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In this article we propose a numerical method for reflected backward stochastic
differential equations (RBSDE). This method is based on the simple random walk,
and the convergence is related to the Skorohod topology.
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1. Introduction

In this article, we are interested in the following backward stochastic differential
equation with reflection (in short RBSDE).

Yt = �+
∫ T

t
f�s� Ys� Zs�ds −

∫ T

t
ZsdBs + KT − Kt� 0 ≤ t ≤ T�

(1.1)

Yt ≥ St� 0 ≤ t ≤ T� and
∫ T

0
�Yt − St� dKt = 0�
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Numerical Method for RBSDE 1009

where f is called the coefficient, � the terminal condition, and St is the process
representing the reflecting barrier. It is assumed that � ≥ ST .

It is well known in the case without reflection, that the RBSDE (actually a
BSDE) has a unique solution under the usual assumptions on the generator f and
the final condition �, see e.g., the work of Pardoux and Peng [30, 31]. For RBSDE
and under the Lipschitz assumption of f , El Karoui, Kapoudjian, Pardoux and
Quenez in [10] stated the first existence and uniqueness result, for which the solution
is constrained to stay above an obstacle �St� 0 ≤ t ≤ T�.

The solution of a RBSDE with obstacle S, terminal condition � and coefficient
f , consists of a triple of a progressive measurable process �Y� Z�K�, taking values
in ���d��+, respectively, where K is an increasing process introduced in order to
force the solution Y within a boundary area, satisfying:

i) �
∫ T

0 �Zt�2dt < �;
ii) �Yt ≥ St, 0 ≤ t ≤ T�;
iii) �Kt� is a continuous increasing process, K0 = 0 and

∫ T

0 �Yt − St�dKt = 0.

Several works have been made to prove existence and uniqueness under
different assumptions on f . For instance, in [20], Lepeltier and San Martín proved
the existence of a solution for BSDE’s with a coefficient which is only continuous
with linear growth. In [17], Kobylanski studied the case of BSDE’s without
reflection and proved an existence result in the case when the coefficient is only
linear growth in y, and quadratic in z. In [21], Lepeltier and San Martín generalized
the result to a superlinear case in y. Matoussi [28] established the existence of
a solution for RBSDE’s with continuous and linear growth coefficient. Cvitanic
and Karatzas [7] generalized their results for two reflecting barriers, in which the
solution process of BSDE has to stay within two pre-specified limits U and L.
In this situation see also Xu [36], Lepeltier and Xu [22], among others. In [16],
Kobylanski, Lepeltier, Quenez and Torres proved existence of a reflected solution
of the one-dimensional BSDE when the coefficient is continuous, has a superlinear
growth in y and quadratic growth in z. In [19], Lepeltier, Matoussi, and Xu gave
results on existence under monotonicity and general increasing growth conditions.
For reflected backward doubly stochastic differential equations, see [1, 13], and the
references therein.

In [32], Ren proved existence and uniqueness of a solution for RBSDE driven
by Teugels martingales associated with a Lévy process. For RBSDE driven by a
Lévy process see [33–35], and references therein. Finally, to better understand the
penalization and apriori method in BSDE, see [9, 23].

RBSDEs are a useful tool for the pricing of American options. In a complete
market, the process Y of an American option associated with payoff �St� 0 ≤ t ≤ T�
is a solution of a RBSDE such as (1.1). On the other hand, in [18], El Karoui and
Rouge studied the problem of pricing European options via exponential utility. In
the case of an incomplete market, they stated that the price of such option is a
solution of a quadratic BSDE. Thus, if we are concerned with American options
instead of European options, we are naturally led to the study of reflected quadratic
BSDE’s. See [11] for imperfect market and BSDEs. For a survey on the developed
theory of forward-backward stochastic differential equations (FBSDEs) see [26].

A long-standing problem in the theory of BSDEs is to find an implementable
numerical method. For example, in the Markovian case, Douglas, Ma, and Protter
[8] established a numerical method for a class of forward–backward SDEs, based
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1010 Martínez et al.

on a four step scheme developed by Ma, Protter, and Yong [25]. On the other hand,
Chevance [5] proposed a numerical method for BSDEs. In [37], Zhang proposed a
numerical scheme for a class of backward stochastic differential equations (BSDEs)
with possible path-dependent terminal values. For a class of decoupled forward–
backward stochastic differential equations Bouchard and Touzi [2], proposed a
discrete-time approximation, and the convergence is related with the Lp norm. In
[12], a regression method to solve BSDE was developed by Gobet, Lemor, and
Warin. In the case of a random walk instead of a Brownian motion see [3, 24], in
the case of BSDEs and [14, 15, 29] for the RBSDE case.

This article is organized as follows. In Section 2, we present some preliminaries.
In Section 3, we introduce the numerical method for solutions of RBSDE. Section 4
is devoted to the proof of the convergence of the numerical scheme proposed in
Section 3. Finally, in Section 5 we give an alternative procedure to compute the
solution of a RBSDE, using the ideas of Ma and Zhang given in [27].

2. Preliminaries

In this section we will use the following space: A hilbert space �

�2 =
{
��t � 0 ≤ t ≤ T� is a predictable process s.t. �

[∫ T

0
��t�2dt

]
< +�

}
	

A Banach space � ,

� 2 =
{
��t � 0 ≤ t ≤ T� is a predictable process s.t. �

[
sup
0≤t≤T

��t�2
]
< +�

}
	

Let W be a Brownian motion. Throughout this article we denote by cn�t� =

nt�/n. Then there exists a family of independent random variables �nk such that

���nk = 1� = ���nk = −1� = 1/2 and Wn
t = 1√

n

cn�t�∑
i=1

�ni

converges uniformly in probability to W .
We define �n

k �= ��n1� 	 	 	 � �
n
k�. We will consider the following standing

assumptions:

• (A1) the function f is continuous and bounded.
• (A2) the function f is uniformly Lipschitz with respect to variables �y� z� with

Lipschitz constant K.
• (A3) the Barrier S is assumed to be almost surely constant.
• (H) limn→+� �

[
sups∈
0�T�

∣∣∣�
���s�−�
�n��n
cn�s�

�
∣∣∣] = 0.

Remark 1. For simplicity we assume that T ≡ 1.

Remark 2. The assumption (H) is related with the so called weak convergence of
filtrations defined by Coquet, Mémin and Slominski in [6]. On the other hand, the
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Numerical Method for RBSDE 1011

strongest assumption is (A3). For the general case, we consider St = S0 +
∫ t

0 Jsds +∫ t

0 HsdBs, then Rt = Yt − St satisfies the following RBSDE:

Rt = �̂+
∫ T

t
f̂ �s� Rs� �s�ds −

∫ T

t
�sdBs + KT − Kt 0 ≤ t ≤ T�

(2.2)

Rt ≥ 0� 0 ≤ t ≤ T� and
∫ T

0
RtdKt = 0�

where �̂ = �− ST , �t = Zt +Ht, and f̂ �s� r� �� = f�s� r + Ss� �−Hs�+ Js.
We notice that f̂ is also uniformly Lipschitz on �r� ��, with the same constant

as f . Nevertheless f̂ is in general a random function. We present in this paper the
case where S is constant, but the results hold as soon as H� J are smooth functionals
of B, to ensure that a method based on Euler scheme jointly with a random walk
approximation of B converges to them.

3. Numerical Method for RBSDE

In this section, we define the numerical scheme for RBSDE. The method is based in
two steps:

• Step I: The penalization term and Picard’s ieration procedure in the
continuous case. In this case we follow with the main ideas given in [10].

• Step II: The penalization term and Picard’s iteration procedure in the
discrete case. In this step we will follow the ideas given in [3] and/or [4].

3.1. Step I: The Penalization Term and Picard’s Iteration Procedure in the
Continuous Case

3.1.1. Penalization Term. In this step we are interested in the following penalization
scheme associated to the unique solution of the RBSDE given in (1.1). For each
� > 0, let ��Y �

t � Z
�
t �� 0 ≤ t ≤ 1� denote the unique pair of progressively measurable

�t processes with values in �×� satisfying the following BSDE:

Y �
t = �+

∫ 1

t
f�s� Y �

s � Z
�
s �ds −

∫ 1

t
Z�
s dBs +

1
�

∫ 1

t
�S − Y �

s �
+ds� (3.3)

where � and f satisfy the above assumptions (A1), (A2). In this famework, we define

K�
t �= 1

�

∫ t

0
�S − Y �

s �
+ds� 0 ≤ t ≤ 1	 (3.4)

Proposition 1. Assume the standard conditions (A1), (A2), (A3), and (H). Then, we
have that

�
[∫ 1

0
�Y �

t − Yt�2dt +
∫ 1

0
�Z�

t − Zt�2dt + sup
0≤t≤1

�K�
t − Kt�2

]
→ 0 as � → 0	 (3.5)

Proof. We follow the proof given in [10]. �
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1012 Martínez et al.

Remark 3. For the penalization method we can obtain the following result. There
exists a constant c such that for every � ∈�0� 1�,

�
[
sup
0≤t≤1

�Y �
t �2 +

∫ 1

0
�Z�

t �2dt + sup
0≤t≤1

�K�
t �2

]
≤ c	

Remark 4. Let us notice that for each fixed t, the sequence �Y �
t � is decreasing in �.

Lemma 1. Under the assumption (A1), (A2), (A3), Y � the unique solution of equation
(3.3) satisfies the following property:

�
[
sup
0≤t≤1

��S − Y �
t �

+�2
]
→ 0 as � → 0	 (3.6)

Proof. We follow again the proof given in [10]. �

3.1.2. Picard’s Iteration Procedure. Remember that �2 is a Hilbert space. For each
� fixed in �0� 1�, we define a mapping �� of �2 ×�2 into itself as follows: Given
�U� V� ∈ �2 ×�2, we define �Y �� Z�� �= ���U� V� to be the unique element of �2 ×
�2, which is such that the couple �Y �� Z�� solves the following BSDE:

Y �
t = �+

∫ 1

t
f�s� Us� Vs�ds +

1
�

∫ 1

t
�S − Us�

+ds −
∫ 1

t
Z�
s dBs	 (3.7)

This equation corresponds to the Picard’s iteration associated to the BSDE (3.3).
In [10], the authors show that the mapping �� is a strict contraction on �2 ×�2

equipped with the norm 	 · 	� defined by

∥∥�U� V�∥∥
�
�=

(
�
[∫ 1

0
e�s

(�Us�2 + �Vs�2
)
ds

])1/2

	

Thus, the mapping �� has a unique fixed point, which is the solution �Y �� Z�� of
the penalized BSDE (3.3). This fixed point can be reached via Picard’s iteration
procedure. More precisely, we define the sequence �Y ��p� Z��p�p∈� as follows:{

�Y ��0� Z��0� �= �0� 0��

�Y ��p+1� Z��p+1� = ���p+1�Y ��0� Z��0� �= ���Y ��p� Z��p�	
(3.8)

In particular, for each p ∈ �,

	�Y � − Y ��p� Z� − Z��p�	� ≤
1
2p

	�Y �� Z��	� � (3.9)

and this inequality permits to understand the influence of the initial condition used
for Picard’s iteration method. In conclusion,

	�Y � − Y ��p� Z� − Z��p�	� → 0� as p tends to �	 (3.10)
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Numerical Method for RBSDE 1013

3.2. Step II: The Penalization Term and Picard’s Iteration Procedure in the Discrete
Case

In this step we are interested in the following discrete RBSDE. Let 0 = t0 < t1 <
· · · < tn = 1 a discretization step for the interval 
0� 1� such that ∀1 ≤ i ≤ n, ti −
ti−1 = 1/n.

Y��n
t = �n +

∫ 1

t
f�s� Y��n

s � Z��n
s �ds −

∫ 1

t
Z��n

s dWn
s + K��n

ti
− K��n

t � 0 ≤ t ≤ 1�

Y��n
t ≥ S� 0 ≤ t ≤ 1� (3.11)

Y��n
1 = �n	

3.2.1. Penalization Term. For t ∈ 
ti−1� ti
, and for each � > 0, let
��Y ����n

t � Z����n
t � K��n

t �� 0 ≤ t ≤ 1� denote the unique pair of progressively measurable
�t processes with values in �×� satisfying the following discrete BSDE:

Y ����n
t = Y ����n

ti
+
∫ ti

t
f�s� Y ����n

s � Z����n
s �ds −

∫ ti

t
Z����n

s dWn
s + K����n

ti
− K����n

t �

Y ����n
1 = �n	 (3.12)

where K����n
0 = 0 and for t ∈�ti−1� ti
 and we define

K����n
t �= 1

n�

i∑
j=1

(
S − Y ����n

tj−1

)+
	 (3.13)

Proposition 2. Assume the standard conditions (A1), (A2). Then, we have that

�
[∫ 1

0
�Y ����n

t − Y��n
t �2dt +

∫ 1

0
�Z����n

t − Z��n
t �2dt + sup

0≤t≤1
�K����n

t − K��n
t �2

]
→ 0	

(3.14)

as � → 0, where �Y��n� Z��n� K��n
t � is the unique solution of the equation (3.11).

Proof. See the proof in [29], for RBSDE and [3] in the BSDE case. �

In this section we follow the ideas given in [3], in order to get the exact solution
of the discrete equation (3.12). For each fixed � > 0, we introduce the following
implicit discrete-time scheme BSDE:

Y ����n
ti

= Y ����n
ti+1

+ 1
n
f
(
ti� Y

����n
ti

� Z����n
ti

)+ 1
n�

(
S − Y ����n

ti

)+ − 1√
n
Z����n

ti
�i+1� (3.15)

for i ∈ �n− 1� 	 	 	 � 0�, with Y ����n
1 = �n. Remember that, ��k�1≤k≤n is an i.i.d.

Bernouilli symmetric sequence, and �n is a square integrable random variable,
measurable w.r.t. �n with �k �= ��1� 	 	 	 � �k�.

3.2.2. Picard’s Iteration Procedure. An explicit solution of (3.15) can be found
using a discrete Picard’s iteration method. Let us set Y ��0�n ≡ 0, Z��0�n ≡ 0, we define
�Y ��p+1�n� Z��p+1�n� by induction as the solution of the iterated discrete-time scheme
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1014 Martínez et al.

BSDE:

Y ��p+1�n
ti

= Y ��p+1�n
ti+1

+ 1
n
f
(
�ti� Y

��p�n
ti

� Z��p�n
ti

)+ 1
n�

(
S − Y ��p�n

ti

)+ − 1√
n
Z��p+1�n

ti
�i+1

(3.16)

for i ∈ �n− 1� 	 	 	 � 0�. Remember the definition of Picard’s iteration procedure
(3.16) and the definition of our scheme as a solution of (3.15). Just like in the
continuous setting, we begin to show the following lemma:

Lemma 2. There exists �� > 1 and n0 ∈ � such that for all n ≥ n0, for all p ∈ �∗,∥∥∥∥ (Y ��p+1�n − Y ��p�n� Z��p+1�n − Z��p�n
) ∥∥∥∥2

��

≤ 1
4

∥∥∥∥ (Y ��p�n − Y ��p−1�n� Z��p�n − Z��p−1�n
) ∥∥∥∥2

��

�

where, for p ∈ �,∥∥∥∥ (Y ��p+1�n − Y ��p�n� Z��p+1�n − Z��p�n
) ∥∥∥∥2

��

�= �
[
sup
0≤k≤n

��
k/n
∣∣Y ��p+1�n − Y ��p�n

∣∣2]+ 1
n
�

[
n−1∑
k=0

��
k/n
∣∣Z��p+1�n − Z��p�n

∣∣2] 	

Proof. We follow again [3]. �

Just like in the continuous case, we can use the Cauchy criterion and the
preceding lemma to get the following result:

Proposition 3. Following the notations of (3.15) and (3.16), for each fixed � in �0� 1�,
we have that

sup
n

�
[
sup
0≤t≤1

∣∣Y ��p�n
t − Y ����n

t

∣∣2 + ∫ 1

0

∣∣Z��p�n
t − Z����n

t

∣∣2dt] → 0� as p → �	 (3.17)

4. Main Result

Theorem 1. Under the assumptions (A1), (A2), (A3), and (H) we have

lim
�→0

lim
n→���

n� Y ����n� Z����n� K����n� = ��� Y� Z�K��

in the Skorohod topology, where ��� Y� Z�K� is the solution of the RBSDE (1.1).

Proof. We shall prove the convergence of Y ����n toward Y . The convergence of the
other terms follows along the lines of the proof given in [10]. �

The main idea of the proof is the following decomposition for the error:

Yt − Y ����n
t = �Yt − Y �

t �+ �Y �
t − Y ��p

t �+ �Y ��p
t − Y ��p�n

t �+ �Y ��p�n
t − Y ����n

t ��

where the first term corresponds to the penalization term in the continuous setting,
the second one is the Picard’s iteration procedure for the continuous BSDE, the
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Numerical Method for RBSDE 1015

third term correspond to the discretization of a BSDE by using a random walk
instead of the Brownian motion, and the last term is related to a Picard’s iteration
procedure in the discrete case. The proof follows from the next result in which the
main technical point is to control the limit in n of

sup
0≤t≤1

∣∣∣∣1� ∫ t

0
�S − Y ��p�n

s− �+dcn�s�−
1
�

∫ t

0
�S − Y ��p

s �+ds
∣∣∣∣

uniformly in �� p.
In order to established convergence in probability we consider that all the

processes are defined in the same probability space.

Lemma 3. Let the assumptions (A1), (A2), (A3), and hypothesis (H). Let us consider
the scaled random walks Wn. We have that for each fixed � ∈�0� 1�,

sup
0≤t≤1

∣∣Y ��p�n
t− − Y ��p

t

∣∣+ ∫ 1

0

∣∣Z��p�n
s− − Z��p

s

∣∣2ds → 0 as n → +� in probability	 (4.18)

Proof. The proof will be done by induction on p. For the sake of clarity, we express
everything in continuous time, so that equation (3.16) becomes for t ∈ 
0� 1�;

Y ��p+1�n
t = �n +

∫ 1

t
f�s−� Y ��p�n

s− � Z��p�n
s− �dcn�s�

+ 1
�

∫ 1

t
f�S − Y ��p�n

s− �+dcn�s�−
∫ 1

t
Z��p+1�ndWn

s �

where cn�s� = 
sn�

n
, and Y ��	�n denotes the càglàd process associated to Y ��	�n. The

assumption is that �Y ��p�n� Z��p�n� converges to �Y ��p� Z��p� in the sense of (4.18) so
that our aim is to prove that �Y ��p+1�n� Z��p+1�n� converges to �Y ��p+1� Z��p+1� in the
same sense.

Taking conditional expectations w.r.t. �k in (3.16) and using the fact that
Y

��p+1�n
tk

is �k-measurable, we find that for tk ≤ 
tn�

n
< tk+1:

Y ��p+1�n
t = �

[
�n +

∫ 1

t
f�s−� Y ��p�n

s− � Z��p�n
s− �dcn�s�

∣∣∣∣�k

]
+�

[
1
�

∫ 1

t
�S − Y ��p�n

s− �+dcn�s�
∣∣∣∣�k

]
	

So that

M��p+1�n
t �= Y ��p+1�n

t +
∫ t

0
f�s−� Y ��p�n

s− � Z��p�n
s− �dcn�s�+

1
�

∫ t

0
�S − Y ��p�n

s− �+dcn�s�

= �
[
�n +

∫ 1

0
f�s−� Y ��p�n

s− � Z��p�n
s− �dcn�s�

∣∣∣∣�k

]
+�

[
1
�

∫ 1

0
�S − Y ��p�n

s− �+dcn�s�
∣∣∣∣�k

]
= �

[
M

��p+1�n
1

∣∣�k

]
is a � martingale	
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1016 Martínez et al.

Moreover, we have the representation

M��p+1�n
t = �

[∫ 1

0
Z��p+1�n

s− dWn
s �

∣∣∣∣�k

]
=
∫ tk

0
Z��p+1�n

s− dWn
s

=
∫ t

0
Z��p+1�n

s− dWn
s 	

Now, the idea is to apply Corollary 3.2 in [3] to the sequence of martingales{
�M

��p+1�n
t �0≤t≤1� n ∈ �

}
. For this, we have to prove the L1 ��� convergence

of M��p+1�n
1 .
Using the fact that Y ��p�n and Z��p�n are piecewise constant, we have that∣∣∣∣M��p+1�n
1 − �−

∫ 1

0
f�s� Y ��p

s � Z��p
s �ds − 1

�

∫ 1

0
�S − Y ��p

s �+ds
∣∣∣∣

≤ ��n − �� +
∫ 1

0

∣∣∣∣f�s� Y ��p
s � Z��p

s �− f�s� Y ��p�n
s � Z��p�n

s �

∣∣∣∣ds + 1
�

∫ 1

0

{∣∣∣∣Y ��p
s − Y ��p�n

s

∣∣∣∣}ds

(where we have used triangular inequalities together with �u+ − v+� ≤ �u− v�).
Now using the fact that f is Lipschitz with constant K,∣∣∣∣M��p+1�n

1 − �−
∫ 1

0
f�s� Y ��p

s � Z��p
s �ds − 1

�

∫ 1

0
�S − Y ��p

s �+ds
∣∣∣∣

≤ �1+ K + 1
�
� sup
0≤s≤1

∣∣∣∣Y ��p�n
s − Y ��n

s

∣∣∣∣+ K
∫ 1

0

∣∣∣∣Z��p
s − Z��p�n

s

∣∣∣∣ds�
and using the recurrence assumption, this last term tends to zero in probability and
then in L1 ��� (using the L2 ���-boundedness).

Applying Corollary 3.2 in [3], we see that M��p+1�n converges to

M��p+1
t �= �

[
�+

∫ 1

0
f�s� Y ��p

s � Z��p
s �ds

∣∣∣∣�t

]
+�

[
1
�

∫ 1

0
�S − Y ��p

s �+ds
∣∣∣∣�t

]
= Y ��p+1

t +
∫ t

0
f�s� Y ��p

s � Z��p
s �ds + 1

�

∫ t

0
�S − Y ��p

s �+ds�

in the sense that

sup
0≤t≤1

∣∣M��p+1�n
t −M��p+1

t

∣∣+ ∫ 1

0

∣∣Z��p+1�n
s − Z��p+1

s

∣∣ → 0 in probability	

Since we want to prove

sup
0≤t≤1

∣∣Y ��p+1�n
t − Y ��p+1

t

∣∣+ ∫ 1

0

∣∣Z��p+1�n
s − Z��p+1

s

∣∣ → 0 in probability	
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Numerical Method for RBSDE 1017

The theorem will be demonstrated if we prove that

sup
0≤t≤1

∣∣∣∣ ∫ t

0
f �s−� Y ��p�n

s− � Z��p�n
s− � dcn�s�−

∫ t

0
f �s� Y ��p�n

s � Z��p�n
s � ds

∣∣∣∣ → 0 in probability

(4.19)

and that

sup
0≤t≤1

∣∣∣∣1� ∫ t

0
�S − Y ��p�n

s− �+dcn�s�−
1
�

∫ t

0
�S − Y ��p

s �+ds
∣∣∣∣ → 0 in probability	 (4.20)

We begin to check (4.20). We have that

sup
0≤t≤1

∣∣∣∣1� ∫ t

0
�S − Y ��p�n

s− �+dcn�s�−
1
�

∫ t

0
�S − Y ��p

s �+ds
∣∣∣∣

≤ 1
�

{∫ 1

0

∣∣Y ��p
s − Y ��p�n

s

∣∣ds}+ 1
n�

{
�S� + sup

0≤t≤1

∣∣Y ��p�n
cn�t�

∣∣} (4.21)

The first term in (4.21) tends to 0 as n tends to � in probability because of (H) and
the recurrence assumption.

For the second term in (4.21), we have:

1
n�

{
�S� + sup

0≤t≤1

∣∣Y ��p�n
cn�t�

∣∣} ≤ 1
n�

{
�S� + sup

0≤t≤1

∣∣Y ��p�n
cn�t�

− Y
��p
cn�t�

∣∣}
+ 1

n�

{
sup
0≤t≤1

∣∣Y ��p
cn�t�

∣∣} (4.22)

The first term on the right side of (4.22) tends to 0 with n in probability because of
(H) and the recurrence assumption. The second term tends to zero �-a.s. because
�S� + sup0≤t≤1

∣∣Y ��p
cn�t�

∣∣ is an almost surely finite random variable.
We can apply the same method to get (4.19): thanks to Corollary 3.2 in [3], we

may use the fact that

sup
0≤t≤1

∣∣∣∣ ∫ t

0
Z��p�n

s dcn�s�−
∫ t

0
Z��p

s ds

∣∣∣∣ → 0� as n → � in probability. (4.23)
�

5. A New Procedure: Ma and Zhang’s Method

Let us introduce the following 2-step scheme given in [27] page 562 in the discrete
case:

• Y n
1 �= �n.

• for i = n� n− 1� 	 	 	 1, and t ∈ 
ti−1� ti
, let
(
Ỹ n� Zn

)
be the solution of the

BSDE:

Ỹ n
t = Y n

ti
+
∫ ti

t
f�s� Ỹ n

s � Z
n
s �ds −

∫ ti

t
Zn

s dW
n
s 	 (5.24)

• for each i and t ∈�ti−1� ti�, define Y n
t = Ỹ n

t ∨ S

• let Kn
0 = 0 and for t ∈�ti−1� ti�, define Kn

t ≡ Kn
ti
�= ∑i

j=1

(
Y n
tj−1

− Ỹ n
tj−1

)
.
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1018 Martínez et al.

Clearly, Kn is predictable. And observe also that we have

Y n
ti−1

= Y n
ti
+
∫ ti

ti−1

f
(
s� Ỹ n

s � Z
n
s

)
ds −

∫ ti

ti−1

Zn
s dW

n
s + Kn

ti
− Kn

ti−1
	 (5.25)

In the appendix we prove that �Ỹ n� Zn� is contraction and then it converges
towards �Y� Z� the unique solution of (1.1).

Now we define a modified Picard’s iteration procedure for a penalization
discrete BSDE. This is the numerical algorithm that we propose to
approximate �Y� Z�.

We define Ÿ ��p+1�n for i = 0� 	 	 	 � n− 1, by

Ÿ ��p+1�n
ti

= Ÿ ��p+1�n
ti+1

+ 1
n
f
(
ti� Ÿ

��p�n
ti

� Z̈��p�n
ti

)− 1√
n
Z̈��p+1�n

ti
�ni+1 +

(
K̈��p+1�n

ti+1
− K̈��p+1�n

ti

)
Ÿ

��p�n
1 �= �n (5.26)

where we have set for 0 ≤ i ≤ n,

K̈��p+1�n
ti+1

− K̈��p+1�n
ti

�= 1
n�

(
S − Ÿ ��p+1�n

ti

)+
	 (5.27)

Remark 5. The main difference between this approximation and the Picard’s
iteration procedure is that instead of p we use p+ 1 in the last term of (5.26). This
makes the method explicit. In fact, the equation to be solved has the form y = a+
b�S − y�+, where a� b > 0 are known. The solution is y = a if a ≥ S. When a < S
the solution is y = a+bS

1+b
< S. We expect this method to have a better performance,

because in the first method the Lipschitz constant, of the implicit equation to be
solved in y, is large for small �.

In this section �Ỹ
p�n
ti

� Z
p�n
ti

� denotes the the Picard iteration procedure for the
couple of processes �Ỹ n

ti
� Zn

ti
� defined as the solution of the BSDE equation (5.24).

Theorem 2. Assume (A1)–(A3) and (H). Then

lim
�→0

lim
n→+� lim

p→+��

[
sup
0≤i≤n

∣∣∣∣Ỹ n
ti
− Ÿ ��p�n

ti

∣∣∣∣2 + ∫ 1

0

∣∣∣∣Zn
t − Z̈��p�n

t

∣∣∣∣2dt
]
= 0	 (5.28)

The proof of this theorem follows from the convergence of �Ỹ p�n� Zp�n�, on p, to
the solution of the discrete solution �Y n� Zn� (given in the Appendix) and the next
result.

Proposition 4. Assume (A1)–(A3) and (H). Then, for all p ∈ �,

lim
�→0

lim
n→+��

[
sup
0≤i≤n

{∣∣∣∣Ỹ p�n
ti

− Ÿ ��p�n
ti

∣∣∣∣2 + 1
n

n∑
i=0

∣∣∣∣Zp�n
ti

− Z̈��p�n
ti

∣∣∣∣2
}]

= 0	 (5.29)

The proof of Proposition 4 relies on the following two lemmas that control the
distance between S and Ỹ p+1�n or Ÿ ��p+1�n.
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Numerical Method for RBSDE 1019

Lemma 4. For all n ∈ �, p ∈ � and 0 ≤ i ≤ n,

�S − Ỹ p+1�n
ti

�1
Ỹ
p+1�n
ti

≤S
≤ 1

n
�f�ti� Ỹ p�n

ti
� Zp�n

ti
�� ≤ 1

n
��f ���	 (5.30)

Proof. We have that

Ỹ p+1�n
ti

1
Ỹ
p+1�n
ti

≤S
=
{
Y p+1�n
ti+1

+ 1
n
f�ti� Ỹ

p�n
ti

� Zp�n
ti

�− 1√
n
Zp+1�n

ti
�ni+1

}
1
Ỹ
p+1�n
ti

≤S
	

Conditioning w.r.t. �n
i , from this equality we get that:

�Ỹ p+1�n
ti

− S�1
Ỹ
p+1�n
ti

≤S
=
{
�
[
Y p+1�n
ti+1

− S��n
i

]
+ 1

n
f�ti� Ỹ

p�n
ti

� Z̃p�n
ti

�

}
1
Ỹ
p+1�n
ti

≤S
	

Now, recall that by construction, we know that �Y p+1�n
ti+1

− S� ≥ 0 (and in particular

�
[
Y

p+1�n
ti+1

− S��n
i

]
≥ 0).

We deduce that{
�Ỹ p+1�n

ti
− S�− 1

n
f�ti� Ỹ

p�n
ti

� Z̃p�n
ti

�

}
1
Ỹ
p+1�n
ti

≤S
≥ 0	

Obviously,

�Ỹ p+1�n
ti

− S�1
Ỹ
p+1�n
ti

≤S
≤ 0�

In conclusion, we have that

1
n
f�ti� Ỹ

p�n
ti

� Z̃p�n
ti

�1
Ỹ
p+1�n
ti

≤S
≤ �Ỹ p+1�n

ti
− S�1

Ỹ
p+1�n
ti

≤S
≤ 0�

which implies inequality (5.30). �

Lemma 5. Suppose that (H) is satisfied. Then

lim
�→0

lim
n→��

[(
sup
i

�S − Ÿ ��p+1�n
ti

�+
)2
]1/2

= 0	

Proof. Consider the auxiliary process �X��n� ���n� solution of the discrete backward
equation

X��n
ti

= X��n
ti+1

− 1
n
	f	� − 1√

n
���n
ti

�ni+1 +
1
n�

�S − X��n
ti

�+

with X��n
1 = �n. A backward induction on i shows that for all � > 0� p ≥ 1� n ≥

1� 0 ≤ i ≤ n we have

X��n
ti

≤ Ÿ ��p+1�n
ti
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1020 Martínez et al.

In fact, this property holds for i = n. Assume that it holds for i ≥ k+ 1 and we
want to prove it for i = k. Recall that if y = �

(
Ÿ

��p+1�n
tk+1

+ 1
n
f
(
tk� Ÿ

��p�n
tk

� Z̈
��p�n
tk

) ∣∣�k

)
and b = 1

n�
then (see Remark 5)

Ÿ ��p+1�n
tk

=


y if y ≥ S

y + bS

1+ b
if y < S	

On the other hand, the same result gives for x = �
(
X��n

tk+1
− 1

n
	f	�

∣∣�k

)
that

X��n
tk

=


x if x ≥ S

x + bS

1+ b
if x < S	

The induction hypothesis gives x ≤ y. Now, if x ≥ S clearly also y ≥ S and in this
case X��n

tk
≤ Ÿ

��p+1�n
tk

. On the other hand, if x < S and y ≥ S we have X��n
tk

≤ S ≤ y =
Ÿ

��p+1�n
tk

. Finally, if x < S� y < S we get X��n
tk

= x+bS
1+b

≤ y+bS

1+b
= Ÿ

��p+1�n
tk

and the claim
is proven.

In particular, we have for all � > 0� p ≥ 1� n ≥ 1� 0 ≤ i ≤ n

�S − Ÿ ��p�n
ti

�+ ≤ �S − X��n
ti

�+

It is straightforward to prove, using induction on i, the inequality

�S − X��n
ti

�+ ≤ �1− ti�	f	� ≤ 	f	�	

As n tends to infinity �X��n� converges in the Skorohod topology to the unique
solution of

X�
t = �+

∫ 1

t

(
−	f	� + 1

�
�S − X�

s �
+
)
ds −

∫ 1

t
��
s dWs	

Again it is direct to prove that �S − X�
t �

+ ≤ �1− t�	f	�.
In particular, if � is any continuous bounded function such that ��x� = x2 for

0 ≤ x ≤ 	f	� we obtain

lim
n→��

[(
sup
i

�S − X��n
ti

�+
)2
]
= lim

n→��
[
�

(
sup
i

�S − X��n
ti

�+
)]

= �
[
�

(
sup
t

�S − X�
t �

+
)]

= �

[(
sup
t

�S − X�
t �

+
)2
]
	

From Lemma 1 (which is Lemma 6.1, p. 723 in [10]) applied to �X���, we obtain the
result. �
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Numerical Method for RBSDE 1021

Proof of Proposition 4. The proof is based on an induction argument on the
variable p. For any � > 1 consider � = �1/n and p ∈ �, we introduce the following
induction hypothesis:

	�
p �

{
lim
�→0

lim
n→+��

[
sup
0≤i≤n

{
�i

∣∣∣∣Ỹ p�n
ti

− Ÿ ��p�n
ti

∣∣∣∣2 + 1
n

n∑
i=0

�i

∣∣∣∣Zp�n
ti

− Z̈��p�n
ti

∣∣∣∣2
}]

= 0

}
(5.31)

Note that 	�
0 is satisfied for any choice of �. Our choice of � (independent of

�� p� n) will be done latter. For all �� p� n we define

�v
��p+1�n
i �= Ÿ ��p+1�n

ti
− Ỹ p+1�n

ti

= U��p+1�n
ti+1

+ 1
n

{
f
(
ti� Ÿ

��p�n
ti

� Z̈��p�n
ti

)− f
(
ti� Ỹ

p�n
ti

� Zp�n
ti

)}
− 1√

n

(
Z̈��p+1�n
ti

− Zp+1�n
ti

)
�ni+1� (5.32)

where: U��p+1�n
ti+1

= Ÿ
��p+1�n
ti+1

− Y
p+1�n
ti+1

+ K̈
��p+1�n
ti+1

− K̈
��p+1�n
ti

. We also define

�Z
��p�n
i �= Z̈��p+1�n

ti
− Zp+1�n

ti
	

Since �v��p+1�n
n = 0, we have, for k = 0� 	 	 	 � n− 1, that

�k��v��p+1�n
k �2 =

n−1∑
i=k

�i��v��p+1�n
i �2 − �i+1��v��p+1�n

i+1 �2

= �1− ��
n−1∑
i=k

�i��v��p+1�n
i �2 + �

n−1∑
i=k

�i
(
��v��p+1�n

i �2 − ��v��p+1�n
i+1 �2

)
�

which implies

�k��v��p+1�n
k �2 = �1− ��

n−1∑
i=k

�i��v��p+1�n
i �2 + �

n−1∑
i=k

�i
(
��v��p+1�n

i �2 − �U��p+1�n
ti+1

�2
)

+ �
n−1∑
i=k

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
)
	

We know that

��v
��p+1�n
i �2 − �U��p+1�n

ti+1
�2 = 2�v��p+1�n

i

(
�v

��p+1�n
i − U��p+1�n

ti+1

)
−
(
�v

��p+1�n
i − U��p+1�n

ti+1

)2

Since f is Lipschitz in �y� z� with constant K, we have for each � > 0,

2
n
�v

��p+1�n
i

{
f
(
ti� Ÿ

��p�n
ti

� Z̈��p�n
ti

)− f
(
ti� Ỹ

p�n
ti

� Zp�n
ti

)}
≤ 2K

n
��v��p+1�n

i � (��v��p�ni � + ��Z��p�n
i �)

≤ 4K2

n
��v��p+1�n

i �2 + 1
2n

{��v��p�ni �2 + ��Z��p�n
i �2} �
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1022 Martínez et al.

and from (5.32)

1
n
��Z��p+1�n

i �2 ≤ 2
(
�v

��p+1�n
i − U��p+1�n

ti+1

)2 + 2K2

n2

(��v��p�ni �2 + ��Z��p�n
i �2) (5.33)

As a by product of this discussion, we deduce that

2
n−1∑
i=k

�i�v
��p+1�n
i

(
�v

��p+1�n
i − U��p+1�n

ti+1

)
≤ 4K2

n

n−1∑
i=k

�i��v��p+1�n
i �2 + 1

2n

n−1∑
i=k

�i
{��v��p�ni �2 + ��Z��p�n

i �2}
− 2√

n

n−1∑
i=k

�i�v
��p+1�n
i �Z

��p+1�n
i �ni+1�

and

−
n−1∑
i=k

�i
(
�v

��p+1�n
i − U��p+1�n

ti+1

)2

≤ − 1
2n

n−1∑
i=k

�i��Z��p+1�n
i �2 + 2K2

n2

n−1∑
i=k

�i
(��v��p�ni �2 + ��Z��p�n

i �2) 	
Set � �=

(
2K2

n
+ 1

2

)
�

n
and A = 1− � + � 4K2

n
, which is negative if � is large

enough. We have

�k��v��p+1�n
k �2 + �

2n

n−1∑
i=k

�i��Z��p+1�n
i �2

≤ A
n−1∑
i=k

�i��v��p+1�n
i �2 + �

n−1∑
i=k

�i
{��v��p�ni �2 + ��Z��p�n

i �2}
+ �

n−1∑
i=k

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
)
− 2�√

n

n−1∑
i=k

�i�v
��p+1�n
i �Z

��p+1�n
i �ni+1	 (5.34)

Our aim is now to study the term � supk

∑n−1
i=k �

i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
)
. We

have the following technical lemma:

Lemma 6. Suppose � = �
1
n , with � > 1, then

lim
�→0

lim
n→+��

[
� sup

k

n−1∑
i=k

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
)]

≤ 0	 (5.35)
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Numerical Method for RBSDE 1023

Proof. We will distinguish four cases, where we denote �K̈
��p+1�n
i = K̈

��p+1�n
ti+1

−
K̈

��p+1�n
ti

= 1
n�

(
S − Ÿ

��p+1�n
ti

)+
, which makes K̈��p+1�n predictable.



I � Ỹ p+1�n
ti+1

≥ S and Ÿ
��p+1�n
ti

≥ S� U
��p+1�n
ti+1

= Ÿ
��p+1�n
ti+1

− Ỹ
p+1�n
ti+1

= �v
��p+1�n
i+1

II � Ỹ p+1�n
ti+1

≥ S and Ÿ
��p+1�n
ti

< S� U
��p+1�n
ti+1

= �v
��p+1�n
i+1 + �K̈

��p+1�n
i

III � Ỹ p+1�n
ti+1

< S and Ÿ
��p+1�n
ti

≥ S� U
��p+1�n
ti+1

= Ÿ
��p+1�n
ti+1

− S ≤ �v
��p+1�n
i+1

IV � Ỹ
p+1�n
ti+1

< S and Ÿ
��p+1�n
ti

< S� U
��p+1�n
ti+1

= Ÿ
��p+1�n
ti+1

− S + �K̈
��p+1�n
i

Let us set

M �= sup
�∈�0�1


sup
p∈�

sup
n∈�

[
�
(
sup
0≤i≤n

(
�S�2 + �Ÿ ��p+1�n

ti
�2 + �Ỹ p+1�n

ti
�2
))]1/2

< �	

Recalling the definition of U��p+1�n
ti+1

, we see that{
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
}

≤ ��K̈��p+1�n
i �21IV∪II +

{(
Ÿ ��p+1�n
ti+1

− S
)2 −

(
Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

)2
}
1IV∪III

+ 2
(
Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

)
�K̈

��p+1�n
i 1IV∪II

= ��K̈��p+1�n
i �21IV∪II +

(
S − Ỹ p+1�n

ti+1

) (
S + Ỹ p+1�n

ti+1
− 2Ÿ ��p+1�n

ti+1

)
1IV∪III

+ 2
(
Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

)
�K̈

��p+1�n
i 1IV∪II

Convergence of the first and second terms: For the first term, by definition of
�K̈

��p+1�n
i , it is easily seen that

�

[
sup
k

n−1∑
i=k

�i��K̈��p+1�n
i �2

]
= �

[
n−1∑
i=0

�i��K̈��p+1�n
i �2

]
≤ 2M2

n�2

1
n

�n − 1
� − 1

(5.36)

Since � = l1/n we obtain for every fixed � > 0

lim
n→+��

[
sup
k

n−1∑
i=k

�i��K̈��p+1�n
i �2

]
= 0	

For the second term, note that if Ÿ ��p+1�n
ti+1

≥ S, then(
S − Ỹ p+1�n

) (
S + Ỹ p+1�n

ti+1
− 2Ÿ ��p+1�n

ti+1

)
1IV∪III ≤ 0�

so we just need to consider the case Ÿ
��p+1�n
ti+1

≤ S, getting(
S − Ỹ p+1�n

ti+1

) (
S + Ỹ p+1�n

ti+1
− 2Ÿ ��p+1�n

ti+1

)
1IV∪III
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1024 Martínez et al.

≤ 2
(
S − Ỹ p+1�n

ti+1

) (
S − Ÿ ��p+1�n

ti+1

)+
1IV∪III�

which includes both cases. We get using Lemma 4

�

[
sup
k

n−1∑
i=k

�i
(
S − Ỹ p+1�n

ti+1

) (
S − Ÿ ��p+1�n

ti+1

)+
1IV∪III

]

= �

[
n−1∑
i=0

�i
(
S − Ỹ p+1�n

ti+1

) (
S − Ÿ ��p+1�n

ti+1

)+
1IV∪III

]

≤ 	f	�
�n − 1
n�� − 1�

[
�
(

sup
0≤i≤n−1

�S − Ÿ ��p+1�n
ti+1

�+
)2
]1/2

�

which converges to zero by Lemma 5 by letting n → �, and then � → 0.

Convergence of last term: First, notice that IV ∪ II = S > Ÿ
��p+1�n
ti

. From the
equation satisfied by Ÿ ��p+1�n we have that

Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

= Ÿ ��p+1�n
ti

− Ỹ p+1�n
ti+1

− 1
n
f�ti� Ÿ

��p�n
ti

� Z̈��p�n
ti

�+ 1√
n
Z̈��p+1�n

ti
�ni+1 − �K̈

��p+1�n
i �

which implies

�Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

�1IV∪II

≤ �S − Ỹ p+1�n
ti+1

�1IV∪II −
1
n
	f	� + 1√

n
Z̈��p+1�n

ti
�ni+11IV∪II

≤ �S − Ỹ p+1�n
ti+1

�1
Ỹ
p+1�n
ti+1

<S
+ 1

n
	f	� + 1√

n
Z̈��p+1�n

ti
�ni+11IV∪II

≤ �S − Ỹ p+1�n
ti+1

�1
Ỹ
p+1�n
ti+1

<S
+ 1

n
	f	� + 1√

n
Z̈��p+1�n

ti
�ni+11IV∪II

≤ 2
n
	f	� + 1√

n
Z̈��p+1�n

ti
�ni+11IV∪II�

where the last inequality follows from Lemma 4. Then

n∑
i=k

�i
(
Ÿ ��p+1�n
ti+1

− Ỹ p+1�n
ti+1

)
�K̈

��p+1�n
i 1IV∪II

≤ 2	f	�
n

n∑
i=k

�i�K̈
��p+1�n
i +

n∑
i=k

�i 1√
n
Z̈��p+1�n

ti
�K̈

��p+1�n
i 1

S>Ÿ
��p+1�n
ti

�ni+1	

Using (5.36) we control the first term in this inequality. So we need to control

�
[
sup
k

��n −�k�
]
�
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Numerical Method for RBSDE 1025

where �k =
∑k

i=0 �
i 1√

n
Z̈

��p+1�n
ti

�K̈
��p+1�n
i 1

S>Ÿ
��p+1�n
ti

�ni+1. Using BDG inequalities we
obtain that

�
[
sup
k

��n −�k�
]
≤ �

[
sup
k

��n� + ��k�
]
≤ 2�

[
sup
k

��k�
]

≤ C�

( n∑
i=0

�2i

n

[
Z̈��p+1�n

ti
�K̈

��p+1�n
i

]2)1/2


≤ C�

(
�

[
1
n

n∑
i=0


Z̈��p+1�n
ti

�2

])1/2 (
�
[
sup
k

1
n�

�S − Ÿ ��p+1�n
tk

�+
]2
)1/2

In the last inequality, the first term is uniformly bounded and the second converges
to 0 according to Lemma 5. �

We now prove the induction step. Let k = 0 in (5.34), and taking expectation
we obtain (recall that A < 0)

�

(
�

2n

n−1∑
i=0

�i��Z��p+1�n
i �2

)
≤
(
2K2

n
+ 1

2

)
�

n
�

(
n−1∑
i=0

�i
{��v��p�ni �2 + ��Z��p�n

i �2})

+ ��

(
n−1∑
i=0

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
))

≤
(
2K2

n
+ 1

2

)
�

(
�

(
sup
k

�k��v��p�nk �2 + 1
n

∑
i

��Z��p�n
i �2

))

+ ��

(
n−1∑
i=0

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
))

This inequality, Lemma 6 and the induction hypothesis 	�
p show that

lim
�→0

lim
n→�

1
n
�

(
n−1∑
i=0

�i��Z��p+1�n
i �2

)
= 0	 (5.37)

In the inequality (5.34), we take supremum and expectation to get

�

(
sup
k

�k��v��p+1�n
k �2 + �

2n

n−1∑
i=0

�i��Z��p+1�n
i �2

)

≤
(
2K2

n
+ 1

2

)
�

n
�

(
n−1∑
i=0

�i
{��v��p�ni �2 + ��Z��p�n

i �2})

+ ��

(
n−1∑
i=0

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
))

+ 2�√
n
�

(
sup
k

n−1∑
i=k

�i�v
��p+1�n
i �Z

��p+1�n
i �ni+1

)
	 (5.38)
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1026 Martínez et al.

Let us study the last term in the previous inequality. We use again BDG inequality
to get the upper bound

2�√
n
�

(
sup
k

n−1∑
i=k

�i�v
��p+1�n
i �Z

��p+1�n
i �ni+1

)

≤ C
2�√
n
�

(n−1∑
i=0

�2i
�v
��p+1�n
i �Z

��p+1�n
i �2

) 1
2


≤ 2C��

sup
k

�k/2��v��p+1�n
k �

(
1
n

n−1∑
i=0

�i
�Z
��p+1�n
i �2

) 1
2


≤ 2C�

(
�
(
sup
k

�k��v��p+1�n
k �2

)) 1
2

(
�

(
1
n

n−1∑
i=0

�i
�Z
��p+1�n
i �2

)) 1
2

We use the inequality 2xy ≤ �x2 + 1
�
y2, for any � > 0, which gives

2�√
n
�

(
sup
k

n−1∑
i=k

�i�v
��p+1�n
i �Z

��p+1�n
i �ni+1

)

≤ C���
(
sup
k

�k��v��p+1�n
k �2

)
+ C�

�
�

(
�

2n

n−1∑
i=0

�i
�Z
��p+1�n
i �2

)

Choose, now, a small � > 0 such that C�� ≤ 1
2 , which gives in 5.38

1
2
�
(
sup
k

�k��v��p+1�n
k �2

)
≤
(
2K2

n
+ 1

2

)
�

n
�

(
n−1∑
i=0

�i
{��v��p�ni �2 + ��Z��p�n

i �2})

+ ��

(
n−1∑
i=0

�i
(
�U��p+1�n

ti+1
�2 − ��v��p+1�n

i+1 �2
))

+ C�

�
�

(
�

2n

n−1∑
i=0

�i
�Z
��p+1�n
i �2

)

Again Lemma 6, the induction hypothesis 	�
p and 5.37 show that

lim
�→0

lim
n→��

(
sup
k

�k��v��p+1�n
k �2

)
= 0	

which finally shows 	�
p+1.

The only thing left to show is how to choose �. This is done by imposing that

A =
(
1− �

1
n + 4�

1
n K2

n

)
≤ 0
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Numerical Method for RBSDE 1027

Set M∗ �= 4K2 and let us take n large enough such that 4K2

n
< 1. With such a choice

we need

� ≥ exp
(
−n ln

(
1− M∗

n

))
Since exp

(−n ln
(
1− M∗

n

))
tends to exp�M∗� as n tends to �, we may choose � �=

exp�1+M∗�. Now note that our choice of � does not depend on �� p� n and the
theorem is proved. �

6. Notations

1. �Y� Z�K� denotes the unique solution of a RBSDE with coefficients ��� f�W�.
Equation (1.1).

2. �Y �� Z�� denotes the penalization of a RBSDE, the unique solution of a BSDE
with coefficients ��� f�W�. Equation (3.3).

3. �Y ��p� Z��p� Picard iteration for a Penalization BSDE �Y �� Z��. Equation (3.8).
4. �Y��n� Z��n� K��n� denotes the unique solution of a discrete RBSDE with

coefficients ��n� f�Wn�. Equation (3.11).
5. �Y ����n� Z����n� denotes the penalization of the unique solution of a discrete BSDE

with coeffcients ��n� f�Wn� Equation (3.12).
6. �Y ��p�n� Z��p�n� denotes the Picard iteration procedure for a penalization discrete

BSDE �Y ����n� Z����n�. Equation (3.16).
7. �Y n� Ỹ n� Zn�Kn� denotes the two step scheme given by Ma and Zhang in [27], in

the contex of the random walk. See Equations (5.24)–(5.25).
8. �Ỹ p�n� Zp�n� is the Picard iteration for the process �Ỹ n� Zn� given in formula (5.24).
9. �Ÿ ��p+1�n

ti
� Z̈

��p+1�n
ti

� K̈
��p+1�n
ti

� denotes the Modified Picard’s iteration procedure for
a penalization discrete BSDE �Y ����n� Z����n�, Equation (3.16). See (5.26).

7. Appendix

In this Appendix, we prove the convergence for the Picard method associated to the
Ma and Zhang procedure, in the discrete setting. This is the aim on the next lemma.

Lemma 7. Let K the lipschitz constant of f and 0 < � < 1 any fixed number. Take
A large enough such that 32K2/A ≤ � < 1 and n0 = n0�A� > 4A such that for all t ∈

0� 1� and all n ≥ n0

1
2
e−4At ≤

(
1− 4A

n

)nt

	

Then, for all n ≥ n0 the Picard iteration satisfies for all p ≥ 2 the contraction property

����Ỹ p+1�n� Zp+1�n�− �Ỹ p�n� Zp�n����2 ≤ �����Ỹ p�n� Zp�n�− �Ỹ p−1�n� Zp−1�n����2�

where the norm ���	��� is defined by

��� �Y� Z� ��� �=
{
1
n

∑
0≤ti≤1

e4Ati�
[�Yti �2 + �Zti

�2]}1/2

� (7.39)
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1028 Martínez et al.

Proof. Let us recall that for i ≤ n− 1 we have

Ỹ p+1�n
ti

= Ỹ p+1�n
ti+1

∨ S + 1
n
f
(
ti� Ỹ

p�n
ti

� Zp�n
ti

)
− 1√

n
Zp+1�n

ti
�ni+1� (7.40)

where Ỹ
p�n
1 = �n.

We denote �y
p+1
i �= Ỹ

p+1�n
ti

− Ỹ
p�n
ti

, �zp+1
i �= Z

p+1�n
ti

− Z
p�n
ti

, �sp+1
i+1 �= Ỹ

p+1�n
ti+1

∨ S −
Ỹ

p�n
ti+1

∨ S and �f
p
i �= f�ti� Ỹ

p�n
ti

� Z
p�n
ti

�− f�ti� Ỹ
p−1�n
ti

� Z
p−1�n
ti

�.
From Equation (7.40), we have that:

�s
p+1
i+1 = �y

p+1
i − 1

n
�f

p
i + 1√

n
�Z

��p+1�n
i �ni+1	

from which we deduce that

��sp+1
i+1 �2 = ��yp+1

i �2 + 1
n2

��fp
i �2 +

1
n
��Z��p+1�n

i �2

− 2
n
�y

p+1
i �f

p
i + 2√

n
�y

p+1
i �Z

��p+1�n
i �ni+1 −

2
n3/2

�f
p
i �Z

��p+1�n
i �ni+1	

Taking expectations in the previous equality and using the inequality �y1 ∨ S − y2 ∨
S�2 ≤ �y1 − y2�2, yields

�
[
��yp+1

i �2 + 1
n
��Z��p+1�n

i �2
]
= �

[
��sp+1

i+1 �2
]
− 1

n2
�
[��fp

i �2
]+ 2

n
�
[
�y

p+1
i �f

p
i

]
≤ �

[
��yp+1

i+1 �2
]
+ 2

n
�
[
�y

p+1
i �f

p
i

]
≤ �

[
��yp+1

i+1 �2
]
+ 4A

n
�
[
��yp+1

i �2
]
+ 4

An
�
[��fp

i �2
]
	

(7.41)

Here, we have used the inequality ab ≤ 2�Aa+ b/A�. In particular, we obtain

��
[
��yp+1

i �2
]
≤
{
�
[
��yp+1

i+1 �2
]
+ 4

An
�
[��fp

i �2
]}

�

where � = (
1− 4A

n

)
. Iterating this inequality, we get for all i

�n−i�
[
��yp+1

i �2
]
≤ 4

An

n−1∑
j=i

�n−j−1�
[��fp

j �2
]
	 (7.42)

Summing up this inequalities we obtain

n∑
i=0

�−i�
[
��yp+1

i �2
]
≤ 4

An

n∑
i=0

n−1∑
j=i

�−j−1�
[��fp

j �2
]

= 4
A�n

n−1∑
j=0

�−j�
[��fp

j �2
]∑
i≤j

1
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Numerical Method for RBSDE 1029

≤ 4
A�

n−1∑
j=0

�−j�
[��fp

j �2
]

≤ 8k2

A�

n−1∑
j=0

�−j�
[��ypj �2 + ��zpj �2

]
	

Again from (7.41), we deduce that

�−i

n
�
[
��Z��p+1�n

i �2
]
≤ �−i�

[
��yp+1

i+1 �2
]
+ 4

An
�−i�

[��fp
i �2

]
	

If we use 7.42, for i+ 1, we have

�−i�
[
��yp+1

i+1 �2
]
≤ 4

An

n−1∑
j=i+1

�−j�
[��fp

j �2
]
�

and then

�−i�
[
��Z��p+1�n

i �2
]
≤ 4

An

n−1∑
j=i

�−j�
[��fp

j �2
]
	

Once more summing up we conclude

n∑
i=0

�−i�
[
��Z��p+1�n

i �2
]
≤ 8K2

A

n∑
i=0

�−i�
[��ypi �2 + ��zpi �2

]
�

and therefore

n∑
i=0

�−i�
[
��yp+1

i �2 + ��Z��p+1�n
i �2

]
≤ 16K2

A

n∑
i=0

�−i�
[��ypi �2 + ��zpi �2

]
�

Notice that �i = (
1− 4A

n

)i = (
1− 4A

n

)nti . Since the sequence of functions fn�t� =(
1− 4A

n

)nt
converges increasingly to e−4At we obtain that the convergence is uniform.

This implies that for all n ≥ n0, which depends only on A and all t ∈ 
0� 1� we have

1
2
e−4At ≤

(
1− 4A

n

)nt

≤ e−4At	

This implies that

n∑
i=0

e�4Ati��
[
��yp+1

i �2 + ��Z��p+1�n
i �2

]
≤ 32K2

A

n∑
i=0

e�4Ati��
[��ypi �2 + ��zpi �2

]
and the result is proved. �
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Corollary 1. Given � < 1, there exists n0 = n0��� and a finite constant D = D��� < �
such that for all p ≥ 1 and n ≥ n0

�

(
1
n

∑
ti≥0

�Ỹ p�n
ti

− Ỹ n
ti
�2 + 1

n

∑
ti≥0

�Zp�n
ti

− Zn
ti
�2
)
≤ D�p	

Proof. From the previous Lemma it follows that

�

(
1
n

∑
ti≥0

�Ỹ p�n
ti

− Ỹ n
ti
�2 + 1

n

∑
ti≥0

�Zp�n
ti

− Zn
ti
�2
)

≤ �p−1

�1− �1/2�2
����Ỹ 2�n� Z2�n�− �Ỹ 1�n� Z1�n����2	

On the other hand

����Ỹ 2�n� Z2�n�− �Ỹ 1�n� Z1�n����2

≤ e4A�

[
1
n

∑
0≤ti≤1

�Ỹ 2�n
ti

− Ỹ 1�n
ti

�2 + �Z2�n
ti

− Z1�n
ti
�2
]
�

which is uniformly bounded in n using standard a priori estimates. �

Corollary 2. Given � < 1, there exists n0 = n0��� and a finite constant D = D��� < �
such that for all p ≥ 1 and n ≥ n0

�

(
sup
ti≥0

�Ỹ p�n
ti

− Ỹ n
ti
�2 + 1

n

∑
ti≥0

�Zp�n
ti

− Zn
ti
�2
)
≤ D�p	

Proof. Using the recurrence (7.40), we get

Ỹ p+1�n
ti

− Ỹ p�n
ti

= Ỹ p+1�n
ti+1

∨ S − Ỹ p�n
ti+1

∨ S + 1
n

f�ti� Ỹ

p�n
ti

� Zp�n
ti

�

− f�ti� Ỹ
p−1�n
ti

� Zp−1�n
ti

��+ 1√
n
�Zp+1�n

ti
− Zp�n

ti
��ni+1	

Moreover, it holds

��yp+1
i � =

∣∣∣∣�(
�s

p+1
i+1 + 1

n
�f

p
i

∣∣∣∣�n
i

)∣∣∣∣ ≤ �
(
��yp+1

i+1 � +
1
n
��fp

i �
∣∣∣∣�n

i

)
	

Iterating this inequality, we get

��yp+1
i � ≤ �

(
1
n

n∑
j=0

��fp
j �
∣∣∣∣�n

i

)
�
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and from Doob’s inequality, we get finally

��sup
i

��yp+1
i �2� ≤ 4�

(
1
n

n∑
j=0

��fp
j �2

)
	

The result follows from the previous corollary. �
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