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a b s t r a c t

The matching number of a graph is the maximum size of a set of vertex-disjoint edges.
The transversal number is the minimum number of vertices needed to meet every edge.
A graph has the König–Egerváry property if its matching number equals its transversal
number. Lovász proved a characterization of graphs having theKönig–Egerváry property by
means of forbidden subgraphs within graphs with a perfect matching. Korach, Nguyen,
and Peis proposed an extension of Lovász’s result to a characterization of all graphs
having the König–Egerváry property in terms of forbidden configurations (which are
certain arrangements of a subgraph and a maximum matching). In this work, we prove
a characterization of graphs having the König–Egerváry property by means of forbidden
subgraphs which is a strengthened version of the characterization by Korach et al. Using
our characterization of graphswith theKönig–Egerváry property,we also prove a forbidden
subgraph characterization for the class of edge-perfect graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The matching number ν(G) of a graph G is the maximum size of a set of vertex-disjoint edges of G. The transversal
number τ(G) is the minimum number of vertices necessary to meet every edge of G. Clearly, ν(G) ≤ τ(G) for every
graph G. In 1931, Kőnig [12] and Egerváry [9] proved independently that every bipartite graph B satisfies ν(B) = τ(B).
Graphs G satisfying ν(G) = τ(G) are called after them König–Egerváry graphs or said to have the König–Egerváry property.
Graphs having the König–Egerváry property have been extensively studied [4,6,13,14,17–20,23–27]. In 1979, Deming [6]
and Sterboul [27] independently gave the first structural characterization of graphs having the König–Egerváry property.
Moreover, in [6] also a polynomial-time recognition algorithm for graphs having the König–Egerváry property was devised.
In 1983, Lovász [23] introduced thenotion ofnice subgraphs and characterized graphs having theKönig–Egerváry property by
forbidden nice subgraphs within graphs with a perfect matching. We will show that it is not possible to extend his result to
a characterization of all graphs having the König–Egerváry property by forbidden nice subgraphs. In this work, we introduce
the notion of strongly splitting subgraphs, providing a suitable extension of Lovász’s nice subgraphs in the sense that all graphs
having the König–Egerváry property can be characterized by forbidden strongly splitting subgraphs.
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Our result relies on a characterization by Korach, Nguyen, and Peis [14] of graphs having the König–Egerváry property by
means of what we call forbidden configurations (certain arrangements of a subgraph and a maximum matching) which is
itself an extension of Lovász’s characterization within graphs with a perfect matching. The main result of this work is a
characterization of all graphs having the König–Egerváry property by forbidden strongly splitting subgraphs which is a
strengthened version of the characterization due to Korach et al. by forbidden configurations: (1) first, we show that one
of their forbidden configurations is redundant and can be omitted; (2) then, we reformulate the resulting characterization
in terms of forbidden subgraphs; (3) finally, we strengthen the formulation by restricting the way in which the forbidden
subgraphs may occur.

Using our main result we also prove a characterization of edge-perfect graphs, which are defined similarly to the well-
known class of perfect graphs. Perfect graphs were introduced by Berge in the early 1960s bymeans of the equality between
the clique number ω (the size of the largest set of pairwise adjacent vertices) and the chromatic number χ (the minimum
number of colors needed to color the vertices such that adjacent vertices receive different colors); namely, a graphG is perfect
if ω(H) = χ(H) for each induced subgraph H of G. In 1961, Berge [1] conjectured a characterization of perfect graphs by
forbidden induced subgraphswhichwas settled few years ago and is now known as the Strong Perfect Graph Theorem [5]. The
class of edge-perfect graphs [10] can be defined similarly but by means of the equality between ν and τ ; i.e., by means of the
König–Egerváry property. Imposing the König–Egerváry property to each induced subgraph of a graph can easily be seen to
coincidewith requiring the graph to be bipartite, because odd chordless cycles do not have the König–Egerváry property and
graphs without odd chordless cycles are precisely the bipartite graphs. Instead, a graph G is called edge-perfect if each of its
edge-subgraphs has the König–Egerváry property, where an edge-subgraph is any induced subgraph that arises by removing
a (possibly empty) set of edges together with their endpoints. Using our characterization of graphs with the König–Egerváry
property, we state and prove a simple characterization of edge-perfect graphs by forbidden edge-subgraphs. Unfortunately,
this result does not lead to a polynomial-time recognition algorithm. In fact, although the problem of recognizing edge-
perfect graphs is known to be polynomial-time solvable when restricted to certain graph classes [7], it is NP-hard for the
general class of graphs [8].

Thiswork is organized as follows. In Section 2,we give somebasic definitions. In Section 3,wediscuss the characterization
by Lovász and that of Korach et al. and we present our characterization of graphs with the König–Egerváry property by
forbidden strongly splitting subgraphs. In Section 4, we use our characterization of graphs having the König–Egerváry
property in order to prove a characterization of edge-perfect graphs by forbidden edge-subgraphs.

2. Definitions

All graphs in this work are finite, undirected, without loops, and without multiple edges. Let G be a graph. The vertex set
of Gwill be denoted by V (G) and the edge set by E(G). A subgraph of G is a graphH such that V (H) ⊆ V (G) and E(H) ⊆ E(G).
A subgraph H of G is spanning if V (H) = V (G). If X ⊆ V (G), the subgraph of G induced by X is the subgraph G[X] whose
vertex set is X and whose edge set is {uv ∈ E(G) : u, v ∈ X}. A vertex is isolated if it has no neighbors and pendant if it has
exactly one neighbor. A graph is complete if every pair of different vertices are adjacent. The complete graph on n vertices
will be denoted by Kn. For any set S, |S| denotes its cardinality. For any sets A and B, A △ B denotes the symmetric difference
(A \ B) ∪ (B \ A).

Paths and cycles have no repeated vertices (apart from the starting and ending vertices in the case of cycles). Trivial paths
consisting of only one vertex (and no edges) will be allowed, but cycles must have at least three vertices. Let Z be a path
or a cycle. Then, E(Z) denotes the set of edges joining two consecutive vertices of Z and the length of Z is |E(Z)|. Z is odd if
its length is odd, and even otherwise. A chord of Z is any edge joining two nonadjacent vertices of Z . Z is chordless if it has
no chords. The chordless cycle of length n is denoted by Cn. Let P = x1x2 · · · xn and Q = y1y2 · · · ym be two paths (where
the xi’s and yj’s are vertices). If P and Q are vertex-disjoint except for xn = y1, then PQ denotes the concatenated path
x1x2 · · · xny2 · · · ym. If z is adjacent to x1, zP denotes the path zx1x2 · · · xn.

Let G and H be graphs with V (G) ∩ V (H) = ∅. The disjoint union of G and H is the graph G ∪ H whose vertex set is
V (G)∪V (H) andwhose edge set is E(G)∪E(H). For each nonnegative integer t , tG denotes the disjoint union of t copies of G.

A matching of a graph G is a set of vertex-disjoint edges of G. Let M be a matching of G. The endpoints of the edges
belonging to M are called M-saturated and the remaining vertices of G are called M-unsaturated. M is maximum if it is of
maximum size; i.e., |M| = ν(G) (where ν(G) denotes the matching number as defined in the Introduction). M is perfect if
it saturates every vertex of G and near-perfect if it saturates all but one vertex of G. Clearly, graphs with a perfect matching
have an even number of vertices, while graphs with a near-perfect matching have an odd number of vertices. Perfect and
near-perfectmatchings are triviallymaximum. A path isM-alternating if, for each two consecutive edges of the path, exactly
one of them belongs to M . An M-augmenting path is an M-alternating path starting and ending in M-unsaturated vertices.
Notice that if P is an M-augmenting path then M ′

= M △ E(P) is also a matching and |M ′
| = |M| + 1. Indeed, a matching

M is maximum if and only if there are noM-augmenting paths [2].
Let G be a graph. If X is a subset of V (G), G − X denotes the subgraph of G induced by V (G) \ X . If F is any set of edges,

we will denote by V (F) the set of endpoints of the edges belonging to F ; i.e., V (F) =


e∈F e by regarding each edge e as the
set of its endpoints. With this notation, the edge-subgraphs of a graph G are those induced subgraphs G − V (F) for some
F ⊆ E(G). Edge-perfect graphs are customarily defined in terms of the stability number α(G) and the edge covering number
ρ(G) (cf. [8]). The equivalence between that definition and ours follows from the result by Gallai [11] stating that if a graph
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Fig. 1. C3 , barbell, and K4 .

Fig. 2. The König–Egerváry property is not always inherited by the nice subgraphs. The graph on the left has the König–Egerváry property while its bold
edges correspond to a nice subgraph of it (depicted also on the right) that does not have the König–Egerváry property.

G has no isolated vertices then α(G) + τ(G) = |V (G)| = ρ(G) + ν(G). Edge-perfect graphs form a superclass of the class
of bipartite graphs and a subclass of the class of graphs having the König–Egerváry property. Both inclusions are proper, as
shown by the graph that arises from C3 by attaching a pendant vertex, known as the paw (which is edge-perfect but not
bipartite) and the graph that arises from C6 by adding a chord joining two vertices at distance two within the cycle (which
has the König–Egerváry property but is not edge-perfect). The classes of perfect graphs and of edge-perfect graphs are not
comparable. For instance, C3 is perfect but not edge-perfect and the graph that arises from C5 by attaching a pendant vertex
is edge-perfect but not perfect.

3. The König–Egerváry property in terms of forbidden subgraphs

An even subdivision of an edge uv consists in replacing the edge uv by two new vertices w1 and w2 together with three
edges uw1, w1w2, and w2v. An even subdivision of a graph G is either the graph G itself or any of the graphs that arise from
G by successive application of even subdivisions. A subgraph H of a graph G is nice if G − V (H) has a perfect matching. The
theorem below, due to Lovász, characterizes graphs with the König–Egerváry property by forbidden nice subgraphs within
graphs with a perfect matching. For the barbell graph, see Fig. 1.

Theorem 1 ([23]). A graph with a perfect matching has the König–Egerváry property if and only if it has no even subdivision of
barbell or K4 as a nice subgraph.

We will show that it is not possible to characterize the whole class of graphs having the König–Egerváry property by
forbidden nice subgraphs. That is, we cannot drop the hypothesis that G has a perfect matching by adding some extra
forbidden nice subgraphs. It is not possible to do so because, while the relation ‘‘is a nice subgraph of’’ is clearly transitive,
the König–Egerváry property is not always inherited by the nice subgraphs (as the example given in Fig. 2 shows). Suppose,
by the way of contradiction, that it were possible to characterize the whole class of graphs having the König–Egerváry
property by forbidden nice subgraphs. Consider Fig. 2, where a graph is displayed on the left and a nice subgraph of it on the
right. Since the graph on the right does not have the König–Egerváry property, it should have some nice subgraph Φ which
is forbidden in the characterization whose existence we are assuming. Then, by transitivity, the forbidden nice subgraph
Φ would also be a nice subgraph of the graph on the left, which would contradict the fact that the graph on the left does
have the König–Egerváry property. This contradiction proves that Theorem 1 cannot be extended to a characterization by
forbidden nice subgraphs of all graphs having the König–Egerváry property. Instead, our approach toward obtaining a similar
result holding for all graphs will be to replace nice subgraphs by splitting subgraphs (to be defined after Lemma 2) and later
by strongly splitting subgraphs (to be defined on page 10).

Let G be a graph and let X be a subset of V (G). We say that X is a splitting set of G if and only if there is some maximum
matchingM ofG such that no edge ofM joins a vertex ofX to a vertex ofG−X . If so, we say thatM is split by X . The next lemma
gives a sufficient condition for a subgraph of a graph having the König–Egerváry property to also have the König–Egerváry
property. Recall that the König–Egerváry property is not inherited by subgraphs in general, as the example of Fig. 2 shows.

Lemma 2. Let G be a graph having the König–Egerváry property and let H be a subgraph of G. If V (H) is a splitting set of G and
ν(H) = ν(G[V (H)]), then H also has the König–Egerváry property.

Proof. Suppose that V (H) is a splitting set of G and ν(H) = ν(G[V (H)]). LetM be a maximummatching of G split by V (H);
i.e., there is no edge of M joining a vertex of H to a vertex of G − V (H). Let MH be the set of edges of M joining two vertices
of V (H) and letMG−V (H) be the set of edges ofM joining two vertices of G− V (H). SinceM is a maximummatching of G and
M is split by V (H), MH is a maximum matching of G[V (H)]. Since ν(H) = ν(G[V (H)]), there is maximum matching M ′

H of
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Fig. 3. Forbidden configurations for graphs having the König–Egerváry property.

H such that |M ′

H | = |MH |. Therefore,M ′
= M ′

H ∪ MG−V (H) is a maximummatching of G. Then,

ν(G) = ν(H) + ν(G − V (H)) ≤ τ(H) + τ(G − V (H)) ≤ τ(G). (1)

Since G has the König–Egerváry property, both inequalities in (1) hold with equality and, necessarily, ν(H) = τ(H) and
ν(G − V (H)) = τ(G − V (H)). This proves that H has the König–Egerváry property. �

The above lemma leads us to introduce the notion of splitting subgraphs as follows. LetG be a graph and letH be a subgraph
of G. Wewill say that H is a splitting subgraph of G if and only if V (H) is a splitting set of G and H has a perfect or near-perfect
matching. Notice that ifH has a perfect or near-perfect matching, ν(H) = ν(G[V (H)]) holds trivially. Therefore, we have the
following corollary of Lemma 2 showing that, contrary to the case of nice subgraphs, the König–Egerváry property is always
inherited by the splitting subgraphs.

Corollary 3. If a graph has the König–Egerváry property, then each of its splitting subgraphs has the König–Egerváry property.

Notice that if G has a perfect matching, then H is a splitting subgraph of G if and only if H has a perfect matching and H is
a nice subgraph of G. Since all the graphs involved in Theorem 1 have perfect matchings, the result still holds if we replace
‘nice subgraphs’ by ‘splitting subgraphs’.

Theorem 1 in terms of splitting subgraphs ([23]). A graph with a perfect matching has the König–Egerváry property if and
only if it has no even subdivision of barbell or K4 as a splitting subgraph.

We will show that, contrary to the case of nice subgraphs, the whole class of graph having the König–Egerváry
property can be characterized bymeans of splitting subgraphs. That is,whenTheorem1 is reformulated in terms of forbidden
splitting subgraphs as above, the hypothesis that G has a perfect matching can be dropped by simply adding some extra
forbidden splitting subgraphs. The characterization of the graphs having the König–Egerváry property by forbidden splitting
subgraphs will follow from a characterization due to Korach, Nguyen, and Peis [14] by what we call forbidden configurations.
A configuration of a graph G is an ordered pair ξ = (S,M) where S is a subgraph of G, M is a maximum matching of G,
and S belongs to one of the four families of graphs represented in Fig. 3, where dashed edges stand forM-alternating paths
starting and ending in edges of M , solid edges stand for M-alternating paths starting and ending in edges not belonging to
M , and the vertex v isM-unsaturated. The graph S is said to be the underlying graph of ξ . Korach et al. proposed the following
characterization of graphs with the König–Egerváry property by forbidden configurations.

Theorem 4 ([14]). A graph has the König–Egerváry property if and only if it has none of the configurations in Fig. 3.

The lemma below shows that it is not essential to forbid the flower configurations in Theorem 4 because forbidding
triangular configurations prevents both triangular and flower configurations from occurring.

Lemma 5. If a graph has a flower configuration, then it also has a triangular configuration.

Proof. Assume that a graphG has some flower configuration ξ = (S,M). Let v be theM-unsaturated vertex of S and letw be
the vertex of S of degree 3 in S. Let P be the path of S joining v tow and let C be the only cycle of S. Notice thatM ′

= M△E(P)
is also a maximum matching of G because P is an M-alternating even path of G and v is M-unsaturated. Therefore, (C,M ′)
is a triangular configuration of G, which completes the proof. �

Next we observe that the occurrence of the three remaining configurations coincides with the occurrence of their
underlying graphs as splitting subgraphs.

Lemma 6. Let G be a graph and let S be a subgraph of G. Then, S is the underlying graph of a triangular, triangular pair, or
tetrahedral configuration of G if and only if S is a splitting subgraph of G which is an even subdivision of C3, barbell, or K4,
respectively.

Proof. Assume that there is some splitting subgraph S of G which is an even subdivision of C3, barbell, or K4. By definition,
V (S) is a splitting set of G; i.e., there is a maximummatchingM of G such that no edge ofM joins a vertex of S with a vertex
of G − V (S). LetMS be the set of edges ofM that join two vertices of S and letMG−V (S) be the set of edges ofM that join two
vertices of G− V (S). By construction,MS is a maximummatching of G[V (S)]. Since S is an even subdivision of C3, barbell, or
K4, there is a perfect or near-perfect matching RS of S. Notice that RS is unique up to isomorphisms of S. As S is a spanning
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subgraph of G[V (S)], |RS | = |MS |. Then, M ′
= RS ∪ MG−V (S) is a maximum matching of G. By construction, (S,M ′) is a

triangular, triangular pair, or tetrahedral configuration of G depending on whether S is an even subdivision of C3, barbell, or
K4, respectively.

Conversely, assume that S is the underlying graph of a triangular, triangular pair, or tetrahedral configuration ξ = (S,M)
of G. By definition, V (S) is a splitting set of G and S has a perfect or near-perfect matching. Thus, S is a splitting subgraph of
G. We conclude that S is a splitting subgraph of Gwhich is an even subdivision of C3, barbell, or K4 depending on whether ξ
is a triangular, triangular pair, or tetrahedral configuration, respectively. �

Therefore, the characterization by Korach et al. can be reformulated in terms of splitting subgraphs.

Theorem 4 in terms of splitting subgraphs. A graph has the König–Egerváry property if and only if it has no even subdivision
of any of the graphs in Fig. 1 as a splitting subgraph.

Notice that the above statement is precisely a characterization of the whole class of graphs having the König–Egerváry
property in terms of splitting subgraphs of the kind that we were looking for. Indeed, it arises from the reformulation of
Theorem 1 in terms of forbidden splitting subgraphs by dropping the hypothesis that G has a perfect matching and adding
the even subdivisions of C3 as the extra forbidden splitting subgraphs.

Finally, we will prove Theorem 7, which is a strengthened characterization of graphs with the König–Egerváry
property obtained by restricting the way in which the forbidden subgraphs may occur. For the purpose of formulating our
characterization, we introduce the notion of strongly splitting subgraphs as follows. Let G be a graph. A subset X of V (G) is a
strongly splitting set if there is a maximum matching M of G such that no edge of M joins a vertex of X to a vertex of G − X
and no vertex of X is adjacent to any M-unsaturated vertex of G− X . A subgraph H of G is a strongly splitting subgraph if V (H)
is a strongly splitting set of G and H has a perfect or near-perfect matching.

Clearly, strongly splitting sets are splitting sets, and strongly splitting subgraphs are splitting subgraphs. Moreover, the
notion of strongly splitting subgraphs is indeed more restrictive than that of splitting subgraphs. For instance, K5 has K4 as
a splitting subgraph but not as a strongly splitting subgraph. More generally, if H has a perfect matching, then H + K1 has H
as a splitting subgraph but not as a strongly splitting subgraph.

The theorem below is ourmain result and shows that the forbidden splitting subgraphs can be forced to occur as strongly
splitting subgraphs.

Theorem 7. A graph has the König–Egerváry property if and only if it has no even subdivision of any of the graphs in Fig. 1 as a
strongly splitting subgraph.

Proof. Since strongly splitting subgraphs are splitting subgraphs, Corollary 3 implies that if G has the König–Egerváry
property then no strongly splitting subgraph of G is an even subdivision of any of the graphs in Fig. 1. Therefore, it suffices
to prove that if G does not have the König–Egerváry property then G has a strongly splitting subgraph which is an even
subdivision of one of the graphs in Fig. 1.

Suppose that G does not have the König–Egerváry property. By Theorem 4 and Lemma 5, G has a triangular, triangular
pair, or tetrahedral configuration ξ = (S,M). Denote by U the set ofM-unsaturated vertices of G − V (S).

Case 1: Assume first that ξ = (S,M) is a triangular configuration and let v be the M-unsaturated vertex of S. Suppose,
by the way of contradiction, that there is a vertex s ∈ V (S) adjacent to some vertex u ∈ U . Since M is maximum and u
is M-unsaturated, s is M-saturated. In particular, s ≠ v. Since S is a chordless odd cycle, there is exactly one even path
P in S joining s to v. By construction, uP is an M-alternating path joining the M-unsaturated vertices u and v; i.e., uP is
an M-augmenting path, a contradiction with the fact that M is maximum. This contradiction proves that there is no edge
joining a vertex of S and a vertex of U . We conclude that if G has a triangular configuration ξ = (S,M) then S is a strongly
splitting subgraph of G which is an even subdivision of C3. From now on, we assume, without loss of generality, that G has
no triangular configuration.

Case 2: Assume that ξ = (S,M) is a triangular pair configuration. Suppose, by the way of contradiction, that there is a
vertex s ∈ V (S) adjacent to some vertex u ∈ U . Let w1 and w2 be the two vertices of S of degree 3 in S. Let P be the path
in S joining w1 to w2 and let C i be the cycle of S through wi for i = 1, 2. If s ∈ V (P), let Q be the subpath of P that joins s
to w1 and, by symmetry, we can assume that Q is odd. If, on the contrary, s ∈ V (S) \ V (P), we can assume without loss of
generality that s ∈ V (C2)\{w2} and let Q be the odd path in S joining s tow1 (which exists because C2 is odd). In both cases,
uQ is an M-alternating even path of G where u is not saturated by M . Therefore, M ′

= M △ E(uQ ) is a maximum matching
of G and (C1,M ′) is a triangular configuration of G, a contradiction. This contradiction proves that there is no edge joining a
vertex of S and a vertex of U . We conclude that if G has a triangular pair configuration ξ = (S,M) and G has no triangular
configuration, then S is a strongly splitting subgraph of Gwhich is an even subdivision of barbell.

Case 3: Assume that ξ = (S,M) is a tetrahedral configuration. Let w1, w2, w3, w4 be the set of vertices of S of degree
3 in S. For each i, j ∈ {1, 2, 3, 4} such that i ≠ j, let P i,j be the path of S joining wi to wj but not passing through wk for
any k ≠ i, j. Without loss of generality, we assume that the vertices w1, w2, w3, w4 are labeled in such a way that the path
P i,i+1 starts and ends in edges not belonging to M for each i = 1, 2, 3, 4 (superindices should be understood modulo 4).
For each pairwise different i, j, k ∈ {1, 2, 3, 4}, let C i,j,k be the cycle of S passing through wi, wj, and wk but not passing
through wℓ where ℓ ≠ i, j, k. Suppose, by the way of contradiction, that there is a vertex s ∈ V (S) that is adjacent to some
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vertex u ∈ U . By symmetry, we can assume that s ∈ V (P1,2) or s ∈ V (P1,3). Suppose first that s ∈ V (P1,2). Since P1,2 is
odd, there is an even subpath Q of P1,2 joining s to wj for j = 1 or j = 2. (Eventually P is the empty path starting and
ending in wj.) Without loss of generality, assume that Q joins s to w1. Since uQP1,3 is an M-alternating even path and u
is M-unsaturated, M ′

= M △ E(uQP1,3) is a maximum matching of G and (C2,3,4,M ′) is a triangular configuration of G, a
contradiction. Necessarily, s ∈ V (P1,3). Since P1,3 is odd, there is an odd subpath Q of P joining s tow1 orw3. Without loss of
generality assume that Q joins s to w1. Since uQ is anM-alternating even path and u isM-unsaturated,M ′

= M △ E(uQ ) is
a maximummatching of G and (C1,2,4,M ′) is a triangular configuration of G, a contradiction. This contradiction proves that
there is no edge between V (S) and U . We conclude that if G has a tetrahedral configuration (S,M) and G has no triangular
configuration, then S is a strongly splitting subgraph of Gwhich is an even subdivision of K4.

We proved that if G does not have the König–Egerváry property then G has a strongly splitting subgraphwhich is an even
subdivision of C3, barbell, or K4, which concludes the proof. �

Notice that if G is a graph having a perfect matching and H is a strongly splitting subgraph of G, then H is a nice subgraph
of G and H has a perfect matching. In addition, the even subdivisions of C3 clearly do not have perfect matchings (because
they have an odd number of vertices). Therefore, for graphswith a perfectmatching, Theorem7 reduces precisely to Lovász’s
characterization (Theorem 1).

The aimof our characterization is not to address the recognition problem,whichwas already addressed in [6]. Instead, the
usefulness of our characterization is on the structural side: given that a graph does not have the König–Egerváry property,
our result ensures that an even subdivision of C3, barbell, or K4 occurs as a strongly splitting subgraph. As an example of this,
in the next section, we use Theorem 7 to derive a characterization of edge-perfect graphs by forbidden edge-subgraphs.

4. Edge-perfectness and forbidden edge-subgraphs

Recall from the Introduction that a graph is edge-perfect if and only if each of its edge-subgraphs has the König–Egerváry
property, where the edge-subgraphs of a graphG are the induced subgraphsG−V (F) for each F ⊆ E(G). Notice that the class
of edge-perfect graphs is not closed by taking induced subgraphs. Indeed, the paw (the graph that arises from C3 by attaching
a pendant vertex) is edge-perfect but contains an induced C3 which is not edge-perfect. This simple example shows that the
class of edge-perfect graphs cannot be characterized by forbidden induced subgraphs. Instead, we will characterize edge-
perfect graphs by forbidden edge-subgraphs. Before turning into the proof of the characterization, we observe the following
two facts.

Lemma 8. If F is an edge-subgraph of H and H is an edge-subgraph of G, then F is an edge-subgraph of G.

Proof. Let E1 be a set of edges of H such that H − V (E1) = F and let E2 be a set of edges of G such that G− V (E2) = H . Then,
G − V (E1 ∪ E2) = F where E1 ∪ E2 is a set of edges of G because H is a subgraph of G. �

Lemma 9. Let G be a graph. If G has an odd cycle whose vertex set induces an edge-subgraph of G, then G has an edge-subgraph
which is a chordless odd cycle.

Proof. Suppose that G has an odd cycle whose vertex set induces an edge-subgraph of G and let C be the shortest such
odd cycle. It suffices to prove that C is chordless. Suppose, by the way of contradiction, that C has some chord e = xy.
Since C is odd, its vertices can be labeled in such a way that C = v1v2 · · · v2k+1v1, where v1 = x and v2p+1 = y for some
p ∈ {1, 2, 3, . . . , k − 1}. Now C ′

= v1v2v3 · · · v2p+1v1 is an odd cycle of G and G[V (C ′)] is an edge-subgraph of G[V (C)]
because G[V (C ′)] = G[V (C)] − V ({xjxj+1 | 2p + 2 ≤ j ≤ 2k}). Since G[V (C ′)] is an edge-subgraph of G[V (C)] and G[V (C)]
is an edge-subgraph of G, by Lemma 8, G[V (C ′)] is an edge-subgraph of G. Therefore, C ′ is an odd cycle of G that induces an
edge-subgraph of G and C ′ is shorter than C , a contradiction with the choice of C . This contradiction arose by assuming that
C had some chord. So, G[V (C)] is an edge-subgraph of Gwhich is a chordless odd cycle, which completes the proof. �

The chordless odd cycles and K4 are not edge-perfect because they do not even have the König–Egerváry property.
Therefore, these graphs cannot be edge-subgraphs of any edge-perfect graph. The following result shows that, conversely, if
a graphwithout isolated vertices is not edge-perfect, it is because it contains a chordless odd cycle orK4 as an edge-subgraph.

Theorem 10. A graph with no isolated vertices is edge-perfect if and only if it has neither a chordless odd cycle nor K4 as an
edge-subgraph.

Proof. As we have just discussed, if a graph is edge-perfect then no edge-subgraph of it can be a chordless odd cycle or
K4. Conversely, let G be a graph with no isolated vertices that is not edge-perfect. Then, G has at least one edge-subgraph
that does not have the König–Egerváry property. Let H be an edge-subgraph of G with a minimum number of vertices that
does not have the König–Egerváry property. As H does not have the König–Egerváry property, there is some connected
component H ′ of H that does not have the König–Egerváry property. In particular, H ′ consists of at least two vertices.

We claim thatH ′ is the only connected component ofH having at least two vertices. Suppose, by theway of contradiction,
that H has some other connected component H ′′ having at least two vertices. If EH ′′ is the set of edges of H joining vertices
of H ′′, then H − V (EH ′′) = H − V (H ′′) is an edge-subgraph of H that does not have the König–Egerváry property because
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one of its connected components is still H ′. By Lemma 8, H − V (H ′′) is also an edge-subgraph of G. Since H − V (H ′′) does
not have the König–Egerváry property and has less vertices than H , this contradicts the minimality of H . This contradiction
shows that H ′ is the only connected component of H having at least two vertices.

We now show that the fact that G has no isolated vertices implies that H is connected; i.e., H = H ′. Indeed, since G has
no isolated vertices, for each isolated vertex v of H (i.e., v ∈ V (H) \ V (H ′)) there is some edge ev ∈ E(G) that is incident to
v. If ev were incident to some vertex of H ′ then ev would be an edge of H , which would contradict the fact that v does not
belong to the connected component H ′ of H . Therefore, ev is not incident to any vertex of H ′ for any v ∈ V (H) \ V (H ′). Since
H is an edge-subgraph of G, there is some EH ⊆ E(G) such that G − V (EH) = H . So, if EI = {ev : v ∈ V (H) \ V (H ′)} then
G − V (EH ∪ EI) = H ′, which proves that H ′ is an edge-subgraph of G. Since H ′ does not have the König–Egerváry property,
the minimality of H implies that H = H ′, as claimed.

Since H does not have the König–Egerváry property, Theorem 7 ensures that there is a strongly splitting subgraph S of
H which is an even subdivision of C3, barbell, or K4. We claim that H[V (S)] is an edge-subgraph of H . Indeed, since S is a
strongly splitting subgraph of H , there is a maximum matching M of H such that no edge of M joins a vertex of S with a
vertex of H −V (S) and such that no vertex of S is adjacent to anM-unsaturated vertex of H −V (S). Let E1 be the set of edges
ofM joining two vertices of H −V (S), and let E2 be the set of edges of H incident to someM-unsaturated vertex of H −V (S).
SinceH is connected, for eachM-unsaturated vertex ofH−V (S) there is at least one edge incident to it in E2. Also notice that
since S is strongly splitting subgraph, no edge of E2 is incident to a vertex of S. We conclude that H[V (S)] = H − V (E1 ∪ E2),
which shows that H[V (S)] is an edge-subgraph of H , as claimed.

Finally, we claim that H has a chordless odd cycle or K4 as an edge-subgraph.
Case 1: Suppose first that S is an even subdivision of C3. Then, S is an odd cycle of H whose vertex set induces an edge-

subgraph of H . By Lemma 9, H has an edge-subgraph which is a chordless odd cycle, as claimed.
Case 2: Suppose now that S is an even subdivision of barbell. Let w1 and w2 be the vertices of S of degree 3 in S, let C i be

the cycle of S through wi for i = 1, 2 and let P be the path of S joining w1 to w2. Let P = x1x2x3 · · · x2k+1 where x1 = w1
and x2k+1 = w2. Let E3 = E(C2) and let E4 = {xjxj+1 | 2 ≤ j ≤ 2k}. Then, H[V (C1)] is an edge-subgraph of H[V (S)] because
H[V (C1)] = H[V (S)] − V (E3 ∪ E4). Since H[V (S)] is an edge-subgraph of H , by Lemma 8, H[V (C1)] is an edge-subgraph of
H . Thus, C1 is an odd cycle of H whose vertex set induces an edge-subgraph of H and, by Lemma 9, H has an edge-subgraph
which is a chordless odd cycle, as claimed.

Case 3: Finally, suppose that S is an even subdivision of K4. Let W be the set of vertices of S of degree 3 in S. For each
w, w′

∈ W , let Pw,w′

be the path in S joining w to w′ and not passing through any vertex ofW \ {w, w′
}. If Pw,w′

has length
1 for each w, w′

∈ W , then S = H[V (S)] is an edge-subgraph of H which is a K4, and the claim holds. Therefore, we assume
without loss of generality that there are two vertices w1, w2 ∈ W such that Pw1,w2 has length greater than 1. Let w3 and w4
be the remaining two vertices ofW . Let C be the cycle of S through w2, w3, and w4, but not through w1. For each i = 2, 3, 4,
let Pw1wi = yi1y

i
2y

i
3 · · · yi2ki+1 where yi1 = w1 and yi2ki+1 = wi and let Fi = {yijy

i
j+1 | 1 ≤ j ≤ 2ki−1}. Notice thatH[V (C)] is an

edge-subgraph ofH[V (S)]becauseH[V (C)] = H[V (S)]−V (F2∪F3∪F4). SinceH[V (S)] is an edge-subgraph ofH , by Lemma8,
H[V (C)] is an edge-subgraph of H and, by Lemma 9, H has an edge-subgraph which is a chordless odd cycle, as claimed.

Thus, we proved that H has a chordless odd cycle or K4 as an edge-subgraph. Since H is an edge-subgraph of G, Lemma 8
implies that G has a chordless odd cycle or K4 as edge-subgraphs, which completes the proof. �

We would like to draw attention to the role played by our characterization of graphs having the König–Egerváry
property (Theorem 7) in the above proof. Indeed, the fact that S is a strongly splitting subgraph of H was key in the proof of
the claim that H[V (S)] is an edge-subgraph of H , because it guarantees that there is noM-unsaturated vertex of S such that
each edge incident to it were also incident to some vertex of S and, in particular, no edge of E2 is incident to a vertex of S.

Finally, we present the characterization of edge-perfectness by forbidden edge-subgraphs also for graphs that may have
isolated vertices. Notice that when taking an edge-subgraph H of a graph G, the isolated vertices of G are never removed.
Therefore, H has at least as many isolated vertices as G. That explains why in the theorem below we must forbid edge-
subgraphs with an arbitrary number of isolated vertices.

Theorem 11. A graph is edge-perfect if and only it has neither K4 ∪ tK1 nor C2k+1 ∪ tK1 as an edge-subgraph for any k ≥ 1 and
any t ≥ 0.

Proof. If G is edge-perfect then all its edge-subgraphs have the König–Egerváry property and, in particular, G has neither
K4 ∪ tK1 nor C2k+1 ∪ tK1 as an edge-subgraph for any k ≥ 1 and any t ≥ 0.

Conversely, assume that G is not edge-perfect. Let t be the number of isolated vertices of G. Then, the graph G′ that arises
from G by removing its t isolated vertices is also not edge-perfect. By Theorem 11, G′ has K4 or C2k+1 for some k ≥ 1 as an
edge-subgraph. So, G has K4 ∪ tK1 or C2k+1 ∪ tK1 for some k ≥ 1 as an edge-subgraph. �

5. Further remarks

Our main result, Theorem 7, is a characterization of the graphs having the König–Egerváry property by means of a new
type of forbidden subgraphs that we call strongly splitting subgraphs. Our characterization is a strengthened version of a
characterization by Korach, Nguyen, and Peis [14] by forbidden configurations (Theorem 4) which in turn, generalizes the
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characterizations due to Deming [6] and Sterboul [27] and, when restricted to graphs having a perfect matching, reduces
precisely to Lovász’s characterization by nice subgraphs (Theorem 1). As an application of our main result, we derived a
characterization of edge-perfect graphs by forbidden edge-subgraphs (Theorem 11).

In [17], Larson gave a different characterization of König–Egerváry graphs by relying on the notion of critical stable sets.
A stable set of a graph is a set of pairwise nonadjacent vertices. A stable set I of a graph G is critical (resp. maximum) if
|I| − |N(I)| ≥ |J| − |N(J)| (resp. |I| ≥ |J|) for every stable set J of G, where N(S) denotes


s∈S N(s). Larson proved that a

graph has the König–Egerváry property if and only if it has a maximum independence set which is critical. This result was
strengthened by Levit and Mandrescu [20], as follows.

Theorem 12 ([20]). For every graph G, the following statements are equivalent:

(i) G has the König–Egerváry property.
(ii) Some maximum stable set of G is critical.
(iii) Every maximum stable set of G is critical.

Larson [17] observed that there is no obvious connection between the non-existence of critical maximum stable sets and
the presence of the forbidden configurations in the characterizations of Deming [6] and Sterboul [27]. Theorems 12 and 7
are strengthened versions of the characterizations by Larson and by Deming and Sterboul, respectively, but still, as far as
we can see, there is no obvious direct connection between the existence of some non-critical maximum stable set and the
presence of an even subdivision of one of the graphs in Fig. 1 as a strongly splitting subgraph. It is an interesting problem
for future research that of looking for such direct connection.

A connection was found in [21] between the König–Egerváry property and the structure of the so-called local maximum
stable sets of a graph. There are three main concepts involved in this characterization: local maximum stable sets, uniquely
restricted matchings, and greedoids. A matching is uniquely restricted if its saturated vertices induce a subgraph which has a
unique perfect matching and a stable set S is a local maximum stable set if S is a maximum stable set in the subgraph induced
by its closed neighborhood S ∪ N(S). Greedoids are mathematical structures that are a generalization of matroids and were
introduced by Korte and Lovász [15]. They observed that the optimality of the ‘greedy algorithm’ inmany instances could be
proved even if the underlying combinatorial structure was not necessarily a matroid. For the formal definitions of greedoids
andmatroids and an account of related results, see [3,16]. In [21], Levit andMandrescu proved the following characterization
of those triangle-free graphs whose family of local maximum stable sets is the family of feasible sets of a greedoid.

Theorem 13 ([21]). For every triangle-free graph G, the following assertions are equivalent:

(i) The family of local maximum stable sets of G is a greedoid.
(ii) All the maximum matchings are uniquely restricted and the closed neighborhood of every local maximum stable set of G

induces a König–Egerváry graph.

Moreover, in [22], it was proved that the family Ψ (G) of local maximum stable sets of a graph G forms a greedoid if and
only if Ψ (G) is accessible, which means that, for each non-empty S ∈ Ψ (G), there is a vertex v ∈ S such that S −{x} ∈ Ψ (G).

As a future research, it would be interesting to analyze more connections between the results of this paper and those
of [21,20,22] presented in this section.
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