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Abstract In this paper, we propose a new characteristics method for the
discretization of the two dimensional fluid-rigid body problem in the case where the
densities of the fluid and the solid are different. The method is based on a global weak
formulation involving only terms defined on the whole fluid-rigid domain. To take into
account the material derivative, we construct a special characteristic function which
maps the approximate rigid body at the (k + 1)-th discrete time level into the approx-
imate rigid body at k-th time. Convergence results are proved for both semi-discrete
and fully-discrete schemes.
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1 Introduction

The aim of this paper is to present a modified characteristics method for the dis-
cretization of the equations modelling the motion of a rigid solid immersed into a
viscous incompressible fluid. Our method is a generalisation of the numerical scheme
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342 J. San Martín et al.

presented in San Martín et al. [19] to the case where the fluid and the solid have differ-
ent densities. The fluid-rigid system occupies a bounded, convex and regular domain
O ⊂ R

2. The solid is assumed to be a ball of radius 1 whose center, at time t, is denoted
by ζ (t). The fluid fills the part�(t) = O\B(ζ (t)) at time t . The velocity field u(x, t)
and the pressure p(x, t) of the fluid, the center of mass ζ (t) and the angular velocity
ω(t) of the ball satisfy the following Navier–Stokes system coupled with Newton’s
laws:

ρ f

(
∂u
∂t
+ (u · ∇)u

)
− μ�u+∇ p = ρ f f, x ∈ �(t), t ∈ [0, T ], (1.1)

div u = 0, x ∈ �(t), t ∈ [0, T ], (1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3)

u = ζ ′(t)+ ω(t)(x − ζ (t))⊥, x ∈ ∂B(ζ (t)), t ∈ [0, T ], (1.4)

mζ ′′(t) = −
∫

∂B(ζ (t))

σn d� + ρs

∫
B(ζ (t))

f(x, t)dx, t ∈ [0, T ], (1.5)

Jω′(t) = −
∫

∂B(ζ (t))

(x − ζ (t))⊥ · σn d�

+ρs

∫
B(ζ (t))

(x − ζ (t))⊥ · f(x, t)dx, t ∈ [0, T ]. (1.6)

In the above system, σ = −p Id + 2μD(u) denotes the Cauchy stress tensor with
D(u) = (∇u + ∇uT )/2 and ∇uT means the transpose of ∇u. The positive constant
μ is the dynamic viscosity of the fluid and the constants m and J are the mass and the
moment of inertia of the rigid body. Throughout this article, we will use the notation

x⊥ =
(−x2

x1

)
for all x =

(
x1
x2

)
∈ R

2. System (1.1)–(1.6) is completed with initial

conditions:

u(x, 0) = u0(x), x ∈ �(0), (1.7)

ζ (0) = ζ 0 ∈ R
2, ζ ′(0) = ζ 1 ∈ R

2, ω(0) = ω0 ∈ R. (1.8)

In this paper, we suppose that the density ρ f of the fluid and the density ρs of the solid
are constant, but not equal, that is

ρ f �= ρs .

The fluid-structure interaction problem (1.1)–(1.8) is characterized by the strong
coupling between the nonlinear equations of the fluid and those of the structure, as
well as the fact that the equations of the fluid are written in a variable domain in
time, which depends on the displacement of the structure. From the numerical point
of view, in this kind of problems it is necessary to solve equations on moving domains.
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A modified Lagrange–Galerkin method for a fluid-rigid system 343

For this reason, in recent years various authors have proposed a number of different
techniques, some of which are the level set method (see Osher and Sethian [13]), the
fictitious domain method (see Glowinski, Pan, Hesla, Joseph and Périaux [7,8]), the
immersed boundary method (see Peskin [14]) and the Arbitrary Lagrangian Eulerian
(ALE) method (see Formaggia and Nobile [4], Gastaldi [5], Maury [11], Maury and
Glowinski [12]).

In the sequel, we briefly recall some reference about the numerical convergence for
Navier–Stokes equations, when the domain is independent of time. The Lagrange–
Galerkin method has been proposed for the numerical treatment of convection-domi-
nated equations and it is based on combining a Galerkin finite element procedure with
a special discretisation of the material derivative along trajectories. Pironneau in [15]
has given a detailed analysis of the method for the Navier–Stokes equations and Süli
[22] has proved optimal error estimates for the Lagrange–Galerkin mixed finite ele-
ment approximation of Navier–Stokes equations in a velocity/pressure formulation.
We also mention the work of Achdou and Guermond [1], where convergence analy-
sis of a finite element projection/Lagrange–Galerkin method for the incompressible
Navier–Stokes equations is done.

The numerical analysis of some time decoupling algorithms for the simulation of
the interaction between a fluid and a structure in the case where the deformation of the
structure induces an evolution in the fluid domain has been developed by Grandmont
et al. [9] (one dimensional problem). For the ALE method, the numerical analysis of the
unsteady Stokes equations in a time dependent domain when the motion of the domain
is given has been studied in San Martín et al. [21]. Moreover, Legendre and Takahashi
[10] have combined the method of characteristics with a finite element approxima-
tion to derive error estimates in the ALE formulation of a two-dimensional problem
describing the motion of a rigid body in a viscous fluid. In San Martín et al. [18,19], the
authors have proved the convergence of a numerical method based on finite elements
with a fixed mesh for a two dimensional fluid-rigid body problem with the densities
of the fluid and the solid equal, i.e. ρ f = ρs . Their numerical scheme is based on a
standard characteristic function resulting from the classical formulation of the mate-
rial derivative in the Navier–Stokes equations. The method introduced in [19] cannot
be easily extended to our case ρ f �= ρs , where the global density is discontinuous,
by using the same characteristic function. In this paper, we introduce crucial modi-
fications on the characteristic function, and we propose a new numerical scheme in
order to prove a similar convergence result as in [19]. We think that this modifica-
tion on the characteristic function should be useful to obtain convergent algorithms
for the simulation of aquatic organisms in two and three dimensional cases (see San
Martín et al. [20]). We refer the reader to Remark 5.4 below for a comparison between
our modified characteristic function and other possible choices. Let us also cite our
preliminary version [17], where we have introduced the semi-discrete formulation of
the problem and we state the convergence result.

The paper is organized as follows. In the next section we introduce some notation
and the functional spaces we work on. In Sect. 3 we discretize the fluid-structure
interaction problem (1.1)–(1.8) in time variable and we state our first main result
given in Theorem 3.2 which consists in the convergence of the semi-discretization
scheme. Section 4 is dedicated to the full discretization in time and space variables
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344 J. San Martín et al.

and then we state our second main result given in Theorem 4.4 which concerns an
error estimate for the fully-discrete formulation. Section 5 is devoted to some crucial
properties on the characteristic functions associated with our schemes. The last two
sections are focused on the proofs of the convergence results for both semi-discrete
and fully-discrete formulations.

2 Notation and functional spaces

Throughout this paper, we shall use the classical Sobolev spaces Hs(O), Hs
0 (O),

H−s(O), s � 0 and the space of Lipschitz continuous functions C0,1(O) on the
closure of O. We also define

L2
0(O) =

{
f ∈ L2(O) |

∫
O

f dx = 0
}
.

The usual inner product in L2(O)2 will be denoted by

(u, v) =
∫
O

u · v dx ∀u, v ∈ L2(O)2. (2.1)

If A is a matrix, we denote by AT its transpose. For any 2×2 matrices A,B ∈M2×2,
we denote by A : B their inner product A : B = Trace(AT B), and by |A| the corre-
sponding norm. For convenience, we use the same notation as in (2.1) for the inner
product in L2(O,M2×2), that is

(A,B) =
∫
O

A : B dx ∀A,B ∈ L2(O,M2×2).

For ζ ∈O, we introduce the space of rigid functions in B(ζ )={x∈R
2 : |x−ζ |≤1},

K(ζ ) = {u ∈ H1
0 (O)2 | D(u) = 0 in B(ζ )

}
, (2.2)

the space of rigid functions in B(ζ ) with free divergence in the whole domain O,

K̂(ζ ) = {u ∈ K(ζ ) | div u = 0 in O
}
, (2.3)

and the space of the pressure

M(ζ ) =
{

p ∈ L2
0(O) | p = 0 in B(ζ )

}
. (2.4)

Remark 2.1 For convenience, in the remainder of the paper, any velocity field in K(ζ )
will be extended by zero outside of O.
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A modified Lagrange–Galerkin method for a fluid-rigid system 345

According to Lemma 1.1 of [23, p. 18], for any u ∈ K(ζ ), there exist lu ∈ R
2 and

ωu ∈ R such that

u(y) = lu + ωu (y− ζ )⊥ ∀y ∈ B(ζ ). (2.5)

In addition, we define the density ρ by the following piecewise constant function

ρ(x) =
{
ρs if x ∈ B(ζ ),

ρ f if x ∈ O\B(ζ ).

We notice that, by using the above definitions, for any u, v ∈ K(ζ ) we have

(ρu, v) =
∫

O\B(ζ )
ρ f u · v dx + M lu · lv + Jωu ωv. (2.6)

The spaces (2.2)–(2.3) are specific to our problem. In fact, if the solution u of
(1.1)–(1.8) is extended by

u(x, t) = ζ ′(t)+ ω(t)(x − ζ (t))⊥ ∀x ∈ B(ζ (t)),

then, we easily see that u(t) ∈ K̂(ζ (t)). In the remainder of this paper, the solution u
of (1.1)–(1.8) will be extended as above.

An important ingredient of the numerical method we use is given by the characteris-
tic functions corresponding to the integral curves of the velocity field. More precisely
(see, for instance, [15,22]) the characteristic function ˜ψ : [0, T ]2×O→ O is defined
as the solution of the initial value problem

⎧⎨
⎩

d

dt
˜ψ(t; s, x) = u(˜ψ(t; s, x), t) ∀t ∈ [0, T ],

˜ψ(s; s, x) = x.
(2.7)

It is well-known that the material derivative Dt u = ∂u/∂t + (u · ∇)u of u at instant
t0 satisfies:

Dt u(x, t0) = d

dt

[
u(˜ψ(t; t0, x), t)

]
|t=t0

. (2.8)

Remark 2.2 By using a classical result of Liouville (see, for instance, [2, p. 251]), if

ζ ∈ H2(0, T )2, ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ (t))),

then we have that

det J
˜ψ
= 1, (2.9)
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346 J. San Martín et al.

where we have denoted by

J
˜ψ
=
(
∂ψ̃i

∂x j

)
i, j

the jacobian matrix of the transformation x �→ ˜ψ(t; s, x).

In the following lemma we give a weak formulation of the system (1.1)–(1.8) which
will be then used to discretize the problem with respect to time.

Lemma 2.3 Assume that

u ∈ L2
(
0, T ; H2(�(t))2

) ∩ H1
(
0, T ; L2(�(t))2

) ∩ C
([0, T ]; H1(�(t))2

)
,

p ∈ L2
(
0, T ; H1(�(t))

)
, ζ ∈ H2(0, T )2, ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ ′(t)+ ω(t)(x − ζ (t))⊥ ∀x ∈ B(ζ (t)).

Then (u, p, ζ , ω) is the solution of (1.1)–(1.8) if and only if for all t ∈ [0, T ],u(·, t) ∈
K(ζ (t)), p(·, t) ∈ M(ζ (t)) and (u, p) satisfies

(
ρ

d

dt

[
u ◦ ˜ψ

]
(t),ϕ

)
+ a(u,ϕ)+ b(ϕ, p) = (ρ f(t),ϕ) ∀ϕ ∈ K(ζ (t)), (2.10)

b(u, q) = 0 ∀q ∈ M(ζ (t)), (2.11)

where

a(u, v) = 2μ
∫
O

D(u) : D(v) dx ∀u, v ∈ H1(O)2 (2.12)

and

b(u, p) = −
∫
O

div(u)p dx ∀u ∈ H1(O)2, ∀ p ∈ L2
0(O). (2.13)

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding
result for the classical Navier–Stokes system (see, for instance, [16, Ch.12]).

In the remainder of the paper, we suppose that f and u0 satisfy

f ∈ C([0, T ]; H1(O)2), u0 ∈ H2(�)2, div(u0) = 0 in �,
u0 = 0 on ∂O, u0(x) = ζ 1 + ω0(x − ζ 0)

⊥ on ∂B(ζ 0),
(2.14)

where ζ 0, ζ 1 ∈ R
2, ω0 ∈ R and � = O\B(ζ 0).
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Let us also assume that the corresponding solution (u, p, ζ , ω) of problem (1.1)–
(1.8) satisfies

⎧⎨
⎩

u ∈ C([0, T ]; H2(�(t))2) ∩ H1(0, T ; L2(�(t))2),
D2

t u ∈ L2(0, T ; L2(�(t))2), u ∈ C([0, T ];C0,1(O)2)
p ∈ C

([0, T ]; H1(�(t))
)
, ζ ∈ H3(0, T )2, ω ∈ H2(0, T )

(2.15)

and

dist (B(ζ (t)), ∂O) > 0 ∀ t ∈ [0, T ]. (2.16)

Remark 2.4 The hypotheses (2.15) and (2.16) imply the existence of η > 0 such that

dist (B(ζ (t)), ∂O) > 3η ∀ t ∈ [0, T ]. (2.17)

3 Semi-discretization scheme and statement of the first main result

By using the weak formulation (2.10)–(2.11) we can derive a semi-discrete version
of our system. For N ∈ N

∗ we denote �t = T/N and tk = k�t for k = 0, . . . , N .
Denote by (uk, ζ k) ∈ (K̂(ζ k) ∩ C0(O)2

) × O the approximation of the solution of
(1.1)–(1.8) at the time t = tk . For k = 0, we define

u0(·) = u(·, 0) and ζ 0 = ζ (0), (3.1)

then using the initial conditions (1.7)–(1.8), we have

u0(x) =
{

u0(x) if x ∈ �(0)
ζ 1 + ω0(x − ζ 0)

⊥ if x ∈ B(ζ 0)
and ζ 0 = ζ 0.

Let us note that due to hypothesis (2.14), u0(·) is a continuous function.
In the sequel, we shall use the notation

X̃(x) = ˜ψ(tk; tk+1, x) ∀x ∈ O. (3.2)

We approximate the position of the rigid ball at instant tk+1 by ζ k+1 which is defined
by the relation

ζ k+1 = ζ k + uk(ζ k)�t. (3.3)

We then define the characteristic function ψ associated with the semi-discretized
velocity field as the solution of

⎧⎨
⎩

d

dt
ψ(t; tk+1, x) = uk(ψ(t; tk+1, x))− uk(ζ k) ∀t ∈ [tk, tk+1],

ψ(tk+1; tk+1, x) = x − uk(ζ k)�t,
(3.4)
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and we denote

X
k
(x) = ψ(tk; tk+1, x) ∀x ∈ O. (3.5)

In Eq. (3.4), the velocity uk is extended by zero outside of the domain O as it was

noted in Remark 2.1. This extension is necessary because we have X
k
(O) � O.

Indeed, we observe that due to the initial condition in (3.4), if we consider x ∈ O,
then ψ(tk+1; tk+1, x) does not necessarily belong to O. Nevertheless, one can easily

check that X
k
(O) ⊆ O + B(0, |uk(ζ k)|�t). We emphasize that the Cauchy problem

(3.4) is well-posed and then the characteristic function X
k

is also well defined. Indeed,
since uk ∈ H1

0 (O)2 with div uk = 0 in O and uk = 0 in R
2\O, the problem (3.4)

admits a unique solutionψ(·; tk+1, x) ∈ C1([tk, tk+1]) for almost everywhere x ∈ R
2,

which satisfies the following measure preserving property (see [3, Sect. III]),

∫
A

f
(
ψ(t; tk+1, x)

)
dx =

∫

ψ(t;tk+1,A)

f (y) dy, (3.6)

for all function f ∈ L1(R2) and for all t ∈ [tk, tk+1]. Moreover, since uk ∈ C0(O)2,
the characteristic function ψ(·; tk+1, x) is actually well defined in [tk, tk+1], for all
x ∈ R

2.
We next define uk+1 ∈ K̂(ζ k+1) as the solution of the following Stokes type system

(
ρk+1 uk+1 − uk ◦ X

k

�t
,ϕ

)
+ a

(
uk+1,ϕ

)
= (ρk+1fk+1,ϕ) ∀ϕ ∈ K̂(ζ k+1), (3.7)

where fk+1 = f(tk+1) and ρk+1 is defined by

ρk+1(x) =
{
ρs if x ∈ B(ζ k+1),

ρ f if x ∈ O\B(ζ k+1).

The above equation can be rewritten by using a mixed formulation. It is clear that
(3.7) is equivalent to the following system

(
ρk+1 uk+1 − uk ◦ X

k

�t
,ϕ

)
+ a(uk+1,ϕ)+ b(ϕ, pk+1)

= (ρk+1fk+1,ϕ) ∀ϕ ∈ K(ζ k+1), (3.8)

b(uk+1, q) = 0 ∀q ∈ M(ζ k+1), (3.9)

of unknowns (uk+1, pk+1) ∈ K(ζ k+1)× M(ζ k+1).
It is well-known (see, for example, [6, Corollary I.4.1, p. 61]) that the mixed for-

mulation (3.8)–(3.9) is a well-posed problem, provided that the spaces K(ζ ), M(ζ )
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A modified Lagrange–Galerkin method for a fluid-rigid system 349

and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup condition
is satisfied in our case follows from the result below.

Lemma 3.1 Suppose that ζ ∈ O is such that d(ζ , ∂O) = 1 + η, with η > 0. Then
there exists a constant β > 0, depending only on η and on O, such that for all
q ∈ M(ζ ) there exists u ∈ K(ζ ) with

∫
O

div(u) q dx ≥ β‖u‖H1(O)2‖q‖L2(O). (3.10)

The proof of the result above can be obtained by slightly modifying the approach
used for the mixed formulation of the standard Stokes system (see, for instance
[6, p. 81]), therefore it is left to the reader. In addition, it can be easily proved that uk+1

is continuous in O. To see this, we remark that (uk+1 pk+1) satisfies a Stokes problem
in the fluid part O\B(ζ k+1) with a rigid velocity boundary condition on ∂B(ζ k+1).
Then assuming fk+1 ∈ L2(O)2, we get uk+1 ∈ H2(O\B(ζ k+1))2 and we deduce that

uk+1 ∈ C0(O)2. (3.11)

Let us now state our first main result concerning the convergence of the semi-dis-
crete scheme (3.8)–(3.9):

Theorem 3.2 Suppose that O is an open and convex smooth bounded domain in R
2,

f and u0 satisfy (2.14) and (u, p, ζ , ω) is a solution of (1.1)–(1.8) satisfying (2.15)–
(2.16). Then there exist two positive constants K and τ ∗ not depending on �t such
that for all 0 < �t ≤ τ ∗ the solution (uk, pk, ζ k) of the semi-discretization problem
(3.8)–(3.9) satisfies

sup
1≤k≤N

(
|ζ (tk)− ζ k | + ‖u(tk)− uk‖L2(O)2

)
≤ K�t. (3.12)

Remark 3.3 The constants K and τ ∗ from Theorem 3.2 are dependent on T as follows:
there exists two positive constants C and C1, independent on T and �t , such that

K = C exp(C1T )
(

1+
∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2 +

∥∥∥ d2

dt2 [u ◦ ˜ψ]∥∥L2(O×(0,T ))2
)
,

τ ∗ = min
{ η

4C2
,

√
ηmin{√ρ f ,

√
ρs}

4C2
,

√
η

4C1

}
,

where C2 = K/C = exp(C1T )
(

1+
∥∥∥ ∂u
∂t

∥∥∥
L2(O×(0,T ))2 +

∥∥∥ d2

dt2 [u ◦ ˜ψ]∥∥L2(O×(0,T ))2
)

and η is the positive constant given in (2.17).
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4 Fully discrete formulation and statement of the second main result

In order to discretize the problem (3.8)–(3.9) with respect to the space variable, we
introduce two families of finite element spaces which approximate the spaces K(ζ ) and
M(ζ ) defined in (2.2) and (2.4). To this end, we consider the discretization parameter
0 < h < 1.

Let Th be a quasi-uniform triangulation of the domain O. We denote by Wh the
P1+bubble finite elements space associated with Th for the velocity field in the Stokes
problem and by Eh the P1-finite elements space for the pressure, that is

Wh =
{
ϕ ∈ C (O)2 : ∀T ∈ Th, ϕ|T ∈ P1 + bubble(T )

}
,

Eh =
{

q ∈ C (O) : ∀T ∈ Th, q|T ∈ P1

}
.

Then, we define the following finite element spaces for a conform approximation of
the fluid-rigid system:

Kh(ζ ) = Wh ∩K(ζ ) ∀ζ ∈ O,
Mh(ζ ) = Eh ∩ M(ζ ) ∀ζ ∈ O.

Let us recall an approximation property of the projection on Kh(ζ ) × Mh(ζ )

(see [19]).

Lemma 4.1 Suppose that V ∈ K(ζ ) and that P ∈ M(ζ ). Then there exists a unique
couple (Vh, Ph) in Kh(ζ )× Mh(ζ ) such that:

{
a
(
V− Vh,ϕ

)+ b
(
ϕ, P − Ph

) = 0 ∀ϕ ∈ Kh(ζ ),

b
(
V− Vh, q

) = 0 ∀q ∈ Mh(ζ ).
(4.1)

Moreover, if we suppose in addition that V|O\B(ζ ) ∈ H2 (O\B(ζ ))2 and that
P|O\B(ζ ) ∈ H1 (O\B(ζ )), then there exists a positive constant C, independent of
h, such that

‖V− Vh‖L2(O)2 ≤ Ch.

In order to define the approximate characteristics, let us denote by Fh the P2-finite
element space associated with the triangulation Th and we introduce the space:

Rh(ζ ) = {∇⊥ϕh : ϕh ∈ Fh, ϕh = 0 on ∂O} ∩K(ζ ) ∀ζ ∈ O,

where ∇⊥ϕh =
⎛
⎜⎝
−∂ϕh

∂x2
∂ϕh

∂x1

⎞
⎟⎠ .

We denote by P(ζ ) the orthogonal projection from L2(O)2 onto Rh(ζ ), i.e. if
u ∈ L2(O)2 then P(ζ )u ∈ Rh(ζ ) is such that (u−P(ζ )u, rh) = 0 for all rh ∈ Rh(ζ ).
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Let N be a positive integer. We denote �t = T/N and tk = k�t for all k ∈
{0, . . . , N }.

For k = 0, we define

u0
h(·) = u(·, 0) and ζ 0

h = ζ 0, (4.2)

where
(

u(·, 0), p(·, 0)
)
∈ Kh(ζ 0)× Mh(ζ 0) is the projection of the initial condition(

u(·, 0), p(·, 0)
)

on Kh(ζ 0)× Mh(ζ 0) defined in (4.1).

Assume that the approximate solution (uk
h, pk

h, ζ
k
h) of (1.1)–(1.8) at t = tk is

known. We describe below the numerical scheme allowing to determinate the approx-
imate solution (uk+1

h , pk+1
h , ζ k+1

h ) at t = tk+1. First, we compute ζ k+1
h ∈ R

2 by

ζ k+1
h = ζ k

h + uk
h(ζ

k
h)�t. (4.3)

We consider the approximated characteristic functionψ
k
h defined as the solution of

⎧⎨
⎩

d

dt
ψ

k
h(t; tk+1, x)=P(ζ k

h)u
k
h(ψ

k
h(t; tk+1, x))−P(ζ k

h)u
k
h(ζ

k
h) ∀t ∈[tk, tk+1],

ψ
k
h(tk+1; tk+1, x) = x − uk

h(ζ
k
h)�t.

(4.4)

Then, we define

X
k
h(x) = ψk

h(tk; tk+1, x) ∀x ∈ O. (4.5)

We remark that, since div
(

P(ζ k
h)u

k
h(ψ

k
h(t; tk+1, ·)) − P(ζ k

h)u
k
h(ζ

k
h)
)
= 0 and

∇(x − uk
h(ζ

k
h)�t) = Id, we have

det J
ψ

k
h
= 1. (4.6)

In the sequel, we shall split the mesh into the union of 4 different types of triangle’s
subsets. We first introduce Ah as the union of all triangles intersecting the ball B(ζ k

h),
i.e.

Ah =
⋃

T∈Th◦
T∩◦B(ζk

h ) �=∅

T .

We also denote by Qh the union of all triangles such that all their vertices are contained
in Ah . The triangles of Th are then split into the following four categories (see Fig. 1):

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζ k
h).

• F2 is the subset formed by all triangles T ∈ Th\F1 such that T ⊂ Qh .
• F3 is the subset formed by all triangles T ∈ Th such that T ∩Qh �= ∅ and T �⊂ Qh .
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Fig. 1 The rigid ball and the related splitting of the triangulation

• F4 = Th\(F1 ∪ F2 ∪ F3).

We introduce two approximated density functions ρk
h and ρk

h as follows:

ρk
h(x) =

{
ρs if x ∈ B(ζ k

h),

ρ f if x ∈ O\B(ζ k
h)

(4.7)

and ρk
h is the continuous function in O which is piecewise linear on triangles of Th

and satisfies

ρk
h(x) =

{
ρs if x ∈ Qh,

ρ f if x ∈ F4.
(4.8)

With these notations, we consider the following mixed variational fully discrete
formulation: Find (uk+1

h , pk+1
h ) ∈ Kh(ζ

k+1
h )× Mh(ζ

k+1
h ) such that

(
ρk+1

h

uk+1
h − uk

h ◦ X
k
h

�t
,ϕ
)
+ a(uk+1

h ,ϕ)+ b(ϕ, pk+1
h )

= (ρk+1
h fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζ
k+1
h ), (4.9)

b(uk+1
h , q) = 0 ∀q ∈ Mh(ζ

k+1
h ), (4.10)

where fk+1
h is the L2(O)2-projection of fk+1 = f(tk+1) on (Eh)

2.

Remark 4.2 The density ρk+1
h is not a finite element function. Nevertheless, making

use of this density function is justified through the following two points of view:
the first integral term in (4.9) involving the density ρk+1

h can be exactly computed
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(see Remark 5.7 below). On the other hand, ρk+1
h has important properties that guar-

antee the stability and the convergence of our method (see identity (5.8) below). It is
important to remark that the density ρk+1

h does not satisfy a similar property to (5.8).
Therefore, if we use ρk+1

h instead of ρk+1
h in the first term of our scheme (4.9)–(4.10),

the analysis becomes harder to handle and we didn’t succeed to overcome the induced
difficulties.

Remark 4.3 On the right side of our numerical scheme (4.9)–(4.10), we use the func-
tion ρk+1

h because it is the natural P1 finite element density corresponding to ρk+1
h .

This choice is not mandatory. In fact, we can use any other density function associated
with finite element mesh provided that estimate (7.28) below holds. For instance, it
is possible to use the discontinuous P0 (piecewise constant) density approximation of
ρk+1

h .

Let us now state the second main result of this paper which asserts the convergence
of the fully-discrete scheme (4.9)–(4.10):

Theorem 4.4 Let O be a bounded convex domain with a polygonal boundary. Sup-
pose that f and u0 satisfy the conditions (2.14) and that (u, p, ζ , ω) is a solution
of (1.1)–(1.8) satisfying the regularity properties (2.15) and such that (2.16) holds.
Let C0 > 0 and 0 < α ≤ 1 be two fixed constants. Then there exist two positive
constants K and τ ∗ independent of h and �t such that for all 0 < �t ≤ τ ∗ and for
all h ≤ C0�t1+α we have

sup
1≤k≤N

(
|ζ (tk)− ζ k

h | + ‖u(tk)− uk
h‖L2(O)2

)
≤ K�tα.

Remark 4.5 The constants K and τ ∗ from Theorem 4.4 are dependent on T as follows:
there exists two positive constants C and C3, independent on T , �t and h, such that

K = C(C4 + C0),

τ ∗ = min
{ η

4C3
,

√
η

4C3
, 1,
√
ρ f ,
√
ρs,
( η

4C4

)1/α}
,

where C4 = exp(C3T )
(

1+√C0+C0+
∥∥∥ ∂u
∂t

∥∥∥
L2(O×(0,T ))2+

∥∥∥ d2

dt2 [u◦˜ψ]
∥∥

L2(O×(0,T ))2
)

,

C0 is the constant given in the statement of Theorem 4.4 and η is the positive constant
given in (2.17).

Remark 4.6 In order to get an approximation of first order in time (i.e. O(�t)), we have
to choose α = 1. In this case, the corresponding condition on h becomes h ≤ C0�t2

which is similar to the one obtained in [19, Th.3.2] in the case of equal densities
ρ f = ρs .

Remark 4.7 Let us give some comments on the condition on h and�t required for the
convergence result in Theorem 4.4. First, we emphasize that the same type of condition
appears in several works for approximation in a Lagrangian framework of the Navier–
Stokes equations without any rigid body. We may cite [15] where the convergence is
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obtained under the condition h ≤ C0�t and [22] where h and�t are chosen such that
h2 ≤ C�t ≤ C1hσ and σ > 1/2 (with h and�t small enough). We also mention [21]
for an ALE scheme applied to Stokes equations in a time-dependent domain, where
the authors obtain an error estimate of order O(�t) under the condition h ≤ C�t3/4.

Remark 4.8 It can be easily shown that the fully-discrete scheme (4.9)–(4.10) is uncon-
ditionally stable. This is namely due to the fact that (4.6) holds and also due to the
stability property (5.8) below fulfilled by the density function.

5 Properties on the characteristic function

In this section, we prove some properties on the new characteristic function which are
essential for the proof of our main results.

Lemma 5.1 For any free divergence velocity field v ∈ H1
0 (O)2 ∩ C0(O)2 extended

by zero outside of O, and for any differentiable function R : O → R
2 such that

det(∇R) = 1 and R(Sk+1) = Sk, where Sk and Sk+1 are two open smooth subsets of
O, we consider the characteristic function as the solution of problem

{ d

dt
ψ(t; tk+1, x) = v(ψ(t; tk+1, x)) ∀t ∈ [tk, tk+1],

ψ(tk+1; tk+1, x) = R(x)
(5.1)

and we denote

X(x) = ψ(tk; tk+1, x) ∀x ∈ O. (5.2)

If v(z) · n = 0 for any z ∈ ∂Sk, then the characteristic function satisfies the
following properties:

(1) X
(
Sk+1

) = Sk;
(2) For any f ∈ L2(R2) such that f = 0 in R

2\O, we have

∥∥ f ◦ ψ(t; tk+1, ·)
∥∥

L2(O) ≤
∥∥ f
∥∥

L2(O) ∀t ∈ [tk, tk+1]. (5.3)

Proof Let us first remark that the Cauchy problem (5.1) is well-posed. To see this, we
transform problem (5.1) by making use of the following change of unknown:

ψ(t; tk+1, x) = ϕ(t; tk+1,R(x)), (5.4)

where ϕ satisfies

{ d

dt
ϕ(t; tk+1, y) = v(ϕ(t; tk+1, y)) ∀t ∈ [tk, tk+1],

ϕ(tk+1; tk+1, y) = y ∀y ∈ R
2.

(5.5)

According to [3, Sect. III], the Cauchy problem (5.5) admits a unique solution
ϕ(· ; tk+1, y) ∈ C1(R)2 for almost everywhere y ∈ R

2 and satisfies the following
measure preserving property
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∫
A

F (ϕ(t; tk+1, y)) dy =
∫

ϕ(t;tk+1,A)

F(x)dx, (5.6)

for any subset A ⊂ R
2, for all function F ∈ L1(R2) and for all t ∈ [tk, tk+1]. Since

the velocity field v is continuous in R
2, then ϕ(· ; tk+1, y) is actually defined for all

y ∈ R
2. Moreover, due to the hypothesis v · n = 0 on ∂Sk , we have that for all

t ∈ [tk, tk+1],ϕ(t; tk+1, ·)maps Sk onto itself (see [3, Sect. IV]). In particular, we get
that ϕ(tk; tk+1, ·) maps Sk onto itself.

We can now prove the equality (i). In fact, we have that

X(Sk+1) = ϕ(tk; tk+1,R(Sk+1)) = ϕ(tk; tk+1, Sk) = Sk .

Let us turn to the proof of (ii). Under the assumption det(∇R) = 1 and using the
property (5.6), we obtain

‖ f ◦ ψ(t; tk+1, ·)‖2L2(O) =
∫
O

| f (ψ(t; tk+1, x))|2dx =
∫
O

| f (ϕ(t; tk+1,R(x)))|2dx

=
∫

R(O)

| f (ϕ(t; tk+1, y))|2dy =
∫

ψ(t;tk+1,O)

| f (z)|2dz.

On the other hand, since f = 0 in R
2\O we have

∫
ψ(t;tk+1,O)

| f (z)|2dz =
∫

ψ(t;tk+1,O)∩O
| f (z)|2dz ≤

∫
O

| f (z)|2dz.

Therefore, we conclude the result (ii). ��
In the sequel, we state two corollaries of the above lemma which state the properties

on the characteristic functions associated with the semi-discretized and full-discretized
velocity fields:

Corollary 5.2 For any k ∈ {0, . . . , N }, the characteristic function ψ defined in
(3.4)–(3.5) satisfies the following properties:

(i) X
k(

B(ζ k+1)
) = B(ζ k);

(ii) If we extend by ρ f the density field ρk outside of O, we have

ρk+1 = ρk ◦ X
k;

(iii) For any f ∈ L2(R2) such that f = 0 in R
2\O, we have

∥∥ f ◦ ψ(t; tk+1, ·)
∥∥

L2(O) ≤
∥∥ f
∥∥

L2(O) ∀t ∈ [tk, tk+1]. (5.7)
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Proof The properties (i) and (iii) are direct consequences of Lemma 5.1. In fact, we
have that the function R(x) = x−uk(ζ k)�t maps B(ζ k+1) onto B(ζ k) and∇R = Id.
Moreover, the velocity field

v(z) = uk(z)− uk(ζ k) ∀z ∈ R
2

is a free divergence field and for any z ∈ B(ζ k) the decomposition (2.5) allows us to
get that

v(z) = ωuk (z− ζ k)⊥,

which implies that the hypothesis v · n = 0 on ∂B(ζ k) holds.
The equality (ii) is a direct consequence of (i) and the extension of ρk by ρ f

outside of O. In fact, we have (ρk ◦X
k
)(x) = ρs if and only if X

k
(x) ∈ B(ζ k) which

is equivalent to x ∈ B(ζ k+1) due to identity (i). ��

Corollary 5.3 For any k ∈ {0, . . . , N } and h ∈ (0, 1), the characteristic function ψ
k
h

defined in (4.4)–(4.5) satisfies the following properties:

(i) X
k
h

(
B(ζ k+1

h )
) = B(ζ k

h);
(ii) If we extend by ρ f the density field ρk

h outside of O, we have

ρk+1
h = ρk

h ◦ X
k
h; (5.8)

(iii) For any f ∈ L2(R2) such that f = 0 in R
2\O, we have

∥∥ f ◦ ψk
h(t; tk+1, ·)

∥∥
L2(O)2 ≤ ‖ f ‖L2(O)2 ∀t ∈ [tk, tk+1]. (5.9)

Remark 5.4 The property (5.8) is one of the key ingredients that guarantee the stabil-
ity and the convergence of our numerical method for the case ρs �= ρ f . In fact, the
numerical scheme studied in [19] for the case ρs = ρ f cannot be easily extended to
the case with different densities. If we naively add different densities in the scheme
of [19], as for instance the P1-density function ρk+1

h , and preserve their characteristic
function, the corresponding property (5.8) could be false (for some velocity fields).

In this case, the error estimate involves a term of type
∥∥ρk+1

h − ρk
h ◦ X

k
h

∥∥
L2(O) which

cannot be conveniently estimated in order to prove either the convergence or the stabil-
ity of the method. For this reason, we suspect that the resulting numerical scheme does
not converge and is unstable. Even incorporating the discontinuous density ρk+1

h and
still preserving their characteristic function don’t allow to overcome the difficulties.
In our case, in order to get the property (5.8), we propose a suitable combination of a
discontinuous density function with a modified characteristic function.

Proof The proof is similar to the proof of Corollary 5.2. It is enough to observe that
the initial condition from equation (4.4), R(x) = x − uk

h(ζ
k
h)�t maps B(ζ k+1

h ) onto
B(ζ k

h) and ∇R = Id. The velocity field
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v(z) = P(ζ k
h)u

k
h(z)− P(ζ k

h)u
k
h(ζ

k
h) ∀z ∈ R

2

is free divergence and for any z ∈ B(ζ k
h) the decomposition (2.5) gives us

v(z) = ωP(ζ k
h)u

k
h
(z− ζ k

h)
⊥, (5.10)

where ωP(ζ k
h)u

k
h

is the angular velocity associated with the rigid velocity field P(ζ k
h)u

k
h

in B(ζ k
h). This implies that

v · n = 0 on ∂B(ζ k
h). (5.11)

With these remarks, the hypotheses of Lemma 5.1 are satisfied and thus the proof is
concluded. ��
Remark 5.5 In the case of a general rigid body, not necessarily ball, the definition of
the characteristic function ψ has to be modified in order to take into account the rota-
tion effects. To this end, we denote by B(ζ k, θk) the rigid body with the center of mass
ζ k and the orientation angle θk . We also denote ωk the approximate angular velocity
and Rθ will stand for the rotation matrix of angle θ . The characteristic function ψ is
now defined as the solution of

⎧⎨
⎩

d

dt
ψ(t; tk+1, x) = uk

(
ψ(t; tk+1, x)

)
− uk

R

(
ψ(t; tk+1, x)

)
,

ψ(tk+1; tk+1, x) = R−ωk (tk+1−tk )(x − ζ k+1)+ ζ k,

(5.12)

where uk is extended by zero outside of O as in Remark 2.1 and uk
R is the rigid velocity

field defined as follows

uk
R(x) = uk(ζ k)+ ωk(x − ζ k)⊥ ∀x ∈ R

2. (5.13)

We also define the function X
k

by

X
k
(x) = ψ(tk; tk+1, x) ∀x ∈ O. (5.14)

With these definitions, the hypotheses of Lemma 5.1 are still fulfilled and then
Corollary 5.2 holds for the general case of a rigid body.

Let us finish this section by giving an important property on the characteristic

function X
k
h . This result is very useful for computational and practical considerations

(see Remark 5.7 below).

Corollary 5.6 For any k ∈ {0, . . . , N } and h ∈ (0, 1), the characteristic function ψ
k
h

defined in (4.4)–(4.5) satisfies the following property:

X
k
h

(
x
)− ζ k

h = R−ω
P(ζk

h )u
k
h
�t (x − ζ k+1

h ) ∀x ∈ B(ζ k+1
h ). (5.15)
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Proof Let us fix x ∈ B(ζ k+1
h ). Since the identity (5.11) holds, we can apply results

from [3, Sect. IV] and we get that the solution ψ
k
h of problem (4.4) satisfies

ψ
k
h(t; tk+1, x) ∈ B(ζ k

h) for all t ∈ [tk, tk+1].

Due to identity (5.10), the differential equation (4.4) reduces to

⎧⎨
⎩

d

dt
ψ

k
h(t; tk+1, x) = ωP(ζ k

h)u
k
h
(ψ

k
h(t; tk+1, x)− ζ k

h)
⊥ ∀t ∈ [tk, tk+1],

ψ
k
h(tk+1; tk+1, x) = x − uk

h(ζ
k
h)�t.

(5.16)

The solution of this equation is given by

ψ
k
h(t; tk+1, x) = ζ k

h +Rω
P(ζk

h )u
k
h
(t−tk+1)(ψ

k
h(tk+1; tk+1, x)− ζ k

h)

= ζ k
h +Rω

P(ζk
h )u

k
h
(t−tk+1)(x − ζ k+1

h ),

for all t ∈ [tk, tk+1]. Taking t = tk leads to the desired relation (5.15). ��

Remark 5.7 An important feature in our fully discrete scheme (4.9)–(4.10) is the use
of ρk+1

h inside the first integral term in (4.9). Despite of the fact that the density ρk+1
h

is not a finite element function associated to the mesh Th , this integral term can be
exactly computed using the following decomposition:

(
ρk+1

h

uk+1
h − uk

h ◦ X
k
h

�t
,ϕ
)
= ρ f

�t

∫
O
(uk+1

h − uk
h ◦ X

k
h) · ϕdx

+ρs − ρ f

�t

∫

B(ζ k+1
h )

(uk+1
h − uk

h ◦ X
k
h) · ϕdx ∀ϕ ∈ Kh(ζ

k+1
h ).

The first integral term is computed as usual by using the finite element spaces. The
second integral term is computed using the following properties: for all x ∈ B(ζ k+1

h ),
we have

uk+1
h (x) = �1 + ω1(x − ζ k+1

h )⊥,

(uk
h ◦ X

k
h)(x) = �2 + ω2(X

k
h(x)− ζ k

h)
⊥,

ϕ(x) = �ϕ + ωϕ(x − ζ k+1
h )⊥,
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then we get

∫

B(ζ k+1
h )

uk+1
h · ϕdx = π�1 · �ϕ + π

2
ω1ωϕ,

∫

B(ζ k+1
h )

uk
h ◦ X

k
h · ϕdx = π�2 · �ϕ + ω2ωϕ

∫

B(ζ k+1
h )

(X
k
h(x)− ζ k

h) · (x − ζ k+1
h )dx.

In order to evaluate the last integral, we take into account the property (5.15) of the
characteristic function proved in Corollary 5.6 and we get that

∫

B(ζ k+1
h )

uk
h ◦ X

k
h · ϕdx = π�2 · �ϕ + π

2
ω2ωϕ cos(ωP(ζ k

h)u
k
h
�t).

6 Proof of the first main result

Let us now prove our first main result stated in Theorem 3.2 concerning the con-
vergence of the semi-discretization scheme (3.8)–(3.9). For this purpose, we first
introduce the transformed system (6.6)–(6.7) below, and then in Sect. 6.2 we give the
proof of the convergence result. Since our scheme is a generalization of the method
previously introduced in [19], some properties are very similar to those of [19] and no
proofs are given since only minor technical changes appear. For these properties, the
reader is referred to the corresponding results in [19]. However, in this present study
there are some completely new steps for which we give entire proofs (see Lemma 6.2).
In the remainder of the section, C will denote any positive constant independent of k,
�t and T .

6.1 Transformed system

Let k ∈ {0, . . . , N − 1} be a fixed integer. We need to compare the exact solution
u(tk) ∈ K(ζ (tk)), which is a rigid velocity field in B(ζ (tk)) with uk ∈ K(ζ k) which
is a rigid velocity field in B(ζ k). To this end, we use the change of variable Xζ 1,ζ 2

defined in [19, Sect. 5], which maps the ball B(ζ 1) into the ball B(ζ 2). In order to
define this change of variables, we need to make the following assumption. Let η > 0
be the positive constant given in (2.17). We suppose that

∣∣ζ (tk)− ζ k
∣∣ < η and

∣∣ζ (tk+1)− ζ k+1
∣∣ < η. (6.1)

This hypothesis and (2.17) imply that

d(B(ζ k), ∂O) > 2η and d(B(ζ k+1), ∂O) > 2η. (6.2)
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Under the assumption (6.1) which implies (6.2), we are in position to define

Xk = Xζ k ,ζ (tk ), Yk = Yζ k ,ζ (tk ),

where Yζ 1,ζ 2
is the inverse mapping of Xζ 1,ζ 2

. We also define

Uk(y) = JYk (Xk(y))u(Xk(y), tk), Pk(y) = p(Xk(y), tk), (6.3)

where JYk is the determinant of the jacobian matrix of Yk . We recall that Uk ∈ K̂(ζ k)

and Pk ∈ M(ζ k).
Let us also introduce the following notations that will be useful in the sequel:

X̂ = Yk ◦ X̃ ◦ Xk+1 (6.4)

and

Ĵ =
(

JYk+1 ◦ Xk+1
) (

JXk ◦ X̂
)
, (6.5)

where X̃ is defined in (3.2). The characteristics functions satisfy the properties depicted
on the following diagram:

B(ζ k+1)
Xk+1−−−−→ B(ζ (tk+1))

X̂

⏐⏐$ ⏐⏐$X̃

B(ζ k) ←−−−−
Yk

B(ζ (tk))

We point out that the following relation holds

ρk+1 = ρk ◦ X̂.

The transformed functions Uk+1 and Pk+1 satisfy a mixed weak formulation with
test functions in K(ζ k+1) and M(ζ k+1). Precisely, we have the following result which
can be obtained as in [19, Proposition 6.2] with a very slight modification of the proof.

Proposition 6.1 The functions (Uk+1, Pk+1) defined by (6.3) satisfy

1

�t

(
ρk+1

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
,ϕ
)
+ a(Uk+1,ϕ)+ b(ϕ, Pk+1)

= (ρk+1fk+1,ϕ)+ (Ak,ϕ) ∀ϕ ∈ K(ζ k+1), (6.6)

b(Uk+1, q) = 0 ∀q ∈ M(ζ k+1), (6.7)
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with

‖Ak‖L2(O)2 ≤ C
(
|ζ (tk+1)− ζ k+1| +�t +√�t

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
.

(6.8)

Let us prove an approximation property of the function X
k

and we also recall an
useful property on the change of variables which is given in [19].

Lemma 6.2 The functions X
k
, X̂ and Ĵ defined in (3.5), (6.4) and (6.5) respectively,

satisfy the following estimates:

‖X̂− X
k‖L2(O)2 ≤ C

(
�t2 +�t‖Uk − uk‖L2(O)2 +

√
�t ‖δk‖L2(O×(tk ,tk+1))

2

)
,

(6.9)∥∥∥̂J− Id
∥∥∥

L2(O)2
≤ C

(
�t2 +�t

∥∥Uk − uk
∥∥

L2(O)2 +
√
�t ‖δk‖L2(O×(tk ,tk+1))

2

+�t |ζ (tk)− ζ k |
)
, (6.10)

with ‖δk‖L2(O×(tk ,tk+1))
2 ≤ C�t

∥∥ ∂u
∂t

∥∥
L2(O×(tk ,tk+1))

2 and C a positive constant inde-
pendent of k.

Proof Let us define a new characteristic function ψ associated with the semi-discret-
ized velocity field as the solution of

⎧⎪⎨
⎪⎩

d

dt
ψ(t; tk+1, x) = Uk(ψ(t; tk+1, x)),

ψ(tk+1; tk+1, x) = x

(6.11)

and let us denote

X
k
(x) = ψ(tk; tk+1, x) ∀x ∈ O. (6.12)

With a very slight modification of the proof of Lemma 6.5 from [19], we get

‖X̂− X
k‖L2(O)2 ≤ C

(
�t2 +√�t ‖δk‖L2(O×(tk ,tk+1))

2

)
. (6.13)

The characteristic Eqs. (3.4) and (6.11) can be written as follows:

ψ(t; tk+1, x) = x − uk(ζ k)(t − tk)+
t∫

tk+1

uk(ψ(s; tk+1, x)) ds,

ψ(t; tk+1, x) = x +
t∫

tk+1

Uk(ψ(s; tk+1, x)) ds,
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for all t ∈ [tk, tk+1]. Subtracting the previous identities, we get

ψ(t; tk+1, x)− ψ(t; tk+1, x)

= −uk(ζ k)(t − tk)+
t∫

tk+1

(
uk(ψ(s; tk+1, x))− Uk(ψ(s; tk+1, x))

)
ds.

Taking the L2(O)2-norm, we obtain that

∥∥ψ(t; tk+1, ·)− ψ(t; tk+1, ·)
∥∥

L2(O)2 ≤ C |uk(ζ k)|(t − tk)

+
tk+1∫
t

∥∥uk(ψ(s; tk+1, ·))−Uk(ψ(s; tk+1, ·))
∥∥

L2(O)2 ds

+
tk+1∫
t

∥∥Uk(ψ(s; tk+1, ·))−Uk(ψ(s; tk+1, ·))
∥∥

L2(O)2 ds.

By using the property (5.7) and the regularity hypothesis (2.15), we get

∥∥ψ(t; tk+1, ·)− ψ(t; tk+1, ·)
∥∥

L2(O)2 ≤ C |uk(ζ k)|(t − tk)

+∥∥uk − Uk
∥∥

L2(O)2(tk+1 − t)+
tk+1∫
t

C
∥∥ψ(s; tk+1, ·)− ψ(s; tk+1, ·)

∥∥
L2(O)2 ds.

Then, due to Gronwall inequality, the above estimate yields

∥∥ψ(t; tk+1, ·)−ψ(t; tk+1, ·)
∥∥

L2(O)2 ≤ C |uk(ζ k)|(t− tk)+
∥∥uk−Uk

∥∥
L2(O)2(tk+1− t)

+ C�t2
(
|uk(ζ k)| + ∥∥uk − Uk

∥∥
L2(O)2

)
,

for all t ∈ [tk, tk+1]. In particular, for t = tk we deduce that

∥∥X
k − X

k∥∥
L2(O)2 ≤ C�t2|uk(ζ k)| + C�t

∥∥uk − Uk
∥∥

L2(O)2

≤ C�t2|Uk(ζ k)| + C�t2|uk(ζ k)− Uk(ζ k)| + C�t
∥∥uk − Uk

∥∥
L2(O)2 .

Combining the above inequality with (6.13) and using again the regularity
hypothesis (2.15), we deduce the result (6.9).

The proof of (6.10) is done in [19, Eq. (7.6)]. ��
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6.2 Error estimate

In this subsection, we give the proof of our first main result stated in Theorem 3.2. To
this end, for any k ∈ {0, . . . , N }, we denote the numerical error of our scheme at step
k as follows:

Ek =
∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2
+ ∣∣ζ (tk)− ζ k

∣∣.

6.2.1 First step

In this subsection, we prove that if k ∈ {0, . . . , N−1} is such that the hypothesis (6.1)
holds, then there exists a positive constant C1, independent of k, �t and T , such that

Ek+1 ≤ (1+ C1�t)Ek + C1

(
�t2 + (�t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2

+(�t)3/2
∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
. (6.14)

To this end, let us subtract (3.8)–(3.9) from (6.6)–(6.7) and we obtain

1

�t

(
ρk+1(Uk+1 − uk+1),ϕ

)
+ a(Uk+1 − uk+1,ϕ)+ b(ϕ, Pk+1 − pk+1)

= 1

�t

(
ρk+1

(̂
J
(
Uk ◦ X̂

)− uk ◦ X
k
)
,ϕ
)
+ (Ak,ϕ) ∀ϕ ∈ K(ζ k+1),

b(Uk+1 − uk+1, q) = 0 ∀q ∈ M(ζ k+1).

We choose the test functionsϕ = Uk+1−uk+1 ∈ K(ζ k+1) and q = Pk+1− pk+1 ∈
M(ζ k+1) and we get that

(
ρk+1(Uk+1 − uk+1),Uk+1 − uk+1

)
+�t a(Uk+1 − uk+1,Uk+1 − uk+1)

=
(
ρk+1

(̂
J
(

Uk ◦ X̂
)
− uk ◦ X

k
)
,Uk+1 − uk+1

)
+�t (Ak,Uk+1 − uk+1),

then due to Cauchy–Schwarz inequality, there exists a positive constant C independent
of k and T such that

∥∥√ρk+1(Uk+1 − uk+1)
∥∥

L2(O)2 ≤
∥∥∥
√
ρk+1

(̂
J
(

Uk ◦ X̂
)
− uk ◦ X

k
)∥∥∥

L2(O)2

+C�t
∥∥Ak

∥∥
L2(O)2 . (6.15)
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In order to estimate the first term in the right hand side of (6.15), we observe that

√
ρk+1

(̂
J
(

Uk ◦ X̂
)
− uk ◦ X

k
)
=
√
ρk+1(̂J− Id)

(
Uk ◦ X̂

)

+
√
ρk+1

(
Uk ◦ X̂− Uk ◦ X

k
)

+
√
ρk+1

(
Uk − uk) ◦ X

k
,

then using the regularity hypothesis (2.15) and the definition of Uk given in (6.3), we
easily deduce

∥∥∥
√
ρk+1

(̂
J
(

Uk ◦ X̂
)
− uk ◦ X

k
)∥∥∥

L2(O)2
≤ C

∥∥̂J− Id
∥∥

L2(O)2

+ C
∥∥X̂− X

k∥∥
L2(O)2 +

∥∥∥
√
ρk+1

(
Uk − uk) ◦ X

k
∥∥∥

L2(O)2
.

Then, by using the inequality (5.7) from Proposition 5.2, we observe that

∥∥∥
√
ρk+1

(̂
J
(

Uk ◦ X̂
)
− uk ◦ X

k
)∥∥∥

L2(O)2
≤ C

∥∥̂J− Id
∥∥

L2(O)2

+ C
∥∥X̂− X

k∥∥
L2(O)2 +

∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2
.

Due to the above estimate, the inequality (6.15) becomes

∥∥∥
√
ρk+1(Uk+1 − uk+1)

∥∥∥
L2(O)2

≤
∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2
+ C

∥∥̂J− Id
∥∥

L2(O)2

+ C
∥∥X̂− X

k∥∥
L2(O)2 + C�t

∥∥Ak
∥∥

L2(O)2 , (6.16)

then, taking into account the estimates (6.8) from Proposition 6.1, (6.9)–(6.10) from
Lemma 6.2, we obtain

∥∥∥
√
ρk+1(Uk+1 − uk+1)

∥∥∥
L2(O)2

≤
∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2

+C
(
�t
∥∥Uk − uk

∥∥
L2(O)2 +�t

∣∣ζ (tk)− ζ k
∣∣+�t

∣∣ζ (tk+1)− ζ k+1
∣∣

+�t2 +√�t ‖δk‖L2(O×(tk ,tk+1))
2 + (�t)3/2

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
.

(6.17)

Since

‖δk‖L2(O×(tk ,tk+1))
2 ≤ C�t

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2
,
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we get that

∥∥∥
√
ρk+1(Uk+1 − uk+1)

∥∥∥
L2(O)2

≤
∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2

+C
(
�t
∥∥Uk − uk

∥∥
L2(O)2 +�t

∣∣ζ (tk)− ζ k
∣∣+�t

∣∣ζ (tk+1)− ζ k+1
∣∣+�t2

+(�t)3/2
∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2
+ (�t)3/2

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
. (6.18)

Let us now use identity (3.3) and we get

ζ (tk+1)− ζ k+1 = ζ (tk)− ζ k − uk(ζ k)�t +
tk+1∫
tk

u(ζ (s), s)ds,

then

|ζ (tk+1)− ζ k+1| ≤ |ζ (tk)−ζ k |+�t |u(ζ (tk), tk)−uk(ζ k)|+
tk+1∫
tk

|ζ ′(s)− ζ ′(tk)|ds.

Since the equality u(ζ (tk), tk) = Uk(ζ k) holds and since the function Uk − uk is a
rigid velocity in B(ζ k), we deduce that

|ζ (tk+1)− ζ k+1| ≤ |ζ (tk)− ζ k | + �t√
π

∥∥Uk − uk
∥∥

L2(O)2 +
�t2

2

∥∥ζ ′′∥∥L∞(0,T )2 .

(6.19)

Combining the estimates (6.18) and (6.19), it follows that there exists C1 > 0 inde-
pendent of k,�t and T such that the estimate (6.14) holds. Thus, we conclude the first
step of the proof.

Additionally, using the same constant C1, estimate (6.19) can be rewritten as
follows:

|ζ (tk+1)− ζ k+1| ≤ |ζ (tk)− ζ k | +�t
∥∥Uk − uk

∥∥
L2(O)2 + C1�t2. (6.20)

6.2.2 Second step

In this subsection, we are going to prove that there exists τ ∗ > 0 such that if �t ∈
(0, τ ∗], then the following estimate holds

∣∣ζ (tk)− ζ k
∣∣ < η ∀k ∈ {0, . . . , N }. (6.21)
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To this end, let us define the constant

C2 = exp(C1T )
(

1+
∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2 +

∥∥∥ d2

dt2 [u ◦ ˜ψ]∥∥L2(O×(0,T ))2
)
, (6.22)

where C1 is the positive constant independent of k,�t and T , which appears in (6.14).
We define

τ ∗(def)= min

⎧⎨
⎩

η

4C2
,

√
ηmin{√ρ f ,

√
ρs}

4C2
,

√
η

4C1

⎫⎬
⎭ (6.23)

and we choose 0 < �t ≤ τ ∗.
In order to prove (6.21), we proceed by induction. Let us consider the statement

P( j) : ∣∣ζ (t j )− ζ j
∣∣ < η. (6.24)

• First, we remark that P(0) is true due to the initial conditions (1.8) and (3.1).
• Secondly, taking k = 0 in (6.20), we get that

|ζ (t1)− ζ 1| ≤ C1�t2.

Since �t ≤ τ ∗ <
√

η
C1

, we deduce that

|ζ (t1)− ζ 1| < η, (6.25)

that is, P(1) is also true.
• Finally, we prove that if j ≥ 1 is such that the statements P(0),P(1), . . . ,P( j)

hold true, then P( j + 1) is also true. To this end, we first remark that the induc-
tion hypothesis implies that condition (6.1) holds for any k ∈ {0, . . . , j − 1}.
Then, using the first step of the proof we deduce that estimate (6.14) holds for any
k ∈ {0, . . . , j − 1}. Hence, by applying the discrete Gronwall Lemma, and using
that error E0 is equal to zero (see initial conditions (3.1)), we deduce that for any
k ∈ {0, . . . , j},

Ek ≤ exp(C1T )
(
�t +�t

∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2 +�t

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(0,T ))2
)
.

Then using the hypothesis (2.15), we get that for any k ∈ {0, . . . , j}, we have

∥∥∥
√
ρk
(
Uk − uk)∥∥∥

L2(O)2
+ ∣∣ζ (tk)− ζ k

∣∣ ≤ C2�t, (6.26)

where C2 is defined in (6.22).
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Combining (6.26) with (6.20), we deduce that for any k ∈ {0, . . . , j},

|ζ (tk+1)− ζ k+1| ≤ C2�t + C2�t2

min{√ρ f ,
√
ρs} + C1�t2.

Since 0 < �t ≤ τ ∗ < min
{

η
3C2
,

√
ηmin{√ρ f ,

√
ρs }

3C2
,
√

η
3C1

}
, we deduce

|ζ (tk+1)− ζ k+1| < η ∀k ∈ {0, . . . , j},

which in particular implies that P( j + 1) is true. Thus, the induction process is
finished and the proof of (6.21) is completed.

6.2.3 Third step

From the previous steps, we deduce that if 0 < �t ≤ τ ∗, the following estimate holds:

∥∥Uk − uk
∥∥

L2(O)2 +
∣∣ζ (tk)− ζ k

∣∣ ≤ C2�t

min{√ρ f ,
√
ρs} ∀k ∈ {0, . . . , N }. (6.27)

We conclude the proof of the theorem as follows. For all k ∈ {0, . . . , N }, we have

∥∥u(tk)− uk
∥∥

L2(O)2 +
∣∣ζ (tk)− ζ k

∣∣
≤ ∥∥u(tk)− Uk

∥∥
L2(O)2 +

∥∥Uk − uk
∥∥

L2(O)2 +
∣∣ζ (tk)− ζ k

∣∣ (6.28)

Using the definition of Uk from (6.3) and the properties on the change of variables
Xk given in [19, Lemmas 5.5–5.6], which are true due to (6.21), we obtain that there
exists a positive constant C independent on T and �t such that

∥∥u(tk)− Uk
∥∥

L2(O)2 ≤ C
∣∣ζ (tk)− ζ k

∣∣. (6.29)

Combining (6.28) together with (6.27) and (6.29), we conclude that

∥∥u(tk)− uk
∥∥

L2(O)2 +
∣∣ζ (tk)− ζ k

∣∣ ≤ (C + 1)
C2�t

min{√ρ f ,
√
ρs} .

Using of the expression (6.22) for the constant C2, we introduce the positive con-
stant K defined by

K = C + 1

min{√ρ f ,
√
ρs} exp(C1T )

(
1+
∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2+

∥∥∥ d2

dt2 [u ◦ ˜ψ]∥∥L2(O×(0,T ))2
)

and the proof of Theorem 3.2 is completed. ��
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7 Proof of the second main result

We turn to the proof of the second main result stated in Theorem 4.4 which concerns
the convergence of the full discretization scheme (4.9)–(4.10). To this end, we first
introduce the transformed system (7.6)–(7.7) below and we prove some important
estimates on the transform velocity field. Then we prove the second main result of this
paper. Since our fully discrete scheme is a generalization of the method previously
introduced in [19], some properties are similar to the ones proved in [19] (with just
minor technical changes). For this reason, some properties below refer the reader to
the corresponding results in [19]. However, there are several steps that are completely
new for our algorithm and therefore we give their proofs (see Lemmas 7.2, 7.4, 7.5
and Proposition 7.3). In the remainder of the section, for the sake of simplicity, C will
denote any positive constant independent of h, k, �t and T .

7.1 Preliminaries

Let us fix k ∈ {0, . . . , N − 1}. Similarly to the proof of the first result, we need to
compare the exact solution u(tk) ∈ K(ζ (tk)), which is a rigid velocity field in B(ζ (tk))
with uk

h ∈ K(ζ k
h) which is a rigid velocity field in B(ζ k

h). To this end, we will make
use the change of variable Xζ 1,ζ 2

defined in [19, Sect. 5], which maps the ball B(ζ 1)

into the ball B(ζ 2).
Let η > 0 be the positive constant given in (2.17). We suppose that

∣∣ζ (tk)− ζ k
h

∣∣ < η and
∣∣ζ (tk+1)− ζ k+1

h

∣∣ < η. (7.1)

This hypothesis and (2.17) imply that

d(B(ζ k
h), ∂O) > 2η and d(B(ζ k+1

h ), ∂O) > 2η. (7.2)

Then, under the assumption (7.1) which implies (7.2), we are in position to define

Xk
h = Xζ k

h ,ζ (tk )
, Yk

h = Yζ k
h ,ζ (tk )

,

where Yζ 1,ζ 2
is the inverse mapping of Xζ 1,ζ 2

. We point out that Xk
h maps the ball

B(ζ k
h) into the ball B(ζ (tk)). We also define

Uk
h(y) = JYk

h
(Xk

h(y))u(X
k
h(y), tk), Pk

h (y) = p(Xk
h(y), tk), (7.3)

where JYk
h

is the determinant of the jacobian matrix of Yk
h . We recall that Uk

h ∈ K̂(ζ k
h)

and Pk
h ∈ M(ζ k

h).
Let us introduce the following notations that will be useful in the sequel:

X̂h = Yk
h ◦ X̃ ◦ Xk+1

h (7.4)
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and

Ĵh =
(

JYk+1
h
◦ Xk+1

h

) (
JXk

h
◦ X̂h

)
. (7.5)

We observe that the characteristics functions satisfy the properties depicted on the
following diagram:

B(ζ k+1
h )

Xk+1
h−−−−→ B(ζ (tk+1))

X̂h

⏐⏐$ ⏐⏐$X̃

B(ζ k
h) ←−−−−

Yk
h

B(ζ (tk))

The transformed functions Uk+1
h and Pk+1

h satisfy a mixed weak formulation with
test functions in K(ζ k+1

h ) and M(ζ k+1
h ).

Proposition 7.1 The functions (Uk+1
h , Pk+1

h ) defined by (7.3) satisfy

1

�t

(
ρk+1

h

[
Uk+1

h − Ĵh

(
Uk

h ◦ X̂h

)]
,ϕ
)
+ a(Uk+1

h ,ϕ)+ b(ϕ, Pk+1
h )

= (ρk+1
h fk+1

h ,ϕ)+ (Ak
h,ϕ) ∀ϕ ∈ K(ζ k+1

h ), (7.6)

b(Uk+1
h , q) = 0 ∀q ∈ M(ζ k+1

h ), (7.7)

with

‖Ak
h‖L2(O)2≤C

(
|ζ (tk+1)−ζ k+1

h |+h+�t+√�t
∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
.

(7.8)

The above result can be obtained as in [19, Proposition 6.2] with a very slight modi-
fication of the proof.

In the following lemma, we state an important result on the transformed velocity
field. Precisely, we prove the existence of a velocity field Uk

h,ext near Uk
h which is rigid

in a h-neighbourhood of the ball B(ζ k
h). Moreover, this function is a rigid velocity

field in Qh .

Lemma 7.2 For any k ∈ {0, . . . , N } and h ∈ (0, 1), there exists a velocity field
Uk

h,ext ∈ H1
0 (O)2 such that

Uk
h,ext (x) = Uk

h(x) ∀x ∈ B(ζ k
h), (7.9)

D(Uk
h,ext ) = 0 in

{
x ∈ O : |x − ζ k

h | < 1+ h
}
, (7.10)

‖Uk
h − Uk

h,ext‖L2(O)2 ≤ Ch3/2, (7.11)
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‖Uk
h,ext‖H1(O)2 ≤ C, (7.12)

where C is a positive constant independent of h and k.

Proof Since Uk
h ∈ H1

0 (O)2 and div Uk
h = 0, there exists a stream function � ∈

H2(O) ∩ H1
0 (O) such that Uk

h = ∇⊥�.
It clearly suffices to prove that there exists a stream function �ext ∈ H2(O) ∩

H1
0 (O), such that ∇⊥�ext satisfies the conditions (7.9)–(7.12).
To this end, let us observe that since D(Uk

h) = 0 in B(ζ k
h), there exist some constants

a, c ∈ R and b ∈ R
2 such that

�(x) = a + b · x + c|x|2 ∀x ∈ B(ζ k
h).

We denote

w(x) = �(x)− (a + b · x + c|x|2) ∀x ∈ O, (7.13)

then it is clear that

w(x) = 0 ∀x ∈ B(ζ k
h). (7.14)

Let us define the stream function �ext as follows:

�ext (x) = �(x)− w(x)ρ(|x − ζ k
h |) ∀x ∈ O, (7.15)

where the real function ρ ∈ H2(R) is given by the following formula

ρ(s) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s < 1+ h,
1
2

(
cos( s−(1+h)

h π)+ 1
)

if 1+ h ≤ s ≤ 1+ 2h,

0 if 1+ 2h < s.

Using this definition, one can easily check that �ext (x) = �(x) for all x such that
|x− ζ k

h | ≤ 1 or |x− ζ k
h | ≥ 1+ 2h. Then ∇⊥�ext ∈ H1

0 (O)2 and satisfies the identity
(7.9). Additionally, if |x− ζ k

h | < 1+ h, we have�ext (x) = a+ b · x+ c|x|2 and this
identity implies that ∇⊥�ext satisfies (7.10).

In order to prove that ∇⊥�ext satisfies the estimates (7.11) and (7.12), we first
remark that

(�−�ext )(x) = 0 ∀x ∈ O\A1,1+2h, (7.16)

where we have denoted by A1,1+2h the annulus enclosed between the circles of radius
1, respectively 1+ 2h and with center at ζ k

h .
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Let us now differentiate the identity (7.15) and for any i, j ∈ {1, 2}, we get that

∂(�−�ext )

∂xi
= ∂w

∂xi
ρ + wρ′ xi − ζ k

h,i

|x − ζ k
h |

(7.17)

and

∂2(�−�ext )

∂xi∂x j
= ∂2w

∂xi∂x j
ρ + ∂w

∂xi
ρ′

x j − ζ k
h, j

|x − ζ k
h |
+ ∂w

∂x j
ρ′

xi − ζ k
h,i

|x − ζ k
h |

+ wρ′′ (xi − ζ k
h,i )(x j − ζ k

h, j )

|x − ζ k
h |2

+ wρ′
(

δi j

|x − ζ k
h |
− (xi − ζ k

h,i )(x j − ζ k
h, j )

|x − ζ k
h |3

)
. (7.18)

Taking the L2(O)-norm in the estimates (7.17)–(7.18), using the identity (7.16) and
the properties |ρ| ≤ 1, |ρ′| ≤ 2/h and |ρ′′| ≤ 5/h2, we obtain that for all i, j ∈ {1, 2},

∥∥∥∂(�−�ext )

∂xi

∥∥∥
L2(O)

≤
∥∥∥ ∂w
∂xi

∥∥∥
L2(A1,1+2h)

+ 2

h
‖w‖L2(A1,1+2h)

(7.19)

and

∥∥∥∂2(�−�ext )

∂xi∂x j

∥∥∥
L2(O)

≤
∥∥∥ ∂2w

∂xi∂x j

∥∥∥
L2(A1,1+2h)

+ 2

h

∥∥∥ ∂w
∂xi

∥∥∥
L2(A1,1+2h)

+2

h

∥∥∥ ∂w
∂x j

∥∥∥
L2(A1,1+2h)

+ 5

h2 ‖w‖L2(A1,1+2h)
+ 4

h
‖w‖L2(A1,1+2h)

. (7.20)

In order to finish the proof, we need to estimate the different norms of w on the
annulus A1,1+2h . To this end, let us take an arbitrary x ∈ A1,1+2h . It is easy to see
that there exists y ∈ B(ζ k

h) such that |x− y| ≤ 2h. Since ∇⊥� is a Lipschitz function
(see the hypothesis (2.15) and the definition (7.3)), we get that ∇w is also a Lipschitz
function, with the Lipschitz constant L independent of h. Using this property and
(7.14), we have

|∇w(x)| = |∇w(x)− ∇w(y)| ≤ L|x − y| ≤ 2Lh (7.21)

and

|w(x)| = |w(x)− w(y)| ≤ |∇w(y+ λ(x − y))| · |x − y|
=
∣∣∣∇w(y+ λ(x − y))− ∇w(y)

∣∣∣ · |x − y| ≤ Lλ|x − y|2 ≤ 4λLh2, (7.22)
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for some λ ∈ (0, 1). Taking the L2(A1,1+2h)-norm in the estimates (7.21) and (7.22),
we deduce

‖w‖L2(A1,1+2h)
≤ Ch5/2, (7.23)

‖∇w‖L2(A1,1+2h)
2 ≤ Ch3/2. (7.24)

Combining (7.19) with (7.23)–(7.24), we obtain the inequality (7.11). Moreover,
the estimate (7.12) is a direct consequence of (7.20), (7.23)–(7.24) and the fact that
‖w‖H2(O) is independent of h (see the definition of w given in (7.13)). Thus, we
conclude the proof of Lemma 7.2. ��

Using the above lemma, let us prove the following crucial estimate:

Proposition 7.3 For any k ∈ {0, 1, . . . , N } and h ∈ (0, 1), the following estimate
holds:

∥∥∥Uk
h − P(ζ k

h)U
k
h

∥∥∥
L2(O)2

≤ Ch, (7.25)

where C is a positive constant independent of h and k.

Proof Using Lemma 7.2, there exists Uk
h,ext ∈ H1

0 (O)2 satisfying (7.9)–(7.12). We
can write

∥∥∥Uk
h − P(ζ k

h)U
k
h

∥∥∥
L2(O)2

≤
∥∥∥Uk

h − Uk
h,ext

∥∥∥
L2(O)2

+
∥∥∥Uk

h,ext − P(ζ k
h)U

k
h,ext

∥∥∥
L2(O)2

+
∥∥∥P(ζ k

h)U
k
h,ext − P(ζ k

h)U
k
h

∥∥∥
L2(O)2

,

then, since P(ζ k
h) is an orthogonal projection from L2(O)2 onto Rh(ζ

k
h), we get

∥∥∥Uk
h−P(ζ k

h)U
k
h

∥∥∥
L2(O)2

≤ 2
∥∥∥Uk

h − Uk
h,ext

∥∥∥
L2(O)2

+
∥∥∥Uk

h,ext−P(ζ k
h)U

k
h,ext

∥∥∥
L2(O)2

.

(7.26)

Let�ext be the stream function corresponding to Uk
h,ext and�I be the P2-Lagrange

interpolated function of �ext on the triangulation Th . Since Uk
h,ext is a rigid velocity

field on Qh , the function �ext is quadratic on Qh and thus

�I (x) = �ext (x) ∀x ∈ Qh

and ∇⊥�I is a rigid velocity field in Qh . This implies that ∇⊥�I ∈ Rh(ζ
k
h).

By using the definition of the orthogonal projection and due to the classical esti-
mates of the interpolated functions (see, for instance, [6, Lemma A.2, p. 99]), we
deduce that
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∥∥∥Uk
h,ext − P(ζ k

h)U
k
h,ext

∥∥∥
L2(O)2

≤
∥∥∥Uk

h,ext −∇⊥�I

∥∥∥
L2(O)2

=
∥∥∥∇⊥�ext −∇⊥�I

∥∥∥
L2(O)2

≤ Ch
∥∥∥�ext

∥∥∥
H2(O)2

≤ Ch
∥∥∥Uk

h,ext

∥∥∥
H1(O)2

. (7.27)

Let us now conclude the proof of our result by noting that the estimate (7.25) is a
direct consequence of the inequality (7.26) combined with (7.27) and the estimates
(7.11)–(7.12) from Lemma 7.2. ��

Let us now state an important estimate on the L2(O)-norm of the difference between
the density functions ρk

h and ρk
h defined in (4.7) and (4.8), respectively.

Lemma 7.4 There exists a positive constant C, independent of h and k, such that

∥∥ρk
h − ρk

h

∥∥
L2(O) ≤ C

√
h. (7.28)

Proof Using the definitions of ρk
h and ρk

h given in (4.7) and (4.8) respectively, we
have that

ρk
h − ρk

h = 0 in F4 ∪ B(ζ k
h).

Taking the L2(O)-norm, we deduce that

∥∥ρk
h−ρk

h

∥∥2
L2(O) =

∫
F2∪F3

∣∣∣ρk
h(x)−ρk

h(x)
∣∣∣2 dx≤ ∣∣ρ f −ρs

∣∣2 mes (F2∪F3) . (7.29)

The region F2 ∪F3 is contained into the annulus of center ζ k
h with radius r1 = 1− h

and r2 = 1+ 2h (see Fig. 1). Then, the area of the region F2 ∪ F3 can be estimated
as follows:

mes (F2 ∪ F3) ≤ π
(
(1+ 2h)2 − (1− h)2

)
= 3πh(h + 2).

Combining this estimate with (7.29), we conclude that the estimate (7.28) holds. ��
Let us now prove approximation properties of the characteristic function defined

in (4.4) and also properties on the change of variables.

Lemma 7.5 The functions X
k
h, X̂h and Ĵh defined by (4.5), (7.4) and (7.5) respectively,

satisfy the following estimates:

‖X̂h − X
k
h‖L2(O)2 ≤ C

(
�t2 + h�t +�t

∥∥Uk
h − uk

h

∥∥
L2(O)2

+√�t ‖δk‖L2(O×(tk ,tk+1))
2

)
, (7.30)

∥∥̂Jh − Id
∥∥

L2(O)2 ≤ C
(
�t2 +�t

∥∥Uk
h − uk

h

∥∥
L2(O)2 +

√
�t ‖δk‖L2(O×(tk ,tk+1))

2

+�t |ζ (tk)− ζ k
h |
)
, (7.31)

123



374 J. San Martín et al.

with

‖δk‖L2(O×(tk ,tk+1))
2 ≤ C�t

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2
. (7.32)

Proof Analogous to the proof of Lemma 6.2, we define the characteristic functionψk
h

associated with the fully-discrete velocity field as the solution of

⎧⎪⎨
⎪⎩

d

dt
ψk

h(t; tk+1, x) = Uk
h(ψ

k
h(t; tk+1, x)),

ψk
h(tk+1; tk+1, x) = x

(7.33)

and we denote

Xk
h(x) = ψk

h(tk; tk+1, x) ∀x ∈ O. (7.34)

With a very slight modification of the proof of Lemma 6.5 in [19], we get

‖X̂h − Xk
h‖L2(O)2 ≤ C

(
�t2 +√�t ‖δk‖L2(O×(tk ,tk+1))

2

)
. (7.35)

Let us observe that the characteristic Eqs. (4.4) and (7.33) can be written as follows:
for any t ∈ [tk, tk+1], we have

ψk
h(t; tk+1, x) = x − uk

h(ζ
k
h)�t +

t∫
tk+1

P(ζ k
h)u

k
h(ψ

k
h(s; tk+1, x)) ds

−P(ζ k
h)u

k
h(ζ

k
h)(t − tk+1),

ψk
h(t; tk+1, x) = x +

t∫
tk+1

Uk
h(ψ

k
h(s; tk+1, x)) ds.

Subtracting the previous identities, we obtain

ψk
h(t; tk+1, x)− ψk

h(t; tk+1, x) = −uk
h(ζ

k
h)�t − P(ζ k

h)u
k
h(ζ

k
h)(t − tk+1)

+
t∫

tk+1

(
P(ζ k

h)u
k
h(ψ

k
h(s; tk+1, x))− Uk

h(ψ
k
h(s; tk+1, x))

)
ds,
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then taking the L2(O)2-norm, we deduce that

∥∥ψk
h(t; tk+1, ·)− ψk

h(t; tk+1, ·)
∥∥

L2(O)2

≤ C |uk
h(ζ

k
h)|(t − tk)+ C

∣∣∣(uk
h − P(ζ k

h)u
k
h

)
(ζ k

h)

∣∣∣(tk+1 − t)

+
tk+1∫
t

∥∥∥P(ζ k
h)u

k
h(ψ

k
h(s; tk+1, ·))− P(ζ k

h)U
k
h(ψ

k
h(s; tk+1, ·))

∥∥∥
L2(O)2

ds

+
tk+1∫
t

∥∥∥P(ζ k
h)U

k
h(ψ

k
h(s; tk+1, ·))− Uk

h(ψ
k
h(s; tk+1, ·))

∥∥∥
L2(O)2

ds

+
tk+1∫
t

∥∥∥Uk
h(ψ

k
h(s; tk+1, ·))− Uk

h(ψ
k
h(s; tk+1, ·))

∥∥∥
L2(O)2

ds.

By using (5.9) and the hypothesis (2.15), the above estimate yields

∥∥ψk
h(t; tk+1, ·)− ψk

h(t; tk+1, ·)
∥∥

L2(O)2

≤ C |uk
h(ζ

k
h)|(t − tk)+ C

∣∣∣(uk
h − P(ζ k

h)u
k
h

)
(ζ k

h)

∣∣∣(tk+1 − t)

+∥∥uk
h − Uk

h

∥∥
L2(O)2(tk+1 − t)+

∥∥∥P(ζ k
h)U

k
h − Uk

h

∥∥∥
L2(O)2

(tk+1 − t)

+C

tk+1∫
t

∥∥∥ψk
h(s; tk+1, ·)− ψk

h(s; tk+1, ·)
∥∥∥

L2(O)2
ds.

Then, applying the Gronwall inequality to the above estimate, for all t ∈ [tk, tk+1]
we deduce that

∥∥ψk
h(t; tk+1, ·)− ψk

h(t; tk+1, ·)
∥∥

L2(O)2

≤ C |uk
h(ζ

k
h)|(t − tk)+ C

∣∣∣(uk
h − P(ζ k

h)u
k
h

)
(ζ k

h)

∣∣∣(tk+1 − t)

+∥∥uk
h − Uk

h

∥∥
L2(O)2(tk+1 − t)+

∥∥∥P(ζ k
h)U

k
h − Uk

h

∥∥∥
L2(O)2

(tk+1 − t)

+C�t2
(
|uk

h(ζ
k
h)| +

∣∣∣(uk
h − P(ζ k

h)u
k
h

)
(ζ k

h)

∣∣∣
+∥∥uk

h − Uk
h

∥∥
L2(O)2 +

∥∥∥P(ζ k
h)U

k
h − Uk

h

∥∥∥
L2(O)2

)
,

and in particular, taking t = tk , we get
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∥∥Xk
h − Xk

h

∥∥
L2(O)2 ≤ C�t2|uk

h(ζ
k
h)| + C�t

(∣∣∣(uk
h − P(ζ k

h)u
k
h

)
(ζ k

h)

∣∣∣
+∥∥uk

h − Uk
h

∥∥
L2(O)2 +

∥∥∥P(ζ k
h)U

k
h − Uk

h

∥∥∥
L2(O)2

)

≤ C�t2‖Uk
h‖L2(O)2 + C�t

∥∥uk
h − Uk

h

∥∥
L2(O)2

+C�t
∥∥∥P(ζ k

h)U
k
h − Uk

h

∥∥∥
L2(O)2

.

Combining the above inequality with the estimates (7.35) and (7.25) from Propo-
sition 7.3, and using the hypothesis (2.15), we conclude (7.30).

The proof of (7.31) is completely similar to [19, Eq. (7.6)]. ��

7.2 Error estimate

In this section, we give the proof of our second main result stated in Theorem 4.4.
First of all, let us observe that according to Lemma 4.1, there exists a unique couple

(U
k+1
h , P

k+1
h ) ∈ Kh(ζ

k+1
h )× Mh(ζ

k+1
h ) such that

{
a
(
Uk+1

h − U
k+1
h ,ϕ

)+ b
(
ϕ, Pk+1

h − P
k+1
h

) = 0 ∀ϕ ∈ Kh(ζ
k+1
h ),

b
(
Uk+1

h − U
k+1
h , q

) = 0 ∀q ∈ Mh(ζ
k+1
h )

(7.36)

and moreover, there exists a positive constant C , independent of h and k, such that the
following estimate holds:

∥∥Uk+1
h − U

k+1
h

∥∥
L2(O)2 ≤ Ch ∀k ∈ {0, . . . , N − 1}. (7.37)

For any k ∈ {0, . . . , N }, let us denote

Ek
h =

∥∥√ρk
h(U

k
h − uk

h)
∥∥

L2(O)2 + |ζ (tk)− ζ k
h |.

7.2.1 First step

In this subsection we prove that if k ∈ {0, . . . , N −1} is such that the hypothesis (7.1)
holds then there exists a positive constant C3, independent of k, h,�t and T , such that

Ek+1
h ≤ (1+ C3�t)Ek

h + C3

(
�t2 +�t

√
h + h + (�t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2

+(�t)3/2
∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
. (7.38)

To this end, let us subtract Eqs. (4.9)–(4.10) from (7.6)–(7.7). Using the definition

of the projection (U
k+1
h , P

k+1
h ) on the finite element spaces Kh(ζ

k+1
h ) × Mh(ζ

k+1
h )

given in (7.36), we get
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1

�t

(
ρk+1

h (Uk+1
h − uk+1

h ),ϕ
)
+ a(U

k+1
h − uk+1

h ,ϕ)+ b(ϕ, P
k+1
h − pk+1

h )

= 1

�t

(
ρk+1

h Ĵh
(
Uk

h ◦ X̂h
)− ρk+1

h uk
h ◦ X

k
h,ϕ

)

+
(
(ρk+1

h − ρk+1
h )fk+1

h ,ϕ
)
+ (Ak

h,ϕ) ∀ϕ ∈ Kh(ζ
k+1
h ),

b(U
k+1
h − uk+1

h , q) = 0 ∀q ∈ Mh(ζ
k+1
h ).

We choose the test functions

ϕ = U
k+1
h − uk+1

h ∈ Kh(ζ
k+1
h ) and q = P

k+1
h − pk+1

h ∈ Mh(ζ
k+1
h ),

then we obtain the following identity

(
ρk+1

h (Uk+1
h − uk+1

h ),U
k+1
h − uk+1

h

)
+�t a(U

k+1
h − uk+1

h ,U
k+1
h − uk+1

h )

=
(
ρk+1

h Ĵh
(
Uk

h ◦ X̂h
)− ρk+1

h uk
h ◦ X

k
h,U

k+1
h − uk+1

h

)

+�t
(
(ρk+1

h − ρk+1
h )fk+1

h ,U
k+1
h − uk+1

h

)
+�t (Ak

h,U
k+1
h − uk+1

h ),

which can be written as follows:

(
ρk+1

h (U
k+1
h − uk+1

h ),U
k+1
h − uk+1

h

)
+�t a(U

k+1
h − uk+1

h ,U
k+1
h − uk+1

h )

=
(
ρk+1

h Ĵh
(
Uk

h ◦ X̂h
)− ρk+1

h uk
h ◦ X

k
h,U

k+1
h − uk+1

h

)

+
(
ρk+1

h (U
k+1
h − Uk+1

h ),U
k+1
h − uk+1

h

)

+�t
(
(ρk+1

h − ρk+1
h )fk+1

h ,U
k+1
h − uk+1

h

)
+�t (Ak

h,U
k+1
h − uk+1

h ).

By using the Cauchy–Schwarz inequality, there exists a positive constant C , inde-
pendent of h and k, such that

∥∥∥
√
ρk+1

h

(
U

k+1
h − uk+1

h

)∥∥∥
L2(O)2

≤
∥∥∥
√
ρk+1

h

(̂
Jh
(
Uk

h ◦ X̂h
)− uk

h ◦ X
k
h

)∥∥∥
L2(O)2

+ C
(∥∥U

k+1
h − Uk+1

h

∥∥
L2(O)2 +�t

∥∥ρk+1
h − ρk+1

h

∥∥
L2(O) +�t

∥∥Ak
h

∥∥
L2(O)2

)
.

(7.39)

Let us now estimate the first term in the right hand side of the inequality (7.39).

To this end, we remark that since
√
ρk+1

h =
√
ρk

h ◦ X
k
h (see (5.8)), one can write

123



378 J. San Martín et al.

√
ρk+1

h

(̂
Jh
(
Uk

h ◦ X̂h
)− uk

h ◦ X
k
h

)

=
√
ρk+1

h (̂Jh − Id)Uk
h ◦ X̂h +

√
ρk+1

h

(
Uk

h ◦ X̂h − Uk
h ◦ X

k
h

)

+
√
ρk+1

h

(
Uk

h − U
k
h

) ◦ X
k
h +

(√
ρk

h

(
U

k
h − uk

h

)) ◦ X
k
h .

Then, by using the hypothesis (2.15) and the fact that det J
X

k
h
= 1, we deduce the

following estimate:

∥∥∥
√
ρk+1

h

(̂
Jh
(
Uk

h ◦ X̂h
)− uk

h ◦ X
k
h

)∥∥∥
L2(O)2

≤ C
∥∥̂Jh − Id

∥∥
L2(O)4

+C
∥∥X̂h − X

k
h

∥∥
L2(O)2 + C

∥∥U
k
h − Uk

h

∥∥
L2(O)2 +

∥∥√ρk
h

(
U

k
h − uk

h

)∥∥
L2(O)2 . (7.40)

Combining the estimates (7.39) together with (7.40), we deduce that

∥∥∥
√
ρk+1

h

(
U

k+1
h − uk+1

h

)∥∥∥
L2(O)2

≤ ∥∥
√
ρk

h

(
U

k
h − uk

h

)∥∥
L2(O)2

+C
(∥∥̂Jh − Id

∥∥
L2(O)4 +

∥∥X̂h − X
k
h

∥∥
L2(O)2 +

∥∥U
k
h − Uk

h

∥∥
L2(O)2

+∥∥U
k+1
h − Uk+1

h

∥∥
L2(O)2 +�t

∥∥ρk+1
h − ρk+1

h

∥∥
L2(O) +�t

∥∥Ak
h

∥∥
L2(O)2

)
.

Due to Lemma 7.5 (see (7.30)–(7.31)) and Lemma 7.4, the above estimate yields

∥∥√ρk+1
h

(
U

k+1
h − uk+1

h

)∥∥
L2(O)2 ≤

∥∥√ρk
h

(
U

k
h − uk

h

)∥∥
L2(O)2

+C

(
�t |ζ (tk)− ζ k

h | +�t
∥∥Uk

h − uk
h

∥∥
L2(O)2 +

√
�t‖δk‖L2(O×(tk ,tk+1))

2

+�t2 +�t
√

h + ∥∥U
k
h − Uk

h

∥∥
L2(O)2 +

∥∥U
k+1
h − Uk+1

h

∥∥
L2(O)2 +�t

∥∥Ak
h

∥∥
L2(O)2

)
.

Let us now use the estimate (7.37) of the projection, the estimates (7.8) and (7.32) of
Ak

h , respectively δk , then the above inequality becomes

∥∥√ρk+1
h

(
U

k+1
h − uk+1

h

)∥∥
L2(O)2 ≤ (1+ C�t)

∥∥√ρk
h

(
U

k
h − uk

h

)∥∥
L2(O)2

+C
(
�t2 +�t

√
h + h +�t

∣∣ζ (tk)− ζ k
h

∣∣+�t
∣∣ζ (tk+1)− ζ k+1

h

∣∣
+(�t)3/2

∥∥∥∂u
∂t

∥∥∥
L2(O×(tk ,tk+1))

2
+ (�t)3/2

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(tk ,tk+1))
2

)
. (7.41)

Let us now use identity (4.3) and we get

ζ (tk+1)− ζ k+1
h = ζ (tk)− ζ k

h − uk
h(ζ

k
h)�t +

tk+1∫
tk

u(ζ (s), s)ds,
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then

|ζ (tk+1)− ζ k+1
h |

≤ |ζ (tk)− ζ k
h | +�t

∣∣∣u(ζ (tk), tk)− uk
h(ζ

k
h)

∣∣∣+
tk+1∫
tk

∣∣ζ ′(s)− ζ ′(tk)∣∣ds.

Since the equality u(ζ (tk), tk) = Uk
h(ζ

k
h) holds and the function uk

h − Uk
h is a rigid

velocity in B(ζ k
h), then we deduce that

|ζ (tk+1)− ζ k+1
h | ≤ |ζ (tk)− ζ k

h | +
�t√
π

∥∥Uk
h − uk

h

∥∥
L2(O)2 +

�t2

2

∥∥ζ ′′∥∥L∞(0,T )2 .

Thus, due to the estimate of the projection (7.37), we get

|ζ (tk+1)− ζ k+1
h |

≤ |ζ (tk)− ζ k
h | +�t

∥∥∥U
k
h − uk

h

∥∥∥
L2(O)2

+ Ch�t + �t2

2

∥∥ζ ′′∥∥L∞(0,T )2 . (7.42)

Combining estimates (7.41) and (7.42) one can easily deduce the existence of a
positive constant C3 independent of T such that (7.38) holds. Thus, we conclude the
first step of the proof.

Additionally, using the same constant C3, estimate (7.42) can be rewritten as
follows:

|ζ (tk+1)− ζ k+1
h | ≤ |ζ (tk)− ζ k

h | +
�t

min{√ρ f ,
√
ρs}
∥∥∥
√
ρk

h(U
k
h − uk

h)

∥∥∥
L2(O)2

+C3h�t + C3�t2. (7.43)

7.2.2 Second step

Let C0 > 0 be a fixed constant. In this subsection, we are going to prove that there
exists τ ∗ > 0 such that if�t ∈ (0, τ ∗] and h ≤ C0�t1+α , then the following estimate
holds

∣∣ζ (tk)− ζ k
h

∣∣ < η ∀k ∈ {0, . . . , N }. (7.44)

To this end, using the hypothesis (2.15) we can define the constant

C4 = exp(C3T )
(

1+√C0+C0+
∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2+

∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(0,T ))2
)
,

(7.45)
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where C3 is the positive constant independent of k, h, �t and T , which appears in
(7.38) and (7.43). We define

τ ∗(def)= min
{ η

4C3
,

√
η

4C3
, 1,
√
ρ f ,
√
ρs,
( η

4C4

)1/α}
(7.46)

and we take 0 < �t ≤ τ ∗.
In order to prove (7.44), we proceed by induction. Let us consider the statement

P( j) : ∣∣ζ (t j )− ζ j
h

∣∣ < η. (7.47)

• First, we remark that P(0) is true due to the initial conditions (1.8) and (4.2).
• Secondly, taking k = 0 in (7.43), we get that

|ζ (t1)− ζ 1
h | ≤ C3h�t + C3�t2.

Since h < 1 and �t ≤ τ ∗ < min
{

η
2C3
,
√

η
2C3

}
, we deduce

|ζ (t1)− ζ 1
h | < η, (7.48)

that is, P(1) is also true.
• Finally, we prove that if j ≥ 1 is such that the statements P(0),P(1), . . . ,P( j)

hold true, then P( j+1) is also true. Firstly, we infer from the induction hypothesis
that condition (7.1) holds for any k ∈ {0, . . . , j − 1}. Then, using the first step of
the proof we deduce that estimate (7.38) holds for any k ∈ {0, . . . , j − 1}. Hence,
by applying the discrete Gronwall Lemma, and using that the error E0

h is equal to
zero (see initial conditions (4.2)), we deduce that for any k ∈ {0, . . . , j},

Ek
h ≤ exp(C3T )

(
�t +√h + h

�t
+�t

∥∥∥∂u
∂t

∥∥∥
L2(O×(0,T ))2

+�t
∥∥∥ d2

dt2 [u ◦ ˜ψ]
∥∥∥

L2(O×(0,T ))2
)
.

Then using the fact that h ≤ C0�t1+α and �t ≤ τ ∗ ≤ 1, we have

Ek
h ≤ C4�tα, (7.49)

for any k ∈ {0, . . . , j}, where C4 is defined in (7.45).
Let us observe that from the estimate (7.43), for �t ≤ τ ∗ ≤ min{√ρ f ,

√
ρs}, it

follows

|ζ (tk+1)− ζ k+1
h | ≤ Ek + C3h�t + C3�t2. (7.50)
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Combining (7.49) with (7.50), and taking into account that h < 1,we deduce for
any k ∈ {0, . . . , j},

|ζ (tk+1)− ζ k+1| ≤ C4�tα + C3�t + C3�t2.

Since �t ≤ τ ∗ < min
{
(
η

3C4
)1/α,

η
3C3
,
√

η
3C3

}
, we deduce that

|ζ (tk+1)− ζ k+1
h | < η k ∈ {0, . . . , j},

that is P( j + 1) is true. Thus, the induction process is finished and the proof of
(7.44) is completed.

7.2.3 Third step

From the previous steps and the fact that
√
ρk

h ≥ min{√ρ f ,
√
ρs} > 0, we conclude

that if 0 < �t ≤ τ ∗ and h ≤ C0�t1+α , the following estimate holds:

∥∥U
k
h − uk

h

∥∥
L2(O)2 + |ζ (tk)− ζ k

h | ≤
C4�tα

min{√ρ f ,
√
ρs} ∀k ∈ {0, . . . , N }. (7.51)

Using the estimate of the projection (7.37), we get

∥∥Uk
h − uk

h

∥∥
L2(O)2 + |ζ (tk)− ζ k

h | ≤
C4�tα

min{√ρ f ,
√
ρs} + Ch

≤
( C4

min{√ρ f ,
√
ρs} + CC0

)
�tα ∀k ∈ {0, . . . , N }. (7.52)

The above estimate together with the definition of Uk
h from (7.3) and properties on

the change of variables Xk
h given in [19, Lemmas 5.5–5.6], yield to the conclusion of

Theorem 4.4. ��
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