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1. Introduction. It is a longstanding and difficult problem to characterize all
nonnegative matrices whose inverses are M-matrices, although inverses of all non-
singular M-matrices are always nonnegative matrices. In 1977, Willoughby [16]
called the problem of finding or characterizing nonnegative matrices whose inverses
are M-matrices the inverse M-matriz problem. Johnson [7], Fiedler, Johnson, and
Markham [6], and Fiedler [4] devoted much effort to general properties of inverse
M-matrices. For definitions, references, and background on M-matrices and the in-
verse M-matrix problem, the reader is referred to Berman and Plemmons [1] and
Johnson [7]. However, until now there have been just a few known classes of inverse
M-matrices. The oldest class of symmetric inverse M-matrices is the class of positive
type D matrices defined by Markham [8]. In 1994, Martinez, Michon, and San Martin
introduced a strictly symmetric ultrametric matrix A = (a;;) whose entries satisfy

a;; > min{a;x, ar;} for all 1,75, k,

a;; > maxa;; forall 4
J#i

and proved that inverses of strictly symmetric ultrametric matrices are row and col-
umn diagonally dominant M-matrices (see [9] and also [13]). Later, nonsymmetric ul-
trametric matrices were independently introduced by McDonald et al. [11] and Nabben
and Varga [14], i.e., nested block form and generalized ultrametric matrices. After
a suitable permutation, every generalized ultrametric matrix can be put into nested
block form, which contains type D matrices. Recently, Fiedler [5] introduced a new
class of inverse M-matrices. Furthermore, Nabben [12] was motivated by Fiedler’s
result and introduced a new class of inverse M-matrices.

We have been motivated by the results in [3], [5], [10], [11], [14], and [12] to
introduce in section 2 a new class of nonnegative matrices by using weighted dyadic
trees. We state the following condition under which our main result holds: their
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inverses are column diagonally dominant M-matrices. In section 3, some preliminary
properties and lemmas are presented. In particular, it is shown that these weighted
tree matrices admit a representation that we call the quasi-nested block form. The
proof of the main result is supplied in section 4. Finally, in section 5, we study the class
of all the permutations, which leads to the matrix being presented in a quasi-nested
block form.

2. Definitions and main result. Let T = (V, E) be a tree on n vertices and
edge set E. Sometimes we also write V = V(T), E = E(T). For any two vertices
s and ¢, there is a unique path geod(s,t) from vertex s to vertex ¢t. In particular
geod(s,s) = {s}. Let vertex r € V be a root of the tree T. We may define a partial
order relation “<” on T s <t if and only if s € geod(r,t). Moreover, for s,t € V,
sAt =sup{v : v € geod(r,s) N geod(r,t)} denotes the closest common ancestor of
sand t. Thus s(t) = {v €V : t <X v, (t,v) € E} is the set of successors of ¢, and
I={ieT:s(i) =0} is the set of leaves of the tree T. A tree is called dyadic if the
cardinality of set s(t) is |s(t)| = 2 for t ¢ I. For vertex t ¢ I of a dyadic tree T, its
successors are signed and denoted by ¢~ and ¢+ (the signs — or + of the successors
are fixed). In addition, since vertex ¢ € T and the set L(¢t) = {i € I : t € geod(r,4)}
are in one-to-one correspondence relations, we may identify L(t) with ¢. Thus, the
root r is identified with I. The distinction between the roles of L € V and L C I will
be clear in the context when we use them. We usually say “element L” when referring
to L € V and “set L” to mean L C I.

For L € T, we denote by T, = (V,, E1) the dyadic subtree rooted by L, that is,
Vi={veV:L=v}, Ep =EnN(Vy x V). Its leaves are the elements of L. For
v € V, its signed successors in T, coincide with its signed successors in T'.

For a dyadic tree T, its set I of leaves can be totally ordered as follows: ¢ < j if
i€t™,jett, wheret=iAj. Wedenote by P?: I — {1,...,n} the permutation
which assigns ¢ to its rank in the total order and we call it the canonical permutation.

DEFINITION 2.1. A matriz U = (u;; : 4,j € I) is called a W matriz if there exists
a dyadic tree T = (V, E) with set I of leaves and nonnegative vectors @ = (a; 11 € V),
B = (B; =i € V) satisfying that

(i)a;=0; >0 foriel;

i) 0<a; <land 0<3; <1 forieV\I;

iii) B is <-increasing in V '\ I, that is, s <t € V\ I implies Bs < 0¢;

iv) wij = il -yegeod(tayr if (4,5) € (t7, 1), and wij = Braill (- e geod(t,iyu
if (i,7) € (tT,t7), wheret =i A j;

V) uy; = oy fori € 1.

The matrix U is said to be supported by the dyadic tree T and defined by @, ﬁ
onT.

For J,K C I, denote Uy = (u;j : 1 € J, j € K). It is easy to see that if U
is a W matrix supported by T = (V, E) and L € V| then Uy, is also a W matrix
supported by Ty, and defined by the restricted vectors @|y, and ﬁh@ on V.

The main result of this paper is the following.

THEOREM 2.2. Let U be a W matrixz. If U does not contain a row of zeros and
no two columns in U are the same, then U is nonsingular and its inverse is a column
diagonally dominant M -matriz.

o~~~

3. Preliminaries and lemmas. In this section, we first present an equivalent
condition for U € W.
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DEFINITION 3.1. Let C = (¢;;) be a nonnegative matriz of order n with positive
main diagonal elements. We define inductively as follows what it means for C to be
in quasi-nested block form:

(i) If n =1, then C' is in quasi-nested block form.

(ii) If n > 1, and quasi-nested block form has been defined for all k x k nonnegative
matrices with k < n, then C is in quasi-nested block form if

C— ( Cn biabsex™ )
borbres” C22 ’

where C11 and Cas are ny Xny and ng X ny square matrices in quasi-nested block form
with ng > 1, no > 1, n = ny + na; by and bx are the last columns of C11 and Cas,
respectively; e is a vector of all ones with suitable dimension; 0 < bjo < 1,0 < by < 1;
and c;j > ¢ for allk > j >4, c;; > ¢y for alli > j > k.

THEOREM 3.2. U is a W matriz if and only if there exists a permutation matriz P
such that PUPT is a matriz in quasi-nested block form. Moreover, P can be taken to
be the matriz associated with the canonical permutation P?.

Proof. Necessity. We prove the assertion by induction on n, the dimension of U.
It is clear for n = 1, 2. Assume that the assertion holds for less than n. Let us consider
the total order < on I defined by the dyadic tree T supporting U. The successors
of the root I are denoted by J = I~ and K = I*T. Then there exists a permutation
matrix P such that

Urr Uk )
pUPT = ,
< Uks Ukk

where the matrices Uy and Uik are W matrices. We denote by ni and nsy the
orders of Uy and Uk g, respectively. Clearly ny > 0, no > 0, and ny +no = n. Hence
by the induction hypothesis, there exist permutation matrices @ ; and Qi such that
QU QY = C11 and QU QL = Ca are matrices in quasi-nested block form.
Moreover, (Q; and Qi can be taken to be the matrices associated with permutations
sz}l and Qfg, respectively.

Let P = diag(Q s, Qk)P. Then

v _( Cun Cio\ _
PUP; = ( Cor Oy ) = C.

Fori<mn; <j,sinceiNj=1Tandiec I, wegetc;= a;(aiH(l’l,) o) =

€geod (I~ i)
Q[Cin,. Hence Cig = arbjex™, where by is the last column of Ci. By a similar
argument, we may show that Cy = ,Bleef, where by is the last column of Coas.

Let i < j <k Ifi<j<k<mnorn <i<j<k,then by the induction
hypothesis, c¢;; > ci; if i < j < n1 < Kk, also by the induction hypothesis we get
Cij = Ciny = Cin, 1 = Cik; and in the case i < ny < j < k, we find directly ¢;; = cix.
Leti>j>k. Ifi>j>k>mnyorn; >1t>j >k, then by the induction hypothesis,
Cij = Cigy if i >nqy > 7 >k, then ¢;; = i3 and if i > j > ny > k, then i Ak =1,
iANj=t, and

cij = aifll1-)egeod(r,iyu and cik = @i Brll (11— e geod(t,iy Ul (1,1~ ) e geod(1,6) U

since 0 < a; <1 and By < B¢, we have ¢;; > ¢;;. Hence C' is a matrix in quasi-nested
block form. Moreover, with this construction, an induction argument shows that the
final P; will correspond to the canonical permutation P?.
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Sufficiency. We proceed as before by induction on the size of the matrix. For
n =2,

where c12 < c¢11 and co; < c99. Let T be a dyadic tree with tree elements V' =
L1717}, ap- = Br- = ¢, ap+ = B+ = e, a7 = 2, and fr = 2. The
matrix U with support tree T is just C'. Hence the assertion holds for n = 2. Assume
that the assertion holds when the dimension is less than n. By the definition of

matrix C' in quasi-nested block form,

= < Cn biacsel > 7

T
b2ch€] Cao

where Cj; is a matrix of order n; in quasi-nested block form for i = 1,2 and both c;
and ck are the last columns of C7; and Cas, respectively. By the induction hypothesis,
there exist two dyadic trees T7 and Ty with roots J and K and & = («y : t € V(1})),
ﬁ = (B : t € V(T;)) for i = 1,2. Now we define a new tree T obtained from Tj U T
by adding a new root vertex I associated with oy = b1 and B; = ba; and two edges
(I,J) and (I,K), where J = I~ and K = I'". Then the matrix associated with T
has the following form:

U:(UJJ Uiz )Z(Cn Uiz )
U21 UKK U21 C122 '
For ¢ < ny <7, wyy = il 1-yegeod(r,i)y0t = araill(y - yegeod(1-,5) = Qs n, - Hence
Uip = leCJBYI;, where ¢ is the last column of Uj;; = C71. Similarly, Us; = bgcheg,
where cg is the last column of Ux g = Coy. Therefore U = C and C is a VW matrix.
Since the permutation matrix P corresponds to renumbering of the vertices, PC'PT
is still a YW matrix. 0

LEMMA 3.3. Let U = (ui; : 4,5 € I) be a W matriz associated with tree T in
quasi-nested block form and ﬁ,ﬁ. If 0<6 < Br and 6 <1, then U=U - 6breT is
still a W matriz associated with T and oy = q:gzzl,/ﬁv[ = 511:55, where by is the last
column of U.

Proof. We assume I = {1,...,n} is totally ordered by the tree T. We proceed
on n, the dimension of matrix U. If U is a 2 x 2 matrix with the root I of the tree T’
and the set {1,2} of leaves, then we assume 1 =1, 2 = I". Hence

aq arap
U= ,
51042 Q2

where 0 < ay,8; < 1. Then

~ ([ (1-dan)ar (1-6aa
U_( (ﬂl—él)azl (1—5)é421 )

—=
We take the same tree T with vectors 3, B given by a3 = (1—bag)ag, az = (1—6)as,
and

N_(l—é)a] ~_ﬁl—6

0= T ITs
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It is clear that 0 < a,,ﬁ, < 1 and that U is just the matrix defined by vectors

-
g, (3 on the tree T. Hence the assertion holds for n = 2. Assume that the assertion
holds when the dimension of a matrix is less than n. Let U be an n x n matrix. By
Theorem 3.2, we may assume that

U— Usg  arbsek
Brbrel  Ugk

is associated with tree T', U;; with subtree T, and tree Uk g with subtree T5. Then
b] = (abli‘]) and

T . T U'].]—(SOéjbjeg (1—5)0&11”6,1[; L ﬁ]] ﬁlg
U=U-bbe = ( (Br —8)brel  Ugk —bdbgel )~ \ Uy Ugx )’

where b; and by are the last columns of Ujy; and Ukg, respectively. Since ﬁ is
increasing and 0 < ay < 1, we have 0 < da; < fray < 85 and day < 1. Hence by
the induction hypothesis, Uj; — 60{]()]6:1; = U is a W matrix defined by vectors
(ay:t € V(T1)) and (B; : t € V(T1)) on the subtree Ty. Moreover,

= (1—5a1)aJ g :6_]—§a1
7 1—(50&104‘]7 7 1—(50&1'

By a similar argument, Ux g — (5bKeZI; = U is a W matrix associated with subtree Th
and vectors (ay : t € V(Tz)) and (5; : t € V(T»)). Moreover,

~ 1-6 ~ -6
OéK:( )aKv 6K:ﬁK .
1—(504}(

Define a; = (1:221“117 Br = 511:56. We have 0 < &p,3; < 1 and

~  Pr—0 _Prk—0 =
= < =
Br -5 = 13 B,

~  Br—=06 _pr—oar _pBy—oda; =
= < < = .
Pr=7—%= 1—ba; — 1-éa; B

Then the matrix X associated with the tree T and vectors (a; : ¢t € V(T)), (B :
t € V(T)) is just U. In fact, 0 < @, 03 < 1 fort € V\ I and 3 is increasing
in V\I. Forijel =Jorijelt =K, X;= Uz = Ujor Xij =
(Ukk)ij = Uy; for i € J, j € K, and [J| = ni, Xy = @llg-yegeoa(r,iy® =

arXin, = ar(Ugg)imn = (1—-8)arUss)in, = (ﬁ)z]a fori e K, jelJ, Xy =

@B yegeod(1,0 = Braillyi—yegeod(s,iyt = BrXin = (U)ij, where i An = s,
since each edge from vertex I to vertex s is (¢,t7). This completes our proof. 1]

4. Proof of Theorem 2.2.

LEMMA 4.1. Let U be a W matriz defined by vectors @ and ﬁ on tree T. Then
U does not contain a row of zeros and no two columns in U are the same if and only
if by <1 fort € V(T)\ I and o; > 0 fori € I, where I is the set of leaves of T'.

Proof. Necessity. We use the induction on the size of matrix U. It is clear that the
assertion holds for |I| = 1,2. Since U does not contain a row of zeros, U;; = a; > 0
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for i € I. Let J = I~ and K = IT. Tt is easy to see that no two columns in
Ujj and Uik are the same. By the induction hypothesis, it suffices to verify that
arfBr < 1. Assume that

Ujg arbjeg™
U = T .
Brbies Ukk
If arfr = 1, then a;y = By = 1. Hence the [I~|th and nth columns are the same,
which is a contradiction. Thus a;8; < 1.
Conversely, since a; > 0 it is clear that the assertion holds for n = 1,2. We may
assume that

U— UJJ Oé]bJ€£
Brbrel  Ugk ’

where Uj; is an ny X n; matrix. By the induction hypothesis, no two columns in
Ujyj and Ukg are the same. Suppose that the ith and jth columns in U are the
same with 7 < 7. Then i < n; < J and U; = Uij, Uji = Ujj. On the other hand,
Uij = arUin, < Uy and Ujy; = U, < Uy, < Ujj. Hence o Br = 1, a contradiction.
Therefore no two columns in U are the same. 0

Now we may present the proof of Theorem 2.2.

Proof of Theorem 2.2. We use induction with respect to the size of the matrix U.
For n = 2, it is easy to see that det(U) = (1 — asfr)araz > 0 and

-1
yg-l_( o aor _ 1 as  —aiar )
Braz  az det(U) \ —Braz o
Hence U! is a column diagonally dominant M-matrix. Assume that the assertion
holds for less than n. For n, by Theorem 3.2, we may assume that

U— UJJ Oé[bj@%
Brbret  Ugk ’

By Lemma 4.1, U;; and Ukgg do not contain a row of zeros and no two columns
in Uyy and Ugg are the same. By the induction hypothesis, U;; and Uk are
nonsingular. Further, U;Jl and U 1}1 are column diagonally dominant M-matrices.
So ul = eTU;; > 0and ply = e"Ugy > 0. By arfr < 1 and the Sherman-Morrison
formula (see [11]), we have

-1
Ul — Uy, +ﬁlfé€%15¢1/‘§ _1—31151B5Jﬂ71; o ( ¢ D )
= 1 = ,
_1*C¥II,31 EKMZ‘; UKK + 13(111,13181(/'61[; E F

where 7 = (0,...,0,1)7 and ex = (0,...,0,1)7. It is easy to see that D < 0 and
E < 0. Since a;8; < By and a;08; < 1, by Lemma 3.3, Uy; — alﬂjb‘]ezf is still a
W matrix. In addition,

arBr

C:Ufﬁipa,g[

esp = Uy — arBrbye’) ™

is nonsingular. By the induction hypothesis, C' is a column diagonally dominant
M-matrix. By a similar argument, we may prove that F' is a column diagonally
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dominant M-matrix. Therefore U~! is an M-matrix. Moreover
)

arBr T T —Br T T 1—3r T

T T Trr—1
e;C+eE=e5U7; + ejey + ————eegi; = >0
J K TEIT T T agB Ky + 1z a B K Py =7 alﬁIu] )
T T —Qr  r_ T Trr—1 arfr ¢ T l—ar o
e;D+exF = ———ejejur +exUpj + ———egeriy = ——ux > 0.
J K 1704]6] J K KYKK 1i0¢[ﬁ[ K K 170l[5] K
Hence U~ is a column diagonally dominant M-matrix. a

Remark 4.2. Neumann in [15] conjectured that the Hadamard product A o A is
an inverse M-matrix if A is an inverse M-matrix. Clearly, this conjecture is true for
A €W since Ao A € W (moreover for any n > 1, A°™ € W).

Ezample 4.3. Let T be a dyadic tree with @, ﬁ defined by Figure 1.

1(8,8) 2(9,9)  3(9,9)  4(12,12) 5(10,10)  6(12,12)
+

D(4/5,5/6)

1(1/3,1/2)

Fiac. 1.

Then the matrix U, associated with tree T', and the inverse of U are

8 6 2 2 2 2

79 3 3 3 3

U— 2 2 9 8 4 4

3 3 10 12 6 6

4 4 6 6 10 8

6 6 9 9 10 12

and

0.3000 —0.2000 —0.0000 —0.0000 —0.0000 —0.0000
—0.2200 0.2800 —0.0114 —0.0057 —0.0160 —0.0160
Ul — —0.0000 —0.0000 0.4286 —0.2857 —0.0000 —0.0000

—0.0000 —0.0000 —0.3143 0.3429 —0.0400 —0.0400 |~
—0.0000 —0.0000 —0.0000 —0.0000 0.3000 —0.2000
—0.0400 —0.0400 —0.0800 —0.0400 —0.2120 0.2880

which is a column diagonally dominant M-matrix.

Remark 4.4. Nabben in [12] described a class of inverse M-matrices whose nested
block form is similar to GUMs (generally ultrametric matrices) with the major change
being that in the (2, 1)-block the ee? was replaced by ce’, where b corresponds to the
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last column of the (2,2)-block. From Theorems 3.2 and 2.2, the quasi-nested block
form in W is also similar to GUMs with the major changes being that the (1,2)-block
was replaced by be” and the (2, 1)-block was replaced by ce?, where b and ¢ are the
last columns of the (1, 1)-block and (2, 2)-block, respectively. Hence it is natural that
the following two questions were proposed.

QUESTION 4.5. Is it possible to use be” in the off diagonal blocks, where b is
any column of the corresponding diagonal block? Are there any other vectors that will
work?

QUESTION 4.6. Is it possible to use be” and ee” alternately in the nested block
form, or must one use one or the other only?

The following two examples illustrate that the above questions are answered in a
negative way.

Example 4.7. Let A be

_( A A _ 8  8xgy 1 8
A‘(Agl A22>’ A“_<10><1 10" ) A2=510x1 ) O

But

0.1429 0.0190 —-0.0333 —0.0556
—0.1429 0.1143  0.0000  0.0000
0.0000 0.0000  0.1500 —0.0833
0.0000 0.0667 —0.0833  0.1944

AT =

is not an M-matrix. Hence in general, we cannot use be’ in the off diagonal blocks
for b not being the last column of the corresponding block.
Ezxample 4.8. Let B be
10 5 % x5
B:(B” Bl2>7 By = 6 10 2x10 |,
1

By Bao
$x10 $x10 10

By = €€T> Boy = 2€T€, Bas =5,
a 4 x 4 matrix. But

0.1439 —0.0701 0.0023 —0.0152
—0.0708  0.1615 —0.0487 —0.0084
—0.0350 —0.0438  0.1264 —0.0095
—0.0152 -0.0192 —-0.0320  0.2133

B !'=

is not an M-matrix. Hence in general, we cannot use be” and ee” alternately in the
nested block form.
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5. Combinatorial aspects of a YW matrix in quasi-nested block form. In
section 3, we have proved that each VW matrix can be put into quasi-nested block form
after a suitable permutation. In this section, we try to describe the set of permutations
preserving a VW matrix in quasi-nested block form, which is related to the behavior of
a sub-Markov chain. The reader is referred to [2] and [3].

We assume that U is a VW matrix in quasi-nested block form with supporting
tree T and vectors W,ﬁ, where I = {1,2,...,n}. The root of tree T is I and its
successors are I~ = J and It = K. We also denote |J| = m and write Uliy,. ..,
for the principal submatrix of U whose rows and columns are indexed by 1 < i; <
g < - <1y <M.

Let Uiy, i2, i3, i4] be the principal submatrix of U. It is easy to see that Uiy, iz, i3, i4]
is not a VW matrix, in general. But we can obtain a WV in quasi-nested form from
Uliy,i2,13,14] by changing the diagonal entries of Uliy,io,13,74]. In fact, without
loss of generality, we may assume that i; Adis Aig Aiy = P, i1 Nig Nizg = M,
i1 Nig = N i1,19,13 € P7, 14 € P+; i1,i0 € M~ i3 € M+; in. € N7, 1y € N+t
(for the other cases, we may show the same result by a similar argument). Let v =
iy [T yegeoa(n i) @1 V2 = i H([,l—)Egeod(N,iz) a1, V3 = Qg H(l,l—)egeod(M,ig) a1,

and vy = ay, H(l,l—)Egeod(P,u) ap yp = H(lJ—)Egeod(M)P) ap, YM = H(l,l—)egeod(M,N) at,
N = an; op = Bp, Op = Bum, On = By. Then

71 YIYN  Y1IYNYM  V1IYNYMYP

v o— ONY2 2 VoYM YeYMYP
=
vz Omys V3 V3P
opva  Opya 0p4 V4

is a W matrix in quasi-nested block form. Hence we may choose a support tree Tj
for Vi such that the partial order relationship in 7} is consistent with the partial order
relationship in 7. Moreover, if 74 = 1 or 6; = 1 for ¢ € T3, then for the corresponding
tin T, we have ay = 1 or §; = 1. Hence V; is called the induced W matrixz in quasi-
nested block form from Uliy,ia,13,44]. For the principal submatrix Uliy,s,43] of U,
there is a similar result.

In the rest of this section, we assume U is nonsingular. Hence by Lemma 4.1,
afBy < 1 for any t € T\ I. Moreover, we shall also assume that ¢ : I — [ is a
permutation such that U¥ := (Uy(),e(;)) is @ W matrix in quasi-nested block form

with support tree T% and vectors 07,6?. Let U%[i1,i2,13,14] be the principal sub-
matrix of U¥ with 1 < iy < iy < i3 < i4 < n. Then there exists a 4 x 4 permu-
tation matrix Py corresponding to rearranging ¢~ '(i1), o t(i2), o1 (i3), o 1(i4) in
their natural order such that P U%[iy,is,13,44)P{ is the principal submatrix of U
whose rows and columns are indexed by j; < jo < j3 < ja, where j1,j2,73,74
are obtained by rearranging ¢ 1(i1), (i), o 1(i3), o 1(i4) into their natural or-
der. Hence we have the induced W matrix V7 in quasi-nested block form from
Ulj1,j2, 73, ja] associated with tree T and 7,? Moreover, the partial order re-
lationship of {p~1(i1), o~ (i2), o1 (i3), ¢ 1(i4)} in the support tree T is consistent
with the partial order relationship of {p=1(i1), o~ 1(i2), ¢~ 1(i3), ¢ *(i4)} in the sup-
port tree T. Therefore, for any ¢t € V(T1), v+ = 1 (6; = 1) implies oy = 1 (8¢ = 1).
Moreover, PlT ViP; := V is the induced W matrix in quasi-nested block form from
U¥[i1, i, i3, i4)-

LEMMA 5.1. Let |J| = m and |K| > 2. If there exist 1 < f < g < n such that
o(f) =n and p(g) =m+1, then o(J) = J and p(K) = K.

Proof. We first prove the following claim: There does not exist f < i < g such
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that ¢(i) :=p < m.

Assume there exists f < i < g such that ¢(i) = p < m. Clearly, p € I~ and
(m+1) An = K. Then the induced W matrix of order 3 in quasi-nested block form
from U%[f,1i,g] is

V= TpVI Tp VoY1
IYm+1VK Ym+1VK 61 Ym—+1

If f,i € (f A?iA¥ g)", then vy = 6 = 1. Hence oy = fr = 1, a contradiction. If
i,g € (f AYiA? g)T, then vx = 6k = 1. Hence ag = Sk = 1, a contradiction.

By a similar argument, we may prove that there does not exist ¢ > g such that
©(i) =p <m. Now let p(h) >m+1and (i) <mfori=1,...,h—1, where h < f.
By a similar argument as used in the proof of the claim, there does not exist i > h
such that ¢(i) < m. Therefore p(J) = J and ¢(K) = K. d

LEMMA 5.2. Let |J| =m and |K| > 2. If there exists 1 < f < g < n such that
o(f) =n and p(g) = m+ 1, then (i) =i forie J.

Proof. By Lemma 5.1, ¢(J) = J and ¢(K) = K. If there exists 1 <i < j <m
such that ¢() := p > p(j) := ¢, then the induced W matrix of order 4 in quasi-nested
block form from U®[i, j, f, g] is

Yp oL YpVI Y VI
V= YeYL Vq YqYLYI  YgYLNI
1 TnOr Tn YK ’

Vm+1YKOT  Ym+1YKOI  Ymt1VK  Ymt1

where p Aq =L, since p,g € " and m+1,neIt. Ifj,f,g € (i AP jA? fA? g)T,
then v 676 = 65, which implies vx = 6 = 1. Thus ax = Bk = 1, a contradiction.
Ifi,j € (NP AP fAPg)" and f,g € iACIAY fAYg)T ot i, j, f € (IANPGAP fAPg)™,
then by a similar argument it is easy to see that yx = 6x = 1 or vy = 6; = 1. Both
are contradictions. Hence (i) =i for i € J. |

COROLLARY 5.3. Ifay <1, By <1 for allt € V\I and |K| > 2, then there does
not exist f < g such that (f) =n and p(g) = m+ 1.

Proof. Suppose that there exists f < g such that p(f) =n and p(g) =m+1. By
Lemma 5.2, (i) = ¢ for any i € J. Moreover, f > m. Hence the induced W matrix
of order 3 in quasi-nested block form from U¥[1, f,g] is

71 MT Y11
V= Ynbr1 Yn YnbK
IYm+1VK 6[ Ym+17YK  Ym+1

If1,f € (LAY fAYg), then 6 = 1. If f,g € (1 A? fA? g)T, then §; = 1, a
contradiction. Hence the assertion holds. ]

LEMMA 5.4. Let ay <1, By <1 forallt € V\I and |K| > 2. If there exists
1 < f < g <n such that o(f) = m+ 1 and p(g) = n, then there does not exist
f <i < g such that p(i) =p < m.

Proof. Suppose that there exists f < i < g such that ¢(i) = p < m. Then the
induced W matrix of order 3 in quasi-nested block form from U¥[f,i, g] is

Vmt+1  Ym+1VKEOT  Ym+1VK
V= YY1 Tp YY1



Downloaded 03/18/13 to 200.89.68.74. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1146 S. MARTINEZ, J. SAN MARTIN, AND X.-D. ZHANG

By the definition of W in quasi-nested block form, it is easy to see that §; = 1, a
contradiction. Hence the assertion holds. O

LEMMA 5.5. Let ay < 1, By < 1 for allt € V\ I and |K| > 2. If there exists
1< f<g<n such that o(f) = m+1 and ¢(g) = n, then (i) < m for alli < f
and i > g.

Proof. We consider the following two cases.

Case 1. Suppose that there exists i < f such that (i) =p > m + 1.

If p,n € ((m+1)ApAn)T, then the induced W matrix of order 3 in quasi-nested
block form from U%[i, f, g] is

Tp 'Yp'YL(SK YpYL
V=1 Ym+17%x  Ym+1  Vm+17k |
’Yn(SL 'Yn(SK Tn

where p An := L. By the definition of W in quasi-nested block form, it is easy to see
that 6x = 1. Hence 8x = 1 and it is a contradiction.

Ifm+1,pe ((m+1) ApAn)”, then denote it by (m + 1) Ap:= M, and by a
similar argument we have 6;; = 1. Hence 83y = 1 and it is a contradiction.

Case 2. Suppose that there exists ¢ > ¢ such that ¢(i) = p > m+ 1. By a similar
argument as used in the proof of Case 1, it is a contradiction. O

LEMMA 5.6. Let oy < 1, Bt < 1 for allt € V\ I and |K| > 2. If there exists
1< f<g<n such that o(f) = m+ 1 and ¢(g) = n, then there does not exist a
pair (i,7) such that i < f, j > g and p(i) < m, ¢(j) < m.

Proof. Suppose that there exist i« < f and j > g such that ¢(i) := p < m and
©(j) :=q < m. If p < g, then the induced W matrix of order 3 in quasi-nested block
form from U¥®[i, j, g] is

Yo YYLYI Vp7L
V= Yn o1 Tn Tn Or )
V0L VeI Yq

where p A ¢ = L. By the definition of W in quasi-nested block form, it is easy to see
that vy = 1. Hence a; = 1 and it is a contradiction.

If p > ¢, it is a contradiction by a similar argument. Hence the assertion
holds. ]

LEMMA 5.7. Let oy < 1,8, <1 for allt € V\I and |K| > 2. If there exists
1< f<g<nsuchthat o(f) = m+1 and ¢(g) = n, then either (i) = i for all
1€1 orp(i) =m-+1i (mod n) for alli € I and ay < min{fBy, fx}.

Proof. By Lemmas 5.4 and 5.5, we have ¢(i) < m for all ¢ < f and ¢ > g and
p(i) >m + 1 for f <i < g. Hence we need only consider the following two cases.

Case 1. There exists 1 < h < f such that ¢(h) < m. Then by Lemma 5.6,
there does not exist ¢ > f such that ¢(i) < m. Further, for 1 < i < j < f,
o(1) :=p < ¢(j) := ¢. In fact, if p > ¢, then the induced W matrix of order 3 in
quasi-nested block form from U¥®[i, j, g is

Yo WL W
V=1 %z v v |
rYnéI Tn 6[ Tn

where p A ¢ = L. By the definition of W in quasi-nested block form, it is easy to
see that vy = 1 or v = 1. Hence oy = 1 or ay = 1. Both are contradictions.
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Hence ¢(i) =4 for i = 1,...,m. Moreover, it is easy to show that (i) < ¢(j) for all
m < i < j <n. Therefore p(i) =i fori=1,...,n.

Case 2. There exists h > g such that ¢(h) < m. Then ¢(i) > m + 1 for all
1 < g and (i) < m for any ¢ > ¢g by Lemma 5.6. Furthermore, it is easy to show
that (i) < ¢(j) for all g < i < j, and ¢(i) < ¢(j) for all 1 < i < j < g. Hence
©(1) =m+1i (mod n) for all i € I. Moreover, since U% is a W matrix in quasi-nested
block form, then a; < min{f;, 8k}, and the proof is completed. |

LEMMA 5.8. Let a; < 1, Bt < 1 for allt € V\I. If |K| =1, then ¢ is the
identity permutation, or (1) =m+1 and (i) =i—1 for alli =2,...,m+ 1 with
ar < By.

Proof. Since |K| =1, n=m+ 1. Let f € I such that ¢(f) = m+ 1. We consider
the following three cases.

Case 1. f = 1. Then for any 1 < i < j, ¢(i) < ¢(j). In fact, if p(i) == p >
©(j) := g, then the induced W matrix of order 3 in quasi-nested block form from
U%[L,i, j] is

VYmt+1  Vm+161  Ym4+161
V= YY1 Yp 'Yp(SL s
YeYLYT  YqVL Vq

where 7 A j = L. It is easy to see that vy, = 1, which yields ay, = 1, a contradiction.
Hence ¢(1) =m+ 1 and (i) =i —1for i = 2,...,m + 1. Moreover, oy < [z, since
U¥ is a W matrix in quasi-nested block form.

Case 2. 1 < f < m+ 1. Then there exists i < f < j such that (i) := p,
©(j) := ¢ < m. Without loss of generality, we may assume that p > ¢. Then the
induced W matrix of order 3 in quasi-nested block form from U*?[i, f, j] is

p TpYVI YL
V=1 Ym+161  Ym+1 Ym410r |,
YeVL Vg VLT Vaq

where ¢ A j = L. It is easy to see that vy = 1, which implies that ay = 1, a
contradiction.

Case 3. f = m + 1. By an argument similar to the proof of Case 1, it is easy to
see that ¢ is the identity permutation. ]

Now we present the main result of this section.

THEOREM 5.9. Let U be a W matriz of order n in quasi-nested block form
with support tree T and defined by H’,ﬁon T. The root of the support tree is I =
{1,2,...,n}, and [~ = J, I™ = K. Denote|J| =m. Ifay <1, 3; <1 forallt € V\I
and ¢ is a permutation on I, then U¥ := (Uy;),4(;)) 95 a W matriz in quasi-nested
block form if and only if ¢ is the identity permutation on I or oy < min{S;, fx} with
p(i)=m+i (mod n) fori=1,... n.

Proof. If U? := (Uy,(),e(j)) is a W matrix in quasi-nested block form, it follows
from Corollary 5.3 and Lemmas 5.7 and 5.8 that the assertion holds. Conversely, it is
easy to show that the assertion holds by the definition of a ¥ matrix in quasi-nested
block form. d

Remark 5.10. Theorem 5.9 does not hold in general, as we will see in the following
example, if we cancel the conditions ay < 1, 8; < 1.
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Ezample 5.11. Let U be a VW matrix of order 6 as follows:

(€51 a1y Qg a1y ajog arogar
By Qo (o Ye B Y e Yo) VAR o T 1B ¥4 Qoo
U= azapanfB; oazapanfBy o3 azay Q3N Q3QLONO
agan By aganBy asfp oy 40N agorag
asfBy asfBy asfn  asfN as asag
aeBr ag A1 agffr agfr aeBr ag

If ay =1 and By = By = By = B = 1, then U¥ is a VYW matrix in quasi-nested block
form for (1) =6, ¢(2) =2, ¢(3) =1, p(4) =5, ¢(5) = 3, (6) = 4.
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