p}$
 $\phi \text{ continuous } \implies \qquad D = (\phi|_{\pi^{-1}z})^{-1}(C) \subset \pi^{-1}z \text{ clopen}$
But then $\widetilde{\nu}_z(D) = m_B(C) = \frac{1}{p}$.

As $p \mid K$ there is no clopen set $D \subset \pi^{-1}z$ of $\tilde{\nu}_z$ -measure $\frac{1}{p}$.

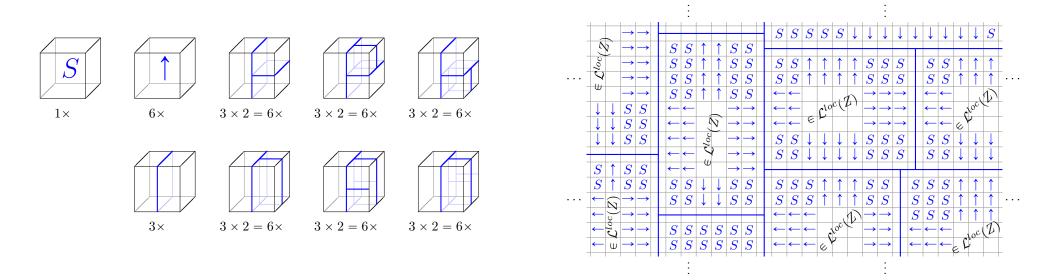
There is no factor map ϕ from W onto B.

Upgradeable \mathbb{Z}^d SFTs – Making things block gluing

Definition: A \mathbb{Z}^3 shift of finite type X is **upgradable** if there is a non-negative real constant $C \in \mathbb{R}^+_0$ so that $|\mathcal{L}^{loc}_{k,l,m}(X)| \leq e^{h_{top}(X)klm+C(kl+km+lm)}$ for all $k, l, m \in \mathbb{N}$. (quiet restrictive condition, satisfied e.g. for \mathbb{Z}^d full shifts)

Theorem: For any upgradable \mathbb{Z}^3 SFT Z with $h_{top}(Z) > 0$, there exists a block gluing \mathbb{Z}^3 SFT \widetilde{Z} containing Z as a subsystem with $h_{top}(\widetilde{Z}) = h_{top}(Z)$.

Idea: Introduce new (wall) symbols to generate cuboid cells in which only locally admissible patterns of \widetilde{Z} are allowed. (elaborate \mathbb{Z}^3 version of wire shift technique)



Measures of maximal entropy

In mixing \mathbb{Z} SFTs: Unique measure of maximal entropy (Parry measure).

Very explicit control, Markov measure given by the matrix, Gibbs property, exponential decay.

In \mathbb{Z}^d SFTs:

Measures of maximal entropy are still Markov (random fields), but it is hard to get them.

First examples of \mathbb{Z}^2 SFTs with **multiple measures of maximal measures**: Burton-Steif's iceberg model.

strongly irreducible, so mixing does not help here, full support, symmetry of the alphabet and rules

Criteria for uniqueness exist (Markley-Paul, van den Berg-Maes, Haeggstroem, Pavlov), but are not invariant

Big open question!

Summary of this minicourse

- Definitions and questions of \mathbb{Z} symbolic dynamics can be generalized naturally to the \mathbb{Z}^d framework.
- However the answers and results are very different from the classical theory properties generalize if at all only to certain subclasses.
- The useful structures of \mathbb{Z} SFTs matrices, graphs, algebraic invariants are not accessible in \mathbb{Z}^d .
- The world of multidimensional \mathbb{Z}^d SFTs (d > 1) is more varied, vastly richer and much more complicated than the class of \mathbb{Z} SFTs.
- There is no global theory for the very inhomogeneous class of \mathbb{Z}^d SFTs, but many results for certain subclasses.
- Undecidability and recursion theory plays a large role strongest construction techniques rely on Turing machines.
- Uniform mixing conditions help in avoiding pathologies and undecidability issues.
- We are still exploring the "landscape", finding interesting examples, discovering new properties and unexpected phenomena.

A lot of progress over the last 10 years, but there are still many open questions!