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Abstract

We consider a countable system of stochastic di erential equation. Euler scheme for approximating these solutions is
used, and the global error is estimated. Solutions are approximated by means of a process which takes values in a 3nite
dimensional space. Finally, we expand the global error for a class of smooth functions in powers of the discretization
step size. c© 2001 Elsevier Science B.V. All rights reserved

1. Introduction

The purpose of this note is to study the Euler scheme in order to approximate solutions of a countable
system of stochastic di erential equations (in short CSSDE). The global error of approximating these solutions
is estimated, by showing that the standard technique used to study the Euler scheme on the 3nite dimensional
case can be carried out. The only problem here is that under suitable assumptions the constants appearing in
the usual bounds can be independent of the dimension. We also present a way of approximating the in3nite
dimensional case by a sequence of 3nite dimensional processes. Finally, expansion of the global error for a
class of smooth functions in powers of the discretization step size is computed in the same way as in Talay
(1986) and Talay and Tubaro (1990). Let us consider the following CSSDE:

X (t)=X (0) +
∫ t

0
a(s; X (s)) ds+

∫ t

0
b(s; X (s)) dW (s); (1)

or equivalently

xi(t)= xi(0) +
∫ t

0
ai(s; X (s)) ds+

m∑
j=1

∫ t

0
bj
i (s; X (s)) dW

j
i (s);
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where S is a countable set and X (t)= (xi(t))i∈S is a stochastic process in (Rd)S . W (t) is a Wiener process
in (Rm)S ; a=(ai)i∈S where i∈ S; ai : [0; T ] × (Rd)S → Rd and for i∈ S; 16 j6m; bj

i : [0; T ] × (Rd)S →
Rd×Rm. |xi| denotes the d-dimensional Euclidean norm of xi and |bi|2 =

∑
j=1; :::;m

∑
k=1; :::;d |bj;k

i |2, where bj;k
i

is the (j; k) component of bi.
Applications of CSSDE can be found for example in Genetics, where X (t) represents the proportion at time

t of one of two possible alleles of a certain gene, S the set of colonies, and the change of gene frequencies
is caused by random sampling, mutation and migration. Such application can be found in Kloeden and Platen
(1995) or Shiga and Shimizu (1980).
In what follows, we assume the functions a and b satisfy certain regularity conditions, so that the existence

and uniqueness of this solution are ensured. Such conditions can be found in Shiga and Shimizu (1980).
We will denote by L the in3nitesimal generator associated to Eq. (1) as

L=
1
2

∑
i; j∈S

�i
j(t; x)@ij +

∑
i∈S

ai(t; x)@i; (2)

where �(t; x)= b(t; x)bt(t; x).
Let �= {�i}i∈S be a sequence of real numbers and consider

l2� =

{
X ∈ (Rd)S ; ‖X ‖2� :=

∑
i∈S

�i|xi|2 ¡∞
}

:

Let 0= t06 t1; : : : ;6 tn =T be a discretization of [0; T ] and � the time step such that �= �n =T=n. The
process Y � = {Y �(t); 06 t6T} de3ned below will be considered to approximate the solution X . First we
de3ne Y � at tk recursively as follows:

Y �(0)=y�(0);

Y �(tk+1)=Y �(tk) + a(tk ; Y �(tk))�+ b(tk ; Y �(tk))(W (tk+1)−W (tk)) for k =0; : : : ; n− 1:

Next, Y �(t) can be de3ned for each t ∈ [tk ; tk+1[; k =0; 1; : : : ; n− 1 as the following linear interpolation

Y �(t)=Y �(tk) +
∫ t

tk

a(tk ; Y �(tk)) ds+
∫ t

tk

b(tk ; Y �(tk)) dW (s): (3)

2. Main results

In this section, main results are stated and their proofs are postponed to the next section. The 3rst theorem
is concerned with a bound for the global error when the Euler scheme is used. We will make use of the
following standing assumptions throughout the paper.

(A1) ‖X (0)‖2� ¡∞;
(A2) ‖X (0)− Y �(0)‖2�6K1�;
(A3) ‖a(t; x)− a(t; y)‖2� + ‖b(t; x)− b(t; y)‖2�6K2‖x − y‖2� ;
(A4) ‖a(t; x)‖2� + ‖b(t; x)‖2�6K3(1 + ‖x‖2�);
(A5) ‖a(s; x)− a(t; x)‖2� + ‖b(s; x)− b(t; x)‖2�6K4(1 + ‖x‖2�)|s− t|;
for all x; y∈ l2(�); s; t ∈ [0; T ] where the constants K1; : : : ; K4 do not depend on �.

Theorem 1. Assume (A1)–(A5) hold. Then there exists two positive constants A and B not depending on �
such that

E
(

sup
06t6T

‖X (t)− Y �(t)‖2�
)
6 �AeBT :
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In our next result, we give a 3nite dimensional approximation, and for that reason we need a truncation of
a and b.
Let 16 i6N; and aN

i : [0; T ] × (Rd)N → Rd de3ned as ai(t; x1; : : : ; xN )= ai(t; x1; : : : ; xN ; 0; : : : ; 0; : : :); b
N;j
i :

[0; T ] × (Rd)N → Rd × Rm de3ned as bj
i (t; x1; : : : ; xN )= bj

i (x1; : : : ; xN ; 0; : : : ; 0; : : :), and Y �;N be the process
de3ned on tk recursively as

y�;N
i (0)=y�

i (0) ∀16 i6N;

y�;N
i (tk+1)=y�;N

i (tk) + aN
i (tk ; Y

�;N (tk))�+
m∑

j=1

bN;j
i (tk ; Y �;N (tk))(W

j
i (tk+1)−Wj

i (tk));

for 0= t06 t16 · · ·6 tn =T . Again for t ∈ [tk ; tk+1[; k =0; 1; : : : ; n− 1; 16 i6N we de3ne

yN
i (t)=y�;N

i (tk) +
∫ t

tk

aN
i (tk ; Y

�;N (tk)) ds+
m∑

j=1

∫ t

tk

bN;j
i (tk ; Y �;N (tk)) dW

j
i (s): (4)

Theorem 2. Assume (A1)–(A5); and the additional assumptions hold
(H1) supi∈S |y�

i (0)|2 ¡K5;
(H2)

∑
i∈S �i ¡∞;

(H3) supi∈S (|ai(s; x)|2 + |bi(s; x)|2)¡K6(1 + ‖x‖2�):
Then

E
(

sup
06t6T

‖Y �(t)− Y �;N (t)‖2�
)
6K7

∞∑
i=N

�i:

In the following theorem; we assume for simplicity d=1; and for technical diMculties �i =1 for all i∈ S:
Let us now consider the class PG(RS) of C∞ functions ! : RS → R with polynomial growth in all the
derivatives (with respect to ‖x‖�).
Let us de3ne for f∈PG the global error for CSSDE as

Err(T; �)= E(f(X (T )))− E(f(Y �(T ))): (5)

Theorem 3. Let us assume that the functions a and b are C∞; whose derivatives of any order are bounded;
and Y �(0)=X (0). Then for the Euler method; the Global error is given by

Err(T; �)=− �
∫ T

0
E (s; X (s)) ds+ O(�2);

where the function  is de;ned as

 (t; x) =
1
2

∑
i; j∈S

ai(t; x)aj(t; x)@iju(t; x) +
1
2

∑
i; j; k∈S

ai(t; x)�jk(t; x)@ijku(t; x)

+
1
8

∑
i; j; k;l∈S

�i; j(t; x)�k;l(t; x)@ijklu(t; x) +
1
2

@2

@t2
u(t; x)

+
∑
i∈S

ai(t; x)
@
@t

@iu(t; x) +
1
2

∑
i; j∈S

�i; j(t; x)
@
@t

@iju(t; x); (6)
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and u(t; x)= E(f(X t;x(T )))= Et; x(f(X (T ))) veri;es the following equation:


@u
@t

+ Lu=0;

u(T; x)=f(x); x∈RS :
(7)

3. Proofs

The proof of Theorem 1 is based upon the following Lemmas 3.1–3.3, whose proofs are standard using
Cauchy–Schwarz’s inequality, Doob’s inequality and Gronwall’s Lemma.

Lemma 3.1. Let X (t) be the process satisfying Eq. (1). Then under (A1)–(A5) there exists two positive
constants C1 and C2 such that

E
(

sup
06t6T

‖X (t)‖2�
)
6C1(1 + ‖X (0)‖2�)eC2T :

Proof. Since X (t) satis3es the Eq. (1) we have

|xi(t)|26 3|xi(0)|2 + 3
∣∣∣∣
∫ t

0
ai(s; X (s)) ds

∣∣∣∣
2

+ 3m
m∑

j=1

∣∣∣∣
∫ t

0
bj
i (s; X (s)) dW

j
i (s)

∣∣∣∣
2

:

From hypothesis (A1) and growth bound (A4) the following inequality holds for 06R6T

∑
i∈S

�iE
(

sup
06t6R

|xi(t)|2
)
6 3‖X (0)‖2� + 3TK3(T + 4m) + 3K3(T + 4m)

∫ R

0
E
(

sup
06u6s

∑
i∈S

�i|xi(u)|2
)

ds:

By applying Gronwall’s inequality we obtain∑
i∈S

�iE
(

sup
06u6T

|xi(u)|2
)
6C1(1 + ‖X (0)‖2�)eC2T ;

where C1 =max{3; 3K3T (T + 4m)} and C2 = 3K3(T + 4m). Finally, since

E
(

sup
06t6T

‖X (t)‖2�
)
6
∑
i∈S

�iE
(

sup
06t6T

|xi(t)|2
)

;

we obtain the result.

The following two lemmas are proved in the same way, whose proofs are left to the reader.

Lemma 3.2. Under (A1)–(A5); there exists two positive constants C3 and C4 such that

E
(

sup
06t6T

‖Y �(t)‖2�
)
6C3(1 + ‖Y �(0)‖2�)eC4T :

Lemma 3.3. Under (A1)–(A5); there exists a positive constant C5 such that the solution X (t) of Eq. (1)
satis;es

E‖X (t)− X (s)‖2�6C5(t − s)(1 + ‖X (0)‖2�):



J. San Mart��n, S. Torres / Statistics & Probability Letters 54 (2001) 251–259 255

Proof of Theorem 1. Let Z(T )= E{sup06t6T (‖X (t)− Y �(t)‖2�)} and c(s)= [sn]=n; s∈ [0; T ]. We have

Z(T )6 E
(∑

i∈S

�i sup
06t6T

|xi(t)− y�
i (t)|2

)

6 4E
(∑

i∈S

�i sup
06t6T

(|xi(0)− y�
i (0)|2 +Ii(t) +Ji(t) +Ki(t))

)
;

where

Ii(t) =
∣∣∣∣
∫ t

0
ai(c(s); X (c(s)))− ai(c(s); Y �(c(s))) ds

+
m∑

j=1

∫ t

0
(bj

i (c(s); X (c(s))− bj
i (c(s); Y

�(c(s))) dWj
i (s)

∣∣∣∣∣∣
2

;

Ji(t) =
∣∣∣∣
∫ t

0
(ai(c(s); X (s))− ai(c(s); X (c(s))) ds

+
m∑

j=1

{∫ t

0
(bj

i (c(s); X (s)− bj
i (c(s); X (c(s))) dW

j
i (s)

}∣∣∣∣∣∣
2

;

Ki(t) =
∣∣∣∣
∫ t

0
(ai(s; X (s))− ai(c(s); X (s))) ds

+
m∑

j=1

{∫ t

0
(bj

i (s; X (s))− bj
i (c(s); X (s))) dW

j
i (s)

}∣∣∣∣∣∣
2

:

We have the following estimates

E
(∑

i∈S

�i sup
06t6T

Ii(t)

)
6 (2T + 8m)K2

∫ T

0
Z(s) ds;

E
(∑

i∈S

�i sup
06t6T

Ji(t)

)
6 �(2T + 8m)TK2C5(1 + ‖X (0)‖2�);

E
(∑

i∈S

�i sup
06t6T

Ki(t)

)
6 (2T + 8m)K4�T (1 + C1(1 + ‖X (0)‖2�)eC2T ):

By combining these estimates and using hypothesis (A2) we obtain

Z(T )6A�+ B
∫ T

0
Z(s) ds; (8)

where A=4K1+(8T +32m)K2C5T (1+‖X (0)‖2�)+(8T +32m)K4T (1+C1(1+‖X (0)‖2�)eC2T ) and B=(8T +
32m)K2. By applying Gronwall inequality to Eq. (8) we have Z(T )6 �AeBT .
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Proof of Theorem 2. From relations (3) and (4) we get as before

∑
i∈S

�i E
(

sup
06t6T

|y�
i (t)− y�;N

i (t)|2
)
6 3E

( ∞∑
n=N+1

�i|y�
i (0)|2

)

+3TE
(∫ T

0

(
N∑
i=1

�i|ai(c(s); Y �(c(s)))− aN
i (c(s); Y

�;N (c(s)))|2 +
∞∑

i=N+1

�i|ai(c(s); Y �(c(s)))|2
)

ds

)

+12mE


∫ T

0


 m∑

j=1

N∑
i=1

�i|bj
i (c(s); Y

�(c(s)))− bN;j
i (c(s); Y �;N (c(s)))|2

+
∞∑

i=N+1

�i|bj
i (c(s); Y

�(c(s)))|2
)

ds

)
:

From the Lipschitz condition (A3), hypothesis (H1)–(H3), Lemma 3.2, and since
∑N

i=1 �i|xi|26 ‖X ‖2� we
obtain

∑
i∈S

E
(
�i sup

06t6T
|y�

i (t)− y�;N
i (t)|2

)
6D

∞∑
i=N+1

�i + E
∫ T

0
E
(

sup
06u6s

‖Y �(u)− Y �;N (u)‖2�
)
ds;

where D=(3K5 + K6T (3T + 12m))(1 + C3(1 + ‖Y �(0)‖2�)eC4T ) and E=(3T + 12m)K2. Finally, by applying

Gronwall’s inequality to
∑

i∈S �iE
(
sup06t6T |y�

i (t)− y�;N
i (t)|2

)
we obtain

E
(

sup
06t6T

‖Y �(t)− Y �;N (t)‖2�
)
6K7

∞∑
i=N+1

�i;

where K7 =DeET .

The proof of Theorem 3 is based upon the following Lemmas 3:4–3:8, following the same ideas of Talay and
Tubaro (1990). Let X t;x(s); t6 s6T be the strong solution of the following stochastic di erential equation:

X (s)= x +
∫ s

t
a(r; X (r)) dr +

∫ s

t
b(r; X (r)) dW (r): (9)

Lemma 3.4. Let us suppose that the functions a and b are C∞; whose derivatives of any order are bounded.
Let f in PG(RS); then u(t; x)= E(f(X t;x(T ))) is in PG([0; T ]× RS).

Proof. We analyze the case += +1; i.e., we consider the 3rst derivative, the general case follows by induction.
It is well known that under the assumed regularity on a and b there exists a smooth version of the stochastic
Oow de3ned in Eq. (9). We assume X t;x(s) is this smooth version. Moreover for all integer k ¿ 0, the family
of the processes equal to the partial derivatives of the Oow up to the order k, solves a system of stochastic
di erential equations with Lipschitz conditions (see Protter (1990) and Karatzas and Shreve (1988)). Then

@iu(t; x)= @i(E(f(X t;x(T ))))= E


∑

j∈S

@jf(X t;x(T ))@i(X
t;x
j (T ))


 :
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A small modi3cation of Lemma 3.1 allow us to conclude that

sup
x∈RS

E


 sup

06t6T

∑
i∈S

∑
j∈S

|@iX
t;x
j (T )|2


¡∞:

Therefore, we have sup06t6T
∑

i∈S |@iu(t; x)|2 has the same polynomial growth in x as
∑

j∈S |@jf(x)|2, and
the result follows.

Lemma 3.5. Let f in PG; then u is a smooth solution of Eq. (7).

Proof. From Lemma 3.4 we only have to prove the function u(t; x)= E(f(X t;x(T ))) satis3es the Eq. (7).
First, for t=T we have

u(T; x)= E(f(X T;x(T )))= E(f(x))=f(x):

By applying Itô’s formula to f(X t;x(T )) we obtain

f(X t;x(T ))=f(x) +
∫ T

t
Lf(X t;x(s)) ds+M (t);

where M is a martingale. Taking expected value we have

u(t; x)=f(x) +
∫ T

t
E(Lf(X t;x(s))) ds:

Di erentiating with respect to t and evaluating in t=T we obtain

@u(t; x)
@t

∣∣∣∣
t=T

=− E(Lf(X t;x(T )))|t=T =− Lu(T; x): (10)

Now, from the Markov property, we have u(t; x)= E(u(s; X t;x(s))), for s¿ t and from Eq. (10) we obtain

@u(t; x)
@t

∣∣∣∣
t=s

=− Lu(s; x):

This proves that u(t; x)= E(f(X t;x(T ))) veri3es the Eq. (7).

Lemma 3.6. There exists a positive constant C(T ); which does not depend on �; such that

E(u(T; Y �(T )))= E(u(0; X (0))) + �2
n−1∑
j=0

E( (j�; Y �(j�))) + �2R(�);

and �
∑n−1

j=0 E| (j�; Y �(j�))|6C(T ); R(�)6C(T ); where  is de;ned on Eq. (6).

Proof. Since f∈PG and u(t; x)= E (f(X t;x(T ))) solves the Eq. (7) with 3nal condition u(T; x)=f(x); we
have Err(T; �)= E(u(T; Y �(T )))−E(u(0; X (0))). By computing an expansion in Taylor series for u at the point
((n− 1)�; Y �((n− 1)�)) we obtain

E(u(T; Y �(T )))= E(u((n− 1)�; Y �((n− 1)�))) + �2E( ((n− 1)�; Y �((n− 1)�))) + �3Rn(�):

It is not hard to prove using the fact u solves Eq. (7) that there exists a constant C(T ) which does not depend
on � such that |Rn(�)|6C(T ). Continuing in this way n times, we arrive at

E(u(T; Y �(T )))= E(u(0; X (0))) + �2
n−1∑
j=0

E( (j�; Y �(j�))) + �2R(�);
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where R(�)= �
∑n−1

j=0 R�
j 6C(T ). We decompose �2

∑n−1
j=0 E( ((j�; Y �(j�))) according to Eq. (6). We

analyze the 3rst term, being the others completely analogous. Since

�
n−1∑
k=0

E

∣∣∣∣∣∣
∑
i; j∈S

ai(t; Y �(k�))aj(t; Y �(k�))@i; ju(t; Y �(k�))

∣∣∣∣∣∣6 �
n−1∑
k=0

‖a‖2E

∑

i; j∈S

|@i; ju(t; Y �(k�))|2

 :

From Lemma 3.4 and a generalization of Lemma 3.2, we deduce

�
n−1∑
k=0

E

∣∣∣∣∣∣
∑
i; j∈S

ai(t; Y �(k�))aj(t; Y �(k�))@i; ju(t; Y �(k�))

∣∣∣∣∣∣6 �nK(T )=TK(T ):

Using the same technique, we obtain a bound for  (j�; Y �(j�)), and therefore exists a constant C(T ) inde-
pendent of � such that

�
n−1∑
j=0

E| (j�; Y �(j�))|6C(T ):

Lemma 3.7. Under the assumptions of Theorem 3∣∣∣∣∣∣�
n−1∑
j=0

E( (j�; Y �(j�)))−
∫ T

0
E( (s; X (s))) ds

∣∣∣∣∣∣=O(�):

Proof. First note that∣∣∣∣∣∣�
n−1∑
j=0

E( (j�; Y �(j�)))−
∫ T

0
E( (s; X (s))) ds

∣∣∣∣∣∣
6 �

∣∣∣∣∣∣
n−1∑
j=0

E( (j�; Y �(j�)))− E( (j�; X (j�)))
∣∣∣∣∣∣+
∣∣∣∣∣∣�

n−1∑
j=0

E( (j�; X (j�)))−
∫ T

0
E( (s; X (s)) ds)

∣∣∣∣∣∣ :
Since the function  belongs to PG([0; T ]× RS), Lemma 3.6 implies that

|E( (j�; Y �(j�)))− E( (j�; X (j�)))|6C(T )�;

and therefore∣∣∣∣∣∣
n−1∑
j=0

E( (j�; Y �(j�)))− E( (j�; X (j�)))
∣∣∣∣∣∣=O(1); (11)

On the other hand, since the function s → E( (s; Xs)) has a continuous 3rst derivative, one concludes∣∣∣∣∣∣�
n−1∑
j=0

E( (j�; X (j�)))−
∫ T

0
E( (s; X (s)) ds)

∣∣∣∣∣∣=O(�):

Proof of Theorem 3. Follows immediately from Lemmas 3:7–3:9.
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