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Abstract This paper is devoted to the study of the symmetric cone linear comple-
mentarity problem (SCLCP). Specifically, our aim is to characterize the class of linear
transformations for which the SCLCP has always a nonempty and bounded solution
set in terms of larger classes. For this, we introduce a couple of new classes of linear
transformations in this SCLCP context. Then, we study them for concrete particular
instances (such as second-order and semidefinite linear complementarity problems)
and for specific examples (Lyapunov, Stein functions, among others). This naturally
permits to establish coercive and noncoercive existence results for SCLCPs.

Keywords Euclidean Jordan algebra · Linear complementarity problem ·
Symmetric cone · Qb-transformation · Q-transformation · García’s transformation

1 Introduction

This paper is devoted to the study of the symmetric cone linear complementarity
problem (SCLCP), which consists in solving a linear complementary problem over
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the set of squares elements in a Euclidean Jordan algebra. This problem is a particu-
lar case of a variational inequality problem (e.g., [1]) and provides a simple unified
framework for various existing complementarity problems such as the linear comple-
mentarity problem over the nonnegative orthant (LCP) (e.g., [2]), the second-order
cone linear complementarity problem (SOCLCP) (e.g., [3, 4]), and the semidefinite
linear complementarity problem (SDLCP) (e.g., [5, 6]). Hence, it has extensive ap-
plications in engineering, economics, game theory, management science, and other
fields; see [1, 7–9] and references therein.

In the last years, SCLCP has been studied by divers authors, with special emphasis
in its particular cases, SOCLCP and SDLCP. For instance, Gowda et al. [10] extended
P - and GUS-transformations from LCP to the SCLCP setting. These notions are
further exploited in the papers [11–13].

A key issue in linear complementarity problems consists in finding necessary and
sufficient conditions on the linear transformation involved in its definition that en-
sures the nonemptiness and boundedness of its solution set. A linear function satisfy-
ing this condition is called a Qb-transformation. Indeed, the interest in studying the
boundedness of the solution sets comes from its applications on the stability of LCPs
with respect to perturbations to the data of the problem (see [14–16] and the recent
reference [6] for SDLCPs).

The aim of this paper is to characterize the class Qb in the context of SCLCP.
More precisely, we are interested in finding large classes of linear transformations for
which Qb behaves similarly to larger classes, such as Q and R0. For this, on the one
hand, we extend the class F from LCPs [17] and SDLCPs [18] to this SCLCP set-
ting. Within this class, we prove that classes Qb and Q coincide. Then, we consider
subclasses of F (called F1 and F2) and study their connections as well as different ex-
amples of linear transformations belonging to them. We also extend a particular class,
called T , which was originally defined in [19] in the LCP framework, and compare
it with class F . Actually, we prove that T is contained in F2. We also specialize all
these classes to particular SCLCPs such as LCP, SOCLCP, and SDLCP. On the other
hand, we define the class of García’s transformations for SCLCPs. The latter is an
extension from LCPs to this setting (cf. [20]). See [6] for its extension to SDLCP.
Within this class, we are able to prove that classes Q and R0 coincide. This allows us
to state some existence result for SCLCPs.

The existing literature on SCLCPs includes only some few works about the
class Qb . For instance, in one of these articles, Gowda and Tao [21] show that,
within the class Z, classes Q and S behave similarly (see the definitions of S- and
Z-transformations in Sect. 2.2).

This paper is organized as follows. Section 2 is devoted to the preliminaries. It
is split into two subsections; the first one recalls basic results on Euclidean Jordan
algebras, while the second one summarizes some classes of linear transformations
with their respective connections. In Sects. 3 and 4, we establish our main results
described above. Indeed, Sect. 3 is devoted to the study of linear transformations for
which classes Q and Qb coincide, while Sect. 4 is devoted to existence results for
SCLCPs associated with García’s transformations, for which we prove that R0 and
Qb coincide.
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2 Preliminaries

Consider a finite-dimensional vector space V over the real field IR equipped with
the inner product 〈·, ·〉. Let L : V → V be a linear transformation (for short, L ∈
L(V)), and q ∈ V. In this paper we study the symmetric cone linear complementarity
problem, which consists of finding an element x̄ such that

x̄ ∈ K, ȳ = L(x̄) + q ∈ K, and 〈ȳ, x̄〉 = 0. (1)

Here, K := {x ◦ x : x ∈ V} denotes the set of square elements in a Euclidean Jor-
dan algebra (V,◦, 〈·, ·〉), where ◦ denotes the Jordan product. A review of Euclidean
Jordan algebras is given below in Sect. 2.1.

In what follows, we denote problem (1) by LCP(L, K, q) and its solution by
SOL(L, K, q). Also, its feasible set is defined to be FEAS(L, K, q) := {x ∈ K :
L(x) + q ∈ K}.
2.1 Euclidean Jordan Algebras Review

In this subsection, we briefly describe some concepts, properties, and results from
Euclidean Jordan algebras that are needed in this paper and that have become impor-
tant in the study of conic optimization; see, e.g., Schmieta and Alizadeh [22]. Most
of this material can be found in Faraut and Korányi [23].

A Euclidean Jordan algebra is a triple (V,◦, 〈·, ·〉), where (V, 〈·, ·〉) is a finite-
dimensional vector space over IR equipped with an inner product 〈·, ·〉, and the Jordan
product (x, y) �→ x ◦ y : V × V → V is a bilinear mapping satisfying the following
three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 = x ◦ x, and

(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V,

and there exists a (unique) unitary element e ∈ V such that x ◦ e = x for all x ∈ V.
Henceforth, we simply say that V is a Euclidean Jordan algebra, and x ◦ y is called
the Jordan product of x and y. A Euclidean Jordan algebra is said to be simple if it is
not a direct sum of two Euclidean Jordan algebras.

In a Euclidean Jordan algebra V, it is known that the set of squares K = {x2 :
x ∈ V} is a symmetric cone (see [23, Theorem III.2.1]). This means that K is a self-
dual closed and convex cone with nonempty interior int(K) and for any two elements
x, y ∈ int(K), there exists an invertible linear transformation Γ : V → V such that
Γ (K) = K and Γ (x) = y.

The rank of (V,◦, 〈·, ·〉) is defined as r = max{deg(x) : x ∈ V}, where deg(x)

is the degree of x ∈ V given by deg(x) = min{k > 0 : {e, x, x2, . . . , xk} is linearly
dependent}.
Example 2.1 Typical examples of Euclidean Jordan algebras are the following.

(i) Euclidean Jordan algebra of n-dimensional vectors:

V = IRn, K = IRn+, r = n, 〈x, y〉 =
n∑

i=1

xiyi, x ◦ y = x ∗ y,



744 J Optim Theory Appl (2013) 159:741–768

where x ∗ y denotes the componentwise product of vectors x and y. Here, the
unitary element is e = (1, . . . ,1) ∈ IRn.

(ii) Euclidean Jordan algebra of quadratic forms:

V = IRn, K = Ln+ := {
x = (x1, x̄) ∈ IR × IRn−1 : ‖x̄‖ ≤ x1

}
, r = 2,

〈x, y〉 =
n∑

i=1

xiyi, x ◦ y = (x1, x̄) ◦ (y1, ȳ) = (〈x, y〉, x1ȳ + y1x̄
)
,

where x̄ = (x2, . . . , xn) ∈ IRn−1, and ‖ · ‖ denotes the Euclidean norm. In this
algebra, the cone of squares is called the Lorentz cone (or the second-order
cone). Moreover, the unitary element is e = (1,0, . . . ,0) ∈ IRn.

(iii) Euclidean Jordan algebra of n-dimensional symmetric matrices: Let S n be the
set of all n×n real symmetric matrices, and S n+ be the cone of n×n symmetric
positive semidefinite matrices.

V = S n, K = S n+, r = n, 〈X,Y 〉 = tr(XY), X ◦ Y = 1

2
(XY + YX).

Here tr denotes the trace of a matrix X = (Xij ) ∈ S n. In this setting, the identity
matrix I ∈ IRn×n is the unit element e.

Other examples are the set of n×n hermitian positive semidefinite matrices made
of complex numbers, the set of n × n positive semidefinite matrices with quaternion
entries, the set of 3 × 3 positive semidefinite matrices with octonion entries, and the
exceptional 27-dimensional Albert octonion cone (see [23, 24]).

An element c ∈ V is an idempotent iff c2 = c; it is a primitive idempotent if it is
nonzero and cannot be written as a sum of two nonzero idempotents. We say that a
finite set {e1, . . . , er} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 for all i �= j, and
r∑

i=1

ei = e.

Note that 〈ei, ej 〉 = 〈ei ◦ ej , e〉 = 0 whenever i �= j .
The following theorem gives us a spectral decomposition for the elements in a

Euclidean Jordan algebra (see Theorem III.1.2 of [23]).

Theorem 2.1 (Spectral decomposition theorem) Suppose that (V,◦, 〈·, ·〉) is a Eu-
clidean Jordan algebra with rank r . Then, for every x ∈ V, there exist a Jordan frame
{e1(x), . . . , er (x)} and real numbers λ1(x), . . . , λr (x) such that x = λ1(x)e1(x) +
· · ·+λr(x)er (x). The numbers λi(x), called the eigenvalues of x, are uniquely deter-
mined.

It is easy to show that x ∈ K (resp. int(K)) if and only if every eigenvalue λi(x) of
x is nonnegative (resp. positive). Due to the uniqueness of the eigenvalues λi(x), we
can define the trace of a element x as tr(x) = ∑r

i=1 λi(x). Notice that the latter also
implies that tr(c) = 1 for every primitive idempotent c in V.
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Remark 2.1 We recall that in any simple Euclidean Jordan algebra V, there exists
a θ > 0 such that 〈x, y〉 = θ · tr(x ◦ y) (see [23, Proposition III.4.1]). Hence, θ =
〈c, e〉 = ‖c‖2 for every primitive idempotent c in V. In particular, we have ‖ei‖2 = θ

for every element ei of a Jordan frame {e1, . . . , er}.

For any a ∈ V, the Lyapunov transformation La : V → V and the quadratic repre-
sentation Pa : V → V are defined as

La(x) := a◦x and Pa(x) := (
2L2

a −La2

)
(x) = 2a◦(a◦x)−a2 ◦x for all x ∈V.

(2)
These transformations are linear and self-adjoint on V (see [23]). In the following
example, we describe these transformations in the Euclidean Jordan algebras defined
in Example 2.1.

Example 2.2

(i) For the Euclidean Jordan algebra of n-dimensional vectors, the above transfor-
mations are La(x) = Diag(a)x and Pa(x) = Diag(a2)x, where Diag(q) denotes
a diagonal matrix of size n whose diagonal entries are the entries of q .

(ii) For the Euclidean Jordan algebra of quadratic forms, the above transformations
are given by

La(x) =
(

a1 ā�
ā a1I

)(
x1
x̄

)
,

Pa(x) =
(‖a‖2 2a1ā

�
2a1ā (a2

1 − ‖ā‖2)I + 2āā�
)(

x1
x̄

)
.

(iii) For the Euclidean Jordan algebra of n-dimensional symmetric matrices, the
above transformations are LA(X) = A◦X = 1

2 (AX+XA) and PA(X) = AXA.

A useful tool in the theory of Euclidean Jordan algebras is the Peirce decomposi-
tion theorem, which is stated as follows (see Theorem IV.2.1 of [23]).

Theorem 2.2 Let (V,◦, 〈·, ·〉) be a Euclidean Jordan algebra with rank r , and let
{e1, . . . , er} be a Jordan frame in V. For i, j ∈ {1,2, . . . , r}, define the eigenspaces

Vii := {x ∈ V : x◦ei =x}= IRei, Vij :=
{
x ∈ V : x◦ei = 1

2
x = x◦ej

}
, i �= j.

Then, the space V is the orthogonal direct sum of subspaces Vij (i ≤ j). Further-
more,

(a) Vij ◦ Vij ⊆ Vii + Vjj ;
(b) Vij ◦ Vjk ⊆ Vik if i �= k;
(c) Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.
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Thus, given any Jordan frame {e1, . . . , er}, we can write any element x ∈ V as

x =
∑

1≤i≤j≤r

xij =
r∑

i=1

xiei +
∑

1≤i<j≤r

xij , (3)

where xi ∈ IR and xij ∈ Vij . Equation (3) corresponds to the Peirce decomposition
of x associated with {e1, . . . , er}.

Example 2.3

(i) Let V = IRn and {e1, . . . , en} be the canonical basis of IRn, that is, ei is a vector
with 1 in the ith entry and 0s elsewhere. It is easily seen that {e1, . . . , en} is a
Jordan frame in IRn, called canonical Jordan frame, and also that

Vii = {κei : κ ∈ IR} for i = 1, . . . , n, Vij = {0}, i �= j.

Hence, any element x ∈ IRn can be written as x = ∑n
i=1 κiei , which denotes its

Peirce decomposition associated with {e1, . . . , en}.
(ii) Let V = IRn, and {e1, e2} be defined by e1 = ( 1

2 , 1
2 ,0n−2), e2 = ( 1

2 ,− 1
2 ,0n−2),

where 0n−2 is a vector of zeros in IRn−2. Clearly, this set is a Jordan frame in
IRn, called the canonical Jordan frame. It is easy to verify that

Vii = {κei : κ ∈ IR} for i = 1,2, V12 = {
x ∈ IRn : x1 = x2 = 0

}
.

Thus, given an x ∈ V, we can write it as

x = (x1 + x2)e1 + (x1 − x2)e2 + (0,0, x3, . . . , xn),

which is its Peirce decomposition associated with {e1, e2}.
(iii) Let V = S n and consider the set {E1, . . . ,En}, where Ei is the diagonal matrix

with 1 in the (i, i)-entry and 0s elsewhere. It is easily seen that this set is a
Jordan frame in S n, called the canonical Jordan frame. Also, associated with
this Jordan frame, it is easy to verify that

Vii = {κEi : κ ∈ IR} for i = 1, . . . , n, Vij = {θEij : θ ∈ IR}, i �= j,

where Eij is a matrix with 1 in the (i, j) and (j, i)-entries and 0s elsewhere.
Thus, any X ∈ S n can be written as

X =
n∑

i=1

xiiEi +
∑

1≤i<j≤n

xijEij .

This expression denotes the Peirce decomposition of X associated with
{E1, . . . ,En}.
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Orthogonal Projection In V, fix a Jordan frame {e1, . . . , er} and define

V
(α) := {

x ∈ V : x ◦ (e1 + · · · + el) = x
}

for α = {1, . . . , l} with 1 ≤ l ≤ r . This set is a subalgebra of V with rank l (see [23,
Proposition IV.1.1]). The symmetric cone in this subalgebra is defined by K(α) :=
{y ◦ y : y ∈ V

(α)} = V
(α) ∩ K (see [12, Theorem 3.1]). Corresponding to V

(α), we
consider the (orthogonal) projection P (α) : V → V

(α). Let x ∈ V be written as x =
u + v, where u ∈ V

(α) and v ∈ (V(α))⊥. Then, P (α)(x) = u. Now, we consider the
Peirce decomposition of x given in (3) corresponding to {e1, . . . , er}. Then (see [10,
Lemma 20])

P (α)(x) =
l∑

i=1

xiei +
∑

1≤i<j≤l

xij .

Note that, for a given Jordan frame {e1, . . . , er}, we can permute the objects and
select the first l objects (for any 1 ≤ l ≤ r). Thus there are 2r − 1 projections P (α)

corresponding to a Jordan frame.
In a similar way one can define the subalgebra V

(ᾱ) by using the set {el+1, . . . , er}
and also the projection P (ᾱ) on V

(ᾱ), where ᾱ = {1, . . . , r}\α.

Example 2.4 [10, Example 1.2] For V = S n, consider the Jordan frame {E1, . . . ,En}
(defined in Example 2.3(iii)). Let α := {1, . . . , l} with 1 ≤ l ≤ n. Then X ∈ V

(α) has
the form

X =
(

Xαα 0
0 0

)
,

where Xαα is the principal submatrix of X corresponding to the index set α. Thus,
we may view V

(α) as S |α|. Hence, the projection P (α) : S n → V
(α) is given by

P (α)(Y ) =
(

Yαα 0
0 0

)
.

The following result characterizes all Euclidean Jordan algebras (See [23, Propo-
sitions III.4.4 and III.4.5, Theorem V.3.7]).

Theorem 2.3 Any Euclidean Jordan algebra is, in a unique way, a direct sum of sim-
ple Euclidean Jordan algebras. Moreover, the symmetric cone in a given Euclidean
Jordan algebra is, in a unique way, a direct sum of symmetric cones in the constituent
simple Euclidean Jordan algebras.

We note that the “direct sum” in the theorem refers to the orthogonal as well as
the Jordan product direct sum. Thus, given a Euclidean Jordan algebra V and the
corresponding symmetric cone K, we may write

V = V1 × V2 × · · · × Vj̄ and K = K1 × K2 × · · · × Kj̄ ,
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where each Vj is a simple Jordan Algebra with the corresponding symmetric

cone Kj . Moreover, for x = (x(1), x(2), . . . , x(j̄ )) and y = (y(1), y(2), . . . , y(j̄ )) in V

with x(j), y(j) ∈ Vj , we have

x ◦y = (
x(1) ◦y(1), . . . , x(j̄ ) ◦y(j̄)

)
, 〈x, y〉 =

j̄∑

j=1

〈
x(j), y(j)

〉
, ‖x‖2 =

j̄∑

j=1

∥∥x(j)
∥∥2

.

Remark 2.2 When the Jordan Algebra V is not simple (that is, when j̄ > 1 in the
previous setting), it can be verified that every primitive idempotent element c of V

has necessarily the form c = (0,0, . . . , c(j),0, . . . ,0) for some primitive idempotent
element c(j) in Vj .

In any Euclidean Jordan algebra V, one can define automorphism groups in the
following way (Faraut and Korányi [23]).

Definition 2.1 A linear transformation Λ : V → V is said to be an automorphism
of V iff Λ is invertible and

Λ(x ◦ y) = Λ(x) ◦ Λ(y) for all x, y ∈ V. (4)

The set of all automorphisms of V is denoted by Aut(V).

Definition 2.2 A linear transformation Λ : V → V is said to be an automorphism
of K iff Λ(K) = K. Note that this transformation constrained to K is necessarily
invertible. We denote the set of all automorphisms of K by Aut(K) and each element
of it by Γ .

It directly follows from (4) that Aut(V) ⊆ Aut(K). Moreover, if Γ ∈ Aut(K), then
Γ −1 and Γ � ∈ Aut(K) [12, Proposition 4.1].

Example 2.5

(i) For V = IRn, it is easily seen that Aut(IRn) consists of permutation matrices and
any element in Aut(IRn+) is a product of a permutation matrix and a diagonal
matrix with positive diagonal entries.

(ii) For V = IRn, it is known [10, Example 2.1] that any automorphism Λ in
Aut(IRn) can be written as Λ = ( 1 0

0 D

)
, where D is an (n − 1) × (n − 1) or-

thogonal matrix. Also, an n × n matrix Γ ∈ Aut(Ln+) iff there exists μ > 0 such
that Γ �JΓ = μJ , where J = Diag(1,−1, . . . ,−1) ∈ IRn×n.

(iii) For V = S n, it is known (see [25, Theorem 2]) that corresponding to any
Λ ∈ Aut(S n), there exists an orthogonal matrix U such that Λ(X) = UXU�
∀X ∈ S n. Also, for Γ ∈ Aut(S n+), there exists an invertible matrix Q ∈ IRn×n

such that Γ (X) = QXQ�, ∀X ∈ S n.

From now on, (V,◦, 〈·, ·〉) will be a Euclidean Jordan algebra of rank r , and
{e1, . . . , er} will be a Jordan frame in V.
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We end this subsection by recalling properties that we shall employ throughout
this paper. Their proofs and more details can be found in [10, 12, 22, 23, 26].

Proposition 2.1 The following results hold:

(a) x ∈ K if and only if 〈x, y〉 ≥ 0 for all y ∈ K. Moreover, x ∈ int(K) if and only if
〈x, y〉 > 0 for all y ∈ K \ {0}.

(b) For x, y ∈ K, orthogonality condition 〈x, y〉 = 0 is equivalent to x ◦ y = 0. In
this situation, the elements x and y operator commute, that is,

LxLy = LyLx.

(c) The elements x and y operator commute if and only if x and y have their spectral
decompositions with respect to a common Jordan frame.

(d) If x ∈ K (resp. ∈ int(K)), then P (α)(x) ∈ K(α) (resp. ∈ int(K(α))).
(e) Suppose that x ∈ K and let x = ∑r

i=1 xiei + ∑
1≤i<j≤r xij be its Peirce decom-

position. If xk = 0 for some index k, then
∑

1≤k<j≤r

xkj +
∑

1≤i<k≤r

xik = 0.

(f) For any x, y ∈ V, we have tr(x ◦y) ≤ ∑r
i=1 λ

↑
i (x)λ

↑
i (y), where λ↑(x) denotes the

vector of eigenvalues of x whose components are arranged in the nondecreasing
order.

(g) Let x, y ∈ K. Then tr(x ◦ y) ≥ 0. Moreover, tr(x ◦ y) = 0 if and only if x ◦ y = 0.
(h) The smallest and the largest eigenvalues of x ∈ V are given by

λmin(x) = min
u �=0

tr(x ◦ u2)

tr(u2)
, λmax(x) = max

u �=0

tr(x ◦ u2)

tr(u2)
.

In particular, when V is simple, these eigenvalues can be equivalently written as

λmin(x) = min
u �=0

〈x,u2〉
‖u‖2

, λmax(x) = max
u �=0

〈x,u2〉
‖u‖2

.

2.2 Linear Transformations Review

The literature on symmetric cone LCP (see [10, 11, 13, 21]) has already been ex-
tended from the LCP theory. Most of the well-known classes of matrices used in that
context have been extended to symmetric cone LCP. We list these classes here below
to be employed in the sequel. Given a linear transformation L ∈ L(V), we say that:

– L has the Q-property iff SOL(L, K, q) �= ∅ for all q ∈ V.
– L has the Qb-property iff SOL(L, K, q) �= ∅ and bounded for all q ∈ V.
– L is an R0-transformation iff SOL(L, K,0) = {0}.
– L is copositive (resp. strictly copositive) iff 〈L(x), x〉 ≥ 0 (resp. > 0) for all x ∈ K

(resp. for all x ∈ K, x �= 0).
– L is monotone (resp. strongly monotone) iff 〈L(x), x〉 ≥ 0 (resp. > 0) for all x ∈ V

(resp. for all x ∈ V, x �= 0).
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– L has the P -property iff [x and L(x) operator commute and x ◦ L(x) ∈ −K ⇒
x = 0].

– L has the Q0-property iff [FEAS(L, K, q) �= ∅ ⇒ SOL(L, K, q) �= ∅].
– L has the S-property iff there is an x ∈ int(K) such that L(x) ∈ int(K).
– L is normal iff L commutes with L�. Here, L� : V → V denotes the transpose of

L, which is defined by 〈L(x), y〉 = 〈x,L�(y)〉 for all x, y ∈ V.
– L is a star-transformation iff [v ∈ SOL(L, K,0) ⇒ L�(v) ∈ −K].
– L has the Z-property iff [x, y ∈ K, 〈x, y〉 = 0 ⇒ 〈L(x), y〉 ≤ 0].

It is easy to check that monotone (resp. strongly monotone) transformations are
copositive (resp. strictly copositive) and that self-adjoint (that is, L� = L), skew-
symmetric (that is, L� = −L), and orthogonal (that is, L−1 = L�) transformations
are normal transformations.

Next proposition establishes some links between the classes mentioned above.

Proposition 2.2 Let L ∈ L(V) and q ∈ V be given. The following relations hold:

(a) L is strongly monotone =⇒ L ∈ P =⇒ L ∈ R0;
(b) L ∈ S ⇐⇒ FEAS(L, K, q) �= ∅ for all q ∈ V;
(c) Q = Q0 ∩ S;
(d) If L ∈ R0, or skew-symmetric, or monotone, or −L is copositive, or L ∈ Z and

normal =⇒ L is a star-transformation.

Proof Statement (a) is proven in [10]. The equality in (c) follows from (b).
(b): (⇐) Let d ∈ int(K). By hypothesis FEAS(L, K,−d) �= ∅, that is, there exists
x ∈ K such that y = L(x)−d ∈ K. From this we obtain L(x) = y +d ∈ int(K), since
K + int(K) = int(K). Hence L ∈ S.
(⇒) As K is self-dual closed convex cone with int(K) �= ∅, by [27, Theorem 2.2.13]
we conclude that K has a closed bounded base, that is, K = cone(B), where B

is a compact set such that 0 /∈ B . By hypothesis there is x ∈ K such that L(x) ∈
int(K). Fix q ∈ V. As B is compact, there exist e1, e2 such that mine∈B〈L(x), e〉 =
〈L(x), e1〉 > 0 and mine∈B〈q, e〉 = 〈q, e2〉. Clearly, there is some t > 0 such that
t〈L(x), e1〉 + 〈q, e2〉 > 0. For each y ∈ K, there exist γ ≥ 0 and e ∈ B such that
y = γ e. Therefore,

〈
tL(x) + q, y

〉 = γ
(
t
〈
L(x), e

〉 + 〈q, e〉) ≥ γ
(
t
〈
L(x), e1

〉 + 〈q, e2〉
)
> 0.

Then, as y ∈ K was arbitrary, by Proposition 2.1, Part (a) we obtain that tL(x) + q =
L(tx) + q ∈ K. Thus, tx ∈ FEAS(L, K, q). The desired equivalence follows.

(d): When L ∈ R0 or L is skew-symmetric, the proof is trivial. For the other cases,
let v ∈ SOL(L, K,0), that is, v,L(v) ∈ K and 〈v,L(v)〉 = 0. Firstly, suppose that L

is monotone. Since 〈L(tx − v), tx − v〉 ≥ 0 for all t ∈ IR and x ∈ K, Proposition 2.1,
Part (a), allows us to obtain that (L+L�)(v) ∈ K ∩ (−K). Hence, since K is pointed
(because it is symmetric), i.e., K ∩ (−K) = {0}, it follows that (L+L�)(v) = 0. Con-
sequently, L�(v) = −L(v) ∈ −K. We thus conclude that L is a star-transformation.
Secondly, if −L is copositive, then 〈L(tx + v), tx + v〉 ≤ 0 for all t > 0 and x ∈ K.
Similarly to before, Proposition 2.1, Part (a), allows us to obtain that L�(v) ∈ −K.
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Thirdly, we assume that L ∈ Z and it is normal. This amounts to 〈L(v),L(v)〉 ≤ 0,
and consequently L(v) = 0. Moreover, the normality of L implies that

∥∥L�(v)
∥∥2 = 〈

v,L
(
L�(v)

)〉 = 〈
v,L�(

L(v)
)〉 = ∥∥L(v)

∥∥2 = 0,

which means that L�(v) = 0. It obviously belongs to −K. �

3 Characterizations of Q- and Qb-transformations

A direct consequence of [1, Proposition 2.5.6] is that, within the class R0, the classes
Q and Qb coincide. This result holds even when K is a general closed convex solid
cone in the SCLCP (cf. (1)). Let us recall this result.

Lemma 3.1 Let L ∈ R0. Then, L ∈ Qb ⇐⇒ L ∈ Q.

Moreover, since SOL(L, K,0) is always a cone, we also have the following:

Lemma 3.2 It holds that Qb ⊆ R0. Consequently, Qb = Q ∩ R0.

The previous lemmas motivate us to study classes of linear transformations in
L(V) larger than R0, for which the last results are fulfilled.

3.1 The Class of F -transformations and Its Subclasses

Inspired by [17] and [18, Definition 3.5], we introduce the next new class of linear
transformations in L(V).

Definition 3.1 We say that L ∈ L(V) is an F -transformation or L ∈ F iff for each
v ∈ SOL(L, K,0)\{0}, there exists χv ∈ V such that

(i) χv ∈ K, (ii) 〈χv, v〉 > 0, (iii) L�(χv) ∈ −K. (5)

Indeed, this class was defined in [17] in the LCP context as follows:

Definition 3.2 A matrix M ∈ IRn×n is said to be an F1-matrix iff, for every v ∈
SOL(M,0) \ {0}, there exists a nonnegative diagonal matrix Σ such that Σv �= 0 and
M�Σv ∈ −IRn+. Here SOL(M,q) denotes, for given M ∈ IRn×n and q ∈ IRn, the
solution of problem LCP(M,q).

Therein, the equivalence of Lemma 3.1 is proven within the class F1. This class
turns to be larger than R0, which makes the result interesting to be analyzed for more
general complementarity problems. So, in [18], this definition was extended to the
SDLCP framework as well as the desired equivalence between classes Q and Qb . As
one can expect, both definitions, for the LCP and the SDLCP setting, are particular
cases of Definition 3.1 given above. The rest of this section is dedicated to extend the
desired equivalence within the class F and to study its different subclasses.
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Given a linear transformation L : V → V and Λ ∈ Aut(V), we define a linear
transformation L̃ on V by L̃ := Λ�LΛ.

Example 3.1 Consider in V = S n the automorphism Λ ∈ Aut(V) defined in Exam-
ple 2.5(iii). Then, L̃(X) = U�L(UXU�)U .

The next result shows that this class is invariant under automorphisms.

Lemma 3.3 Let L : V → V be a linear transformation, and Λ ∈ Aut(V) be orthog-
onal, that is, Λ−1 = Λ�. Then L has the F -property if and only if L̃ has the F -
property.

Proof We first point out that Λ−1(SOL(L, K, q)) = SOL(L̃, K,Λ�q) (see [12, The-
orem 5.1]).
(⇒): Let w be a nonzero solution of LCP(L̃, K,0). Then, by the above equal-
ity, we get that for any Λ ∈ Aut(V) orthogonal, v = Λ(w) is nonzero solution of
LCP(L, K,0). So, by hypothesis there exists a χv ∈ V such that (5) holds. Clearly,
χw = Λ�(χv) ∈ K. Also, 〈χw,w〉 = 〈χv, v〉 > 0. Finally, since L�(χv) ∈ −K, Λ is

orthogonal and Λ�(K) = K, it follows that L̃�(χw) ∈ −K and hence L̃ ∈ F .
(⇐): Let v be a nonzero solution of LCP(L, K,0). Then, by the above equality, we
get that for any Λ ∈ Aut(V) being orthogonal, w = Λ−1(v) is a nonzero solution of
LCP(L̃, K,0). Thus, by hypothesis there exists a χw ∈ V such that (5) holds. Clearly,
χv = Λ(χw) ∈ K and 〈χv, v〉 = 〈χw,Λ�(v)〉 > 0, since Λ(K) = K and Λ is orthogo-

nal. Finally, since L̃�(χw) ∈ −K, L̃�(χw) = Λ�L�(χv), and Λ�(K) = K, it follows
that L�(χv) ∈ −K and hence L ∈ F . �

We now establish the main properties of the class F . In particular, assertion (b)
below extends Lemma 3.1 to this larger class.

Theorem 3.1 Let L ∈ L(V) be given.

(a) If L ∈ F ∩ S, then L ∈ R0;
(b) Let L ∈ F . Then, L ∈ Qb ⇐⇒ L ∈ Q.

Proof (a): Let L ∈ F ∩ S. We argue by contradiction. Suppose that L /∈ R0, that is,
there exists v ∈ SOL(L, K,0)\{0}. Since L ∈ F , there exists a χv satisfying (i)–(iii)
in Definition 3.1. This, together with Proposition 2.1, Part (a), implies that 〈L(x) −
v,χv〉 < 0 for all x ∈ K. Consequently, L(x) − v /∈ K for all x ∈ K. Therefore, by
Proposition 2.2, Part (b), it follows that L /∈ S, obtaining a contradiction.
(b): Obviously L ∈ Qb implies L ∈ Q. If L ∈ Q, then L ∈ S (cf. Proposition 2.2,
Part (c)). Thus, L ∈ F ∩ S. By item (a) above we conclude that L ∈ R0, and
consequently L ∈ Q ∩ R0. We thus conclude that L ∈ Qb thanks to the equality
Qb = Q ∩ R0 established in Lemma 3.2. �

Remark 3.1 Notice that neither L ∈ F nor L ∈ S is enough to ensure that L ∈ R0.
This was pointed out for LCPs in [17, p. 452].
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To check whether a linear transformation L belongs to F can be a difficult task.
This is mainly because there is no a clear guide about how to chose, for a given
v ∈ SOL(L, K,0)\{0}, a χv satisfying conditions (i)–(iii) in Definition 3.1. For this,
we focus now on the subclass of F for which χv is chosen via the Schur product (see
[28, 29] for more details) of two elements.

Definition 3.3 For any A = (aij ) ∈ S r and x ∈ V, with Peirce decomposition x =∑
i≤j xij , we define the Schur product of A and x by

A • x :=
∑

1≤i≤j≤r

aij xij . (6)

Definition 3.4 Let L : V → V be a linear transformation. We say that L is an F1-
transformation or L ∈ F1 iff for each v ∈ SOL(L, K,0)\{0} with Peirce decomposi-
tion v = ∑

i≤j vij , there exists a matrix Ξ = (ξij ) ∈ S r+ such that

(i) Ξ • v ∈ K, (ii) 〈Ξ • v, v〉 > 0, (iii) L�(Ξ • v) ∈ −K.

Remark 3.2 Notice that, if Ξ is positive semidefinite and x ∈ K, then Ξ • x ∈ K (cf.
[28, Proposition 2.2]). Hence, condition (i) above becomes superfluous.

We illustrate this concept in the Euclidean Jordan algebras defined in Example 2.1.

Example 3.2

(i) For V = IRn and K = IRn+, we consider the Jordan frame {e1, . . . , en} (defined
in Example 2.3(i)). Then, for Ξ = (ξij ) ∈ S n+, the Schur product of Ξ and v ∈
SOL(L, IRn+,0)\{0} reduces to

Ξ • v =
n∑

i=1

ξiiviei = Diag(ξ11, . . . , ξnn)v,

where v = ∑n
i=1 viei is its Peirce decomposition associated with {e1, . . . , en}.

Taking Σ = Diag(ξ11, . . . , ξnn) ∈ S n+, Definition 3.4 reduces to Definition 3.2 in
the LCP context.

(ii) For V = IRn, K = Ln+, we consider the canonical Jordan frame {e1, e2} (defined
in Example 2.3(ii)). Then, for Ξ = (ξij ) ∈ S 2+, the Schur product of Ξ and
v ∈ SOL(L, Ln+,0)\{0} reduces to

Ξ • v = ξ11(v1 + v2)e1 + ξ22(v1 − v2)e2 + ξ12(0,0, v3, . . . , vn),

where v = (v1 + v2)e1 + (v1 − v2)e2 + (0,0, v3, . . . , vn) is its Peirce decompo-
sition associated with {e1, e2}. Taking into account this, condition (ii) of Defini-
tion 3.4 is reduced to

〈Ξ • v, v〉 = 1

2

(
ξ11(v1 + v2)

2 + ξ22(v1 − v2)
2) + ξ12

∥∥(v3, . . . , vn)
∥∥2

> 0.
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(iii) For V = S n and K = S n+, we consider the canonical Jordan frame {E1, . . . ,En}
(defined in Example 2.3(iii)). Then, for Ξ = (ξij ) ∈ S n+, the Schur product of Ξ

and V ∈ SOL(L, S n+,0)\{0} coincide with the well-known Schur (or Hadamard)
product of two symmetric matrices (see [30]). Thus, Definition 3.4 reduces to
definition of F1-transformation given in [18] in the SDLCP context: L ∈ L(S n)

is an F1-transformation iff for each V ∈ SOL(L, S n+,0)\{0}, there exists a ma-
trix Λ ∈ S n+ such that

(i) Λ • V ∈ S n+, (ii) 〈Λ • V,V 〉 > 0, (iii) L�(Λ • V ) ∈ −S n+.

In the following proposition we list various classes of linear transformations that
are contained in the class F1.

Proposition 3.1 If L is a star-transformation, then L ∈ F1.

Proof Let v ∈ SOL(L, K,0)\{0} with Peirce decomposition v = ∑
i≤j vij . Since L

is a star-transformation, we have L�(v) ∈ −K. Then, conditions (i)–(iii) of Defini-
tion 3.4 can be easily checked, provided that Ξ = 1, the n × n matrix whose entries
are all equal to 1 (note that 1 ∈ S r+ and 1 • v = v). The result follows. �

T -Transformation. In the following definition, we extend the notion of T -property
for matrices given in [19] to our SCLCP context.

Definition 3.5 We say that L ∈ L(V) has the T -property iff for any Λ ∈ Aut(V)

being orthogonal and any index set α = {1, . . . , l} (1 ≤ l ≤ r), the existence of a
solution x ∈ V to the system

P (α)(x) ∈ int
(

K(α)
)
,

(
I − P (α)

)
(x) = 0,

P (α)
(
L̃(x)

) ∈ −K(α), P (ᾱ)
(
L̃(x)

) ∈ K(ᾱ),
(
I − P (α) − P (ᾱ)

)(
L̃(x)

) = 0,

(7)
ᾱ = {1, . . . , r}\α, implies that there is a nonzero y ∈ V satisfying

P (α)(y) ∈ K(α),
(
I − P (α)

)
(y) = 0,

P (α)
(
L̃�(y)

) ∈ −K(α), P (ᾱ)
(
L̃�(y)

) ∈ −K(ᾱ),

(
I − P (α) − P (ᾱ)

)(
L̃�(y)

) = 0,
〈
P (α)(y),P (α)

(
L̃(x)

)〉 = 0.

(8)

We illustrate this concept in some known examples of Euclidean Jordan algebras.

Example 3.3

(i) For V = IRn and K = IRn+, we consider the Jordan frame {e1, . . . , en} (defined
in Example 2.3(i)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, it is easily
seen that V

(α) = {(xα,0) ∈ V : xα ∈ IRl} and V
(ᾱ) = {(0, xᾱ) ∈ V : xᾱ ∈ IR|ᾱ|}.

Hence, the projection P (α) of x ∈ V on V
(α) is given by P (α)(x) = ∑l

i=1 xiei ,
where x = ∑n

i=1 xiei is its Peirce decomposition. On the other hand, taking
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I ∈ Aut(IRn) (because I (e) = e), we get that P (ᾱ)(L̃(x)) = ∑n
i=l+1 ziei , where

L(x) = ∑n
i=1 ziei is its Peirce decomposition associated to {e1, . . . , en}. Hence,

taking into account the above and that L(x) = Mx with M ∈ IRn×n, Defini-
tion 3.5 reduces to saying: A matrix M ∈ IRn×n is said to have T -property if
and only if for any nonempty set α = {1, . . . , l} ⊆ {1, . . . , n}, the existence of a
vector xα ∈ R

|α| satisfying

xα > 0, Mααxα ≤ 0, and Mᾱαxα ≥ 0 (9)

implies that there exists a nonzero vector yα ∈ IR
|α|
+ such that

y�
α Mαα ≤ 0, y�

α Mαᾱ ≤ 0, and y�
α (Mααxα) = 0. (10)

The last definition by using subclass coincides with that given by Aganagić and
Cottle [19] in the LCP context.

(ii) For V = IRn and K = Ln+, we consider the canonical Jordan frame {e1, e2} (de-
fined in Example 2.3(ii)). Then, corresponding to α = {1,2}, we have V

(α) = V

(because e1 + e2 = e), and, associated with α = {1} and ᾱ = {2}, we have
V

(α) = V11 and V
(ᾱ) = V22, respectively. Moreover,

K(α) = {κe1 : κ ∈ IR+}.
Hence, for α = {1}, the projection P (α) of x = (x1, . . . , xn) ∈ IRn on V

(α) is
given by P (α)(x) = (x1 + x2)e1, where

x = (x1 + x2)e1 + (x1 − x2)e2 + (0,0, x3, . . . , xn)

is its Peirce decomposition associated with {e1, e2}. On the other hand, since
V

(α) are one-dimensional spaces, their orthogonal projections are easily com-
puted at the elements of L(V(1)), with L ∈ L(IRn), as follows:

P (α)
(
L(κe1)

)=κ
〈L(e1), e1〉

‖e1‖2
e1, P (ᾱ)

(
L(κe1)

)=κ
〈L(e1), e2〉

‖e2‖2
e2, κ ∈ IR.

So, for L(x) = Mx with M ∈ IRn×n and for x ∈ IRn with Peirce decomposition
x = (x1 + x2)e1 + (x1 − x2)e2 + (0,0, x3, . . . , xn), Definition 3.5, for α = {1},
reduces to: A matrix M : Ln → Ln has T -property iff for any matrix Λ = ( 1 0

0 D

)

with D ∈ IRn−1×n−1 being an orthogonal matrix, the existence of a solution
x ∈ IRn to the system

x1 = x2 > 0, x3 = · · · = xn = 0,
〈
Λ�MΛ(e1), e1

〉 ≤ 0, p = 0,
〈
Λ�MΛ(e1), e2

〉 ≥ 0,

where L̃(x) = κ1e1 + κ2e2 + (0,0,p), implies that there is a nonzero y ∈ IRn

satisfying

y1 = y2 ≥ 0, y3 = · · · = yn = 0, y1
〈
Λ�M�Λ(e1), e1

〉 ≤ 0, p′ = 0,

y1
〈
Λ�M�Λ(e1), e2

〉 ≤ 0,

y1
〈
Λ�MΛ(e1), e1

〉 = 0,
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where L̃�(y) = κ ′
1e1 + κ ′

2e2 + (0,0,p′). Here we have used the Peirce decom-
position of y with respect to {e1, e2}.

(iii) For V = S n and K = S n+, we consider the Jordan frame {E1, . . . ,En} (defined
in Example 2.3(iii)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, taking into
account Examples 2.4, 2.5, and 3.1, Definition 3.5 reduces to saying:

A linear transformation L : S n → S n is said to have the T -property if for any
orthogonal matrix U ∈ IRn×n and for any index set α = {1, . . . , k} (1 ≤ k ≤ n),
the existence of a solution X ∈ S n to the system

Xαα ∈ S |α|
++, Xij = 0, ∀i, j /∈ α,

[
L̃U (X)

]
αα

∈ − S |α|
+ ,

[
L̃U (X)

]
ᾱᾱ

∈ S |ᾱ|
+ ,

[
L̃U (X)

]
αᾱ

= 0,

implies that there is a nonzero matrix Y ∈ S n satisfying

Yαα ∈ S |α|
+ , Yij = 0, ∀i, j /∈ α,

[
L̃�

U(Y )
]
αα

∈ −S |α|
+ ,

[
L̃�

U(Y )
]
ᾱᾱ

∈ −S |ᾱ|
+ ,

[
L̃�

U(Y )
]
αᾱ

=0,
〈
Yαα,

[
L̃U (X)

]
αα

〉=0.

As far as we know, this is the first time that a T -transformation is extended to a
nonpolyhedral cone K.

The following result is a extension of [19, Proposition 2] to our SCLCP context.

Proposition 3.2 If a linear transformation L is monotone, then it has the T -property.

Proof Let Λ be an orthogonal automorphism of V, α = {1, . . . , l} (1 ≤ l ≤ n) be
a nonempty index set, and x ∈ V a solution of system (7). Clearly, L̃ and L̃� are
monotone. Then, from the inequality

0 ≤ 〈
x, L̃(x)

〉 = 〈
P (α)(x),P (α)

(
L̃(x)

)〉

and the fact that P (α)(x) ∈ int(K(α)) and P (α)(L̃(x)) ∈ −K(α) we deduce that
P (α)(L̃(x)) = 0. Hence, 〈x, L̃(x)〉 = 〈P (α)(x),P (α)(L̃(x))〉 = 0.

We claim that

P (α)
(
L̃�(x)

) ∈ −K(α), P (ᾱ)
(
L̃�(x)

) ∈ −K(ᾱ),
(
I−P (α)−P (ᾱ)

)(
L̃�(x)

)=0.

Indeed, since 〈x, (L̃ + L̃�)(x)〉 = 0 and L̃ + L̃� is a self-adjoint monotone lin-
ear transformation, it clearly follows that (L̃ + L̃�)(x) = 0. But L̃(x) ∈ K (be-
cause P (α)(L̃(x)) = 0 and (7) holds), then L̃�(x) ∈ −K. From this it follows
that P (α)(L̃�(x)) ∈ −K(α) and P (ᾱ)(L̃�(x)) ∈ −K(ᾱ). On the other hand, since
P (α)(x) ∈ int(K(α)), P (α)(L̃�(x)) ∈ −K(α), and

〈
P (α)

(
L̃�(x)

)
,P (α)(x)

〉 = 〈
L̃�(x), x

〉 = 0,

it follows that P (α)(L̃�(x)) = 0. This, together with the condition −L̃�(x) ∈ K
and Proposition 2.1, Part (e), implies that (I − P (ᾱ))(L̃�(x)) = 0. Thus, y = x

solves (8). �
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F2-Transformation

Definition 3.6 A linear transformation L : V → V is said to have the F2-property
iff for any Λ ∈ Aut(V) orthogonal and any index set α = {1, . . . , l} (1 ≤ l ≤ r), the
existence of a solution x ∈ V to the system

P (α)(x) ∈ int
(

K(α)
)
,

(
I − P (α)

)
(x) = 0,

(
I − P (ᾱ)

)(
L̃(x)

) = 0, P (ᾱ)
(
L̃(x)

) ∈ K(ᾱ),
(11)

ᾱ = {1, . . . , r}\α, implies that there is a nonzero y ∈ V satisfying

P (α)(y) ∈ K(α),
(
I − P (α)

)
(y) = 0,

(
I − P (ᾱ)

)(
L̃�(y)

) = 0, P (ᾱ)
(
L̃�(y)

) ∈ −K(ᾱ).
(12)

We illustrate this definition in the following Euclidean Jordan algebras.

Example 3.4

(i) For V = IRn and K = IRn+, we consider the Jordan frame {e1, . . . , en} (defined
in Example 2.3(i)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Taking into account
Example 3.3, Part (i), and that L(x) = Mx with M ∈ IRn×n, Definition 3.6 re-
duces to saying: A matrix M ∈ IRn×n is an F2-matrix iff for any nonempty set
α = {1, . . . , l} ⊆ {1, . . . , n}, the existence of a vector xα ∈ R

|α| satisfying

xα > 0, Mααxα = 0, and Mᾱαxα ≥ 0 (13)

implies that there exists a nonzero vector yα ∈ IR
|α|
+ such that

y�
α Mαα = 0 and y�

α Mαᾱ ≤ 0. (14)

Notice that, in the LCP context, both classes, F1 and F2, coincide with the class
introduced by Flores and López in [17].

(ii) For V = IRn and K = Ln+, we consider the Jordan frame {e1, e2} defined in Ex-
ample 2.3(ii). Then, taking into account the ideas of Example 3.3(ii) and letting
L(x) = Mx with M ∈ IRn×n for all x ∈ IRn, Definition 3.6, for α = {1}, reduces
to saying: A matrix M ∈ IRn×n is said to have the F2-property iff for any ma-
trix Λ = ( 1 0

0 D

)
with D ∈ IRn−1×n−1 an orthogonal matrix, the existence of a

solution x ∈ IRn to the system

x1 = x2 > 0, x3 = · · · = xn = 0,
〈
Λ�MΛ(e1), e1

〉 = 0, p = 0,
〈
Λ�MΛ(e1), e2

〉 ≥ 0,

where L̃(x) = κ1e1 + κ2e2 + (0,0,p), implies that there is a nonzero y ∈ IRn

satisfying

y1 = y2 ≥ 0, y3 = · · · = yn = 0, y1
〈
Λ�M�Λ(e1), e1

〉 = 0, p′ = 0,

y1
〈
Λ�M�Λ(e1), e2

〉 ≤ 0,
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where L̃�(y) = κ ′
1e1 + κ ′

2e2 + (0,0,p′).
(iii) For V = S n and K = S n+, we consider the Jordan frame {E1, . . . ,En} (defined

in Example 2.3(iii)) and set α = {1, . . . , l} with 1 ≤ l ≤ n. Then, taking into
account Examples 2.4, 2.5(iii), and 3.1, Definition 3.6 reduces to Definition
of F2-transformation given in [18] in SDLCP context: A linear transforma-
tion L : S n → S n is said to have the F2-property iff for any orthogonal matrix
U ∈ IRn×n and for any index set α = {1, . . . , k} (1 ≤ k ≤ n), the existence of a
solution X ∈ S n to the system

Xαα ∈ S |α|
++, Xij =0, ∀i, j /∈α,

[
L̃U (X)

]
αα

=0,
[
L̃U (X)

]
αᾱ

=0,
[
L̃U (X)

]
ᾱᾱ

∈ S |ᾱ|
+ ,

implies that there is a nonzero matrix Y ∈ S n satisfying

Yαα ∈ S |α|
+ , Yij = 0, ∀i, j /∈ α,

[
L̃�

U(Y )
]
αα

= 0,
[
L̃�

U(Y )
]
αᾱ

= 0,
[
L̃�

U(Y )
]
ᾱᾱ

∈ −S |ᾱ|
+ .

Proposition 3.3 If L has the F2-property, then L is an F -transformation.

Proof Let v be a nonzero solution of LCP(L, K,0). Consider an orthogonal auto-
morphism Λ ∈ Aut(V) such that

Λ�(v) = Λ−1(v) =
r∑

i=1

λi(v)ei = λ1(v)e1 + · · · + λl(v)el + 0el+1 + · · · + 0er ,

where {e1, . . . , er} is a Jordan frame of V, and λi(v) > 0 for all i = 1, . . . , l, with l ∈
{1, . . . , r}. We proceed to show that x = Λ−1(v) is a solution of (11). It is immediate
that x = P (α)(x) ∈ int(K(α)), where α = {1, . . . , l}, and hence x satisfies the first
two conditions of (11). Also, L̃(x) = Λ�(L(v)). So, since L(v) ∈ K, it follows that
P (ᾱ)(L̃(x)) ∈ K(ᾱ) (cf. [12, Remark 4.1] and Proposition 2.1, Part (d)). Moreover, the
condition 〈L(v), v〉 = 0 implies that 〈x, L̃(x)〉 = 0. Then, by using Proposition 2.1,
Parts (b) and (c), we get that L̃(x) has the following spectral decomposition:

L̃(x) =
r∑

i=1

λi

(
L̃(x)

)
ei = 0e1 + · · · + 0el + λl+1

(
L̃(x)

)
el+1 + · · · + λr

(
L̃(x)

)
er ,

where λi(L̃(x))ei ≥ 0 for all i = l + 1, . . . , r . From this it follows that L̃(x) ∈ K(ᾱ)

and hence P (ᾱ)(L̃(x)) = L̃(x). Then, L̃(x) satisfies the last two conditions of (11).
Therefore, there exists a nonzero solution y of (12).

We claim that τv = Λ(y) satisfies conditions (i)–(iii) in (5). Indeed, it is obvious
that τv ∈ K because y = P (α)(y) ∈ K(α) and Λ(K) = K. So, due to that x ∈ int(K(α))

and y ∈ K(α) with y �= 0, from Proposition 2.1, Part (a), we get

〈τv, v〉 = 〈y, x〉 > 0.
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Finally, since L�(τv) = (Λ�)−1(L̃�(y)) and L̃�(y) ∈ −K (a consequence of (12)),
it follows that L�(τv) ∈ −K. We have thus deduced that L is an F -transformation. �

In the following proposition we list various classes of linear transformations that
are contained in the class F2.

Proposition 3.4 If L is a star-transformation or L has T -property, then L ∈ F2.

Proof First, we assume that L is a star-transformation. Let Λ be an orthogo-
nal automorphism of V, α = {1, . . . , l} (1 ≤ l ≤ n) be a nonempty index set,
and x ∈ V be a solution of system (11). Let us define v = Λ(x). Clearly, v,
L(v) = (Λ�)−1(L̃(x)) ∈ K (because x, L̃(x) ∈ K and Λ, (Λ�)−1 preserve K) and
〈v,L(v)〉 = 〈x, L̃(x)〉 = 0. Hence, v is a nonzero solution of SOL(L, K,0). Since L

is a star-transformation, we have that L�(v) ∈ −K. Then, L̃�(x) = Λ−1L�(v) ∈
−K (because Λ−1 preserves K). On the other hand, since P (α)(x) ∈ int(K(α)),
P (α)(L̃�(x)) ∈ −K(α) (cf. Proposition 2.1, Part (d)), and

〈
P (α)

(
L̃�(x)

)
,P (α)(x)

〉 = 〈
L̃�(x), x

〉 = 〈
x, L̃(x)

〉 = 0,

it follows that P (α)(L̃�(x)) = 0. This, together with the condition −L̃�(x) ∈ K and
Proposition 2.1, Part (e), implies that (I − P (ᾱ))(L̃�(x)) = 0. Therefore, y = x

solves (12). Thus, we conclude that L has the F2-property.
Second, if L has the T -property, then obviously L ∈ F2, since (11) implies that

P (α)(L̃(x)) = 0, and this implies P (α)(L̃�(y)) = 0. �

3.2 Examples of Transformations

In this section, we present some transformations in L(V) that belong to subclasses F1,
F2, and T . These linear transformations are intensively studied in the LCP literature.

1. Lyapunov transformation: Let a ∈ V with V any Euclidean Jordan algebra. The
Lyapunov transformation La defined in (2) is a self-adjoint and Z-transformation
[13]. By Proposition 2.2, Part (d), Proposition 3.1, and Proposition 3.4, we have
that La ∈ F1 ∩ F2. On the other hand, if a ∈ int(K), then La is strongly monotone
(cf. Proposition 2.1, Part(a)); thus, La has the T -property by Proposition 3.2.

2. Quadratic representation: Let V be a Euclidean Jordan algebra and a ∈ V. If, in
addition, V is simple and ±a ∈ int (K), the transformation Pa is strongly mono-
tone (see [13, Theorem 6.5]). By Proposition 2.2, Parts (a) and (d), Proposition 3.1,
and Proposition 3.4, we have that Pa ∈ F1 ∩F2. On the other hand, under the same
assumptions, Pa also has the T -property by Proposition 3.2.

3. Stein transformation: Let a ∈ V with V any Euclidean Jordan algebra. Consider
the Stein transformation Sa defined by Sa = I − Pa . If λi(±a) ⊆ (−1,1) for all i,
then the transformation Sa is strongly monotone (see [31, Theorem 3.3]). Hence,
by using Proposition 2.2, Parts (a) and (d), Proposition 3.1, and Proposition 3.4,
we have that Sa ∈ F1 ∩ F2. On the other hand, under the same assumptions, Sa

also has the T -property by Proposition 3.2.
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4. The relaxation transformation: Let {e1, . . . , er} be a Jordan frame in V, and
A ∈ IRr×r . We define RA : V → V as follows. For any x ∈ V, write the Peirce
decomposition x = ∑r

i=1 xiei + ∑
i<j xij . Then

RA(x) =
r∑

i=1

yiei +
∑

i<j

xij ,

where [y1, y2, . . . , yr ]� = A([x1, x2, . . . , xr ]�). This is a generalization of a con-
cept introduced in [32] for V = S n. Let A be a P -matrix (i.e., all its principal mi-
nors are positive). By [11, Proposition 5.1], the latter is equivalent to saying that
RA has the P -property, which in turn by Proposition 2.2, Parts (a) and (d), implies
that RA is a star-transformation. Hence, by using Proposition 3.1 and Proposi-
tion 3.4 we have that RA ∈ F1 ∩ F2. On the other hand, if A is a nonnegative
diagonal matrix, then clearly RA is a monotone transformation. Hence, by using
Proposition 3.2 we have that RA has the T -property.

4 Existence Results for Symmetric Cone LCP’s

In this section, we present coercive and noncoercive existence results for symmetric
cone SCLCPs. Our approach follows the same arguments of [16] for LCP’s and of
[6] for SDLCPs. For this, we recall that problem (1) is equivalent to the following
variational inequality problem VIP(L, K, q): find an element x̄ such that

x̄ ∈ K and
〈
L(x̄) + q, x − x̄

〉 ≥ 0 for all x ∈ K. (15)

We approximate this problem by the following sequence of variational inequality
problems VIP(L,Dk, q): find an element xk such that

xk ∈ Dk and
〈
L

(
xk

) + q, x − xk
〉 ≥ 0 for all x ∈ Dk, (16)

where Dk := {x ∈ K : 〈d, x〉 ≤ σk} with d ∈ int(K) and σk → +∞. Since each set Dk

is compact and convex, by the Hartman–Stampacchia theorem we have that (16) has
a nonempty solution set SOL(L,Dk, q). Moreover, it is clear that each solution xk is
a solution of (16) if and only if xk ∈ Dk is an optimal solution of the linear program

inf
x

[〈
L

(
xk

) + q, x
〉 : x ∈ K, 〈d, x〉 ≤ σk

]
.

Applying optimality conditions, we obtain that xk is a solution of (16) if and only
if there exists θk ∈ R such that (xk, θk) is a solution of the following problem, called
the augmented symmetric cone LCP: find xk ∈ K and θk ≥ 0 such that

yk := L
(
xk

) + q + θkd ∈ K,
〈
d, xk

〉 ≤ σk,

〈
yk, xk

〉 = 0 and θk

(
σk − 〈

d, xk
〉) = 0. (ASCLCPk)
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From this we observe that
〈
d, xk

〉
< σk =⇒ θk = 0 =⇒ xk ∈ SOL(L, K, q). (17)

Moreover, we have from (ASCLCPk) that

θk = −
〈
L

(
xk

) + q,
xk

σk

〉
. (18)

Implications (17) shows that only the case 〈d, xk〉 = σk for all k ∈ N deserves fur-
ther analysis. This analysis is carried out below by extending the arguments from
[6, 16] to our symmetric cone framework via the spectral decomposition theorem.
Since 〈d, xk〉 = σk for all k ∈ N, we are interested in obtaining asymptotic properties

of the sequence { xk

σk
}.

Since yk, xk

σk
∈ K and 〈yk, xk

σk
〉 = 0 for all k ∈ N, by Proposition 2.1, Parts (b)

and (c), yk and xk

σk
share a Jordan frame, which for simplicity is denoted by

{ek
1, . . . , e

k
r }, for which it holds that

xk

σk

=
r∑

i=1

λi

(
xk

σk

)
ek
i , yk =

r∑

i=1

λi

(
yk

)
ek
i , (19)

where λ(xk

σk
) := (λ1(

xk

σk
), . . . , λr (

xk

σk
)) and λ(yk) := (λ1(y

k), . . . , λr (y
k)) denote the

eigenvalues of xk

σk
and yk , respectively. Therefore,

〈
d,

xk

σk

〉
=

r∑

i=1

λi

(
xk

σk

)〈
d, ek

i

〉 = 1,

and since λi(
xk

σk
)〈d, ek

i 〉 ≥ 0 for all i ∈ {1, . . . , r}, we conclude that, for all k ∈ N,

γ k :=
(

λ1

(
xk

σk

)〈
d, ek

1

〉
, . . . , λr

(
xk

σk

)〈
d, ek

r

〉) ∈ Δ :=
{

γ ∈ IRr+ :
r∑

i=1

γi = 1

}
.

As stated in [33, Theorem 18.2], the simplex Δ can be decomposed as the disjoint
union of the relative interior of its extreme faces

ΔJi
= co

{
(0, . . . ,0,1︸ ︷︷ ︸

s

,0, . . . ,0) : s ∈ Ji

}
,

with Ji being a nonempty subindex set of {1, . . . , r} for each i = 1, . . . ,2r − 1; that
is to say,

Δ =
2r−1⊔

i=1

ri(ΔJi
). (20)

The next result describes the asymptotic behavior of the sequence { xk

σk
}.
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Lemma 4.1 Let {xk} be a sequence of solutions to (ASCLCPk) such that 〈d, xk〉 =
σk for all k ∈ N and xk

σk
→ v for some v ∈ K. Then

(a) v ∈ SOL(L, K, τvd) with τv = −〈L(v), v〉 ≥ 0.

Moreover, there exist a nonempty subindex set Jv ⊆ {1, . . . , r}, a Jordan frame
{e1, . . . , er}, and a subsequence {km} such that

(b) {ekm

1 , . . . , e
km
r } → {e1, . . . , er} and λ(xkm

σkm
) → λ(v) as m → +∞; thus, γ km →

γ := (λ1(v)〈d, e1〉, . . . , λr(v)〈d, er 〉) ∈ Δ.
(c) γ km ∈ ri(ΔJv ); i.e., supp{λ(xkm

σkm
)} = Jv and λ(ykm)|Jv = 0 for all m ∈ N. As

a consequence, the vectors λ(ykm) have at least |Jv| zeros, which implies that
λ

↑
i (ykm) = 0 for all i = 1, . . . , |Jv|, and supp{λ(v)} ⊆ Jv .

Finally, for every z ∈ K \ {0} with supp{λ(z)} ⊆ Jv , we have

(d) 〈ykm, z〉 = 0 for all m ∈ N;
(e) 〈L(xkm) + q, z

〈d,z〉 〉 = 〈L(xkm) + q, v〉 for all m ∈ N;
(f) 〈L(v), z

〈d,z〉 〉 = 〈L(v), v〉.

Proof (a): By dividing inequality (16) by σ 2
k , setting x = 0 and x = σk〈d,z〉z for z ∈ K \

{0}, and taking the limit as k → +∞, we get 〈L(v), v〉 ≤ 0 and 〈L(v), z
〈d,z〉 − v〉 ≥ 0,

respectively. The result follows from this since 〈d, v〉 = 1.
(b): Let us consider the case where V is not necessarily simple. Due to Theorem 2.3,
it suffices to consider V = V1 × V2 × · · · × Vj̄ , where each Vj is a simple Jordan
Algebra with the corresponding symmetric cone Kj and rank rj . As before, the su-
perscript (j) is used to denote the j th block of a given vector in V.

Remarks 2.1 and 2.2, applied to each Vj , imply the existence of positive num-
bers θj , j = 1, . . . , j̄ , such that either ‖(ek

i )
(j)‖2 = 0 or ‖(ek

i )
(j)‖2 = θj for all

i ∈ {1, . . . , r}, k ∈ N, where the latter holds for one and only one block j . Then
‖ek

i ‖2 ≤ max{θj : j = 1, . . . , j̄} for all i ∈ {1, . . . , r}, k ∈ N. Set θ̄ := max{θj : j =
1, . . . , j̄}. Therefore, there exists a Jordan frame {e1, . . . , er} and a subsequence
{km} such that {ekm

1 , . . . , e
km
r } converges to {e1, . . . , er}. Moreover, Proposition 2.1,

Part (h), yields1

λmin(d) ≤
∑j̄

j=1 θj 〈d(j), (ek
i )

(j)〉
∑j̄

j=1 θj‖(ek
i )

(j)‖2
≤ θ̄

∑j̄

j=1〈d(j), (ek
i )

(j)〉
∑j̄

j=1 θ2
j

= θ̄〈d, ek
i 〉

∑j̄

j=1 θ2
j

for all i ∈ {1, . . . , r} and k ∈ N. This, together with the equality
∑r

i=1 λi(
xk

σk
) ×

〈d, ek
i 〉 = 1, implies that the eigenvalues λi(

xk

σk
), i = 1, . . . , r , are bounded. Hence,

1This upper bound can be slightly improved thanks to Remark 2.2. Indeed, one can obtain λmin(d) ≤
〈d,ek

i
〉

θji,k
≤ 〈d,ek

i
〉

minj θj
, where ji,k corresponds to the nonzero block of ek

i
.
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passing to a subsequence if necessary, it follows that {λ(xkm

σkm
)} converges to λ(v) as

m → +∞. Consequently, γ km → γ as m → +∞, and γ ∈ Δ.
(c): Since γ k ∈ Δ for all k, from decomposition (20) without loss of generality we
may consider that there exists a nonempty subindex set Jv ⊆ {1, . . . , r} such that

γ km ∈ ri(ΔJv ) for all m ∈ N. Hence, we obtain that supp{λ(xkm

σkm
)} = Jv for such m

(see [35, Exercise 2.28(e)]). From this we prove that supp{λ(v)} ⊆ Jv . From the spec-
tral decompositions (19) we get

0 =
〈
xkm

σkm

, ykm

〉
=

r∑

i,j=1

λi

(
xkm

σkm

)
λj

(
ykm

)〈
e
km

i , e
km

j

〉

=
r∑

i=1

λi

(
xkm

σkm

)
λi

(
ykm

)∥∥e
km

i

∥∥2

=
∑

i∈Jv

λi

(
xkm

σkm

)
λi

(
ykm

)∥∥e
km

i

∥∥2
,

and thus λ(ykm)|Jv = 0 since λi(
xkm

σkm
) > 0 for i ∈ Jv .

(d): Let z ∈ K be such that supp{λ(z)} ⊆ Jv . This yields λ
↑
i (z) = 0 for all i = |Jv| +

1, . . . , r . By applying Parts (f) and (g) of Proposition 2.1 and item (c) above, we
obtain:

0 ≤ tr
(
ykm ◦ z

) ≤
r∑

i=1

λ
↑
i

(
ykm

)
λ

↑
i (z) =

|Jv |∑

i=1

λ
↑
i

(
ykm

)
λ

↑
i (z) = 0.

Therefore, tr(ykm ◦ z) = 0 for all m ∈ N. The desired result follows from Parts (g) and
(b) of Proposition 2.1.
(e): If z ∈ K \ {0} is such that supp{λ(z)} ⊆ Jv , then Eq. (18) and item (d) yield

〈
L

(
xkm

) + q,
xkm

σkm

〉
=

〈
L

(
xkm

) + q,
z

〈d, z〉
〉
.

Replacing z by v, we obtain item (e).
(f): After dividing the equality in item (e) by σkm and taking the limit as m → +∞,
we obtain the desired result. �

The proof of Lemma 4.1, Part (a), shows us that the sets SOL(L, K, τd) for τ ≥ 0
play an important role in our analysis. Conditions imposed to these sets allow us to ex-
tend to SCLCPs the following classes of linear transformations that were introduced
for LCPs by García (see [16] and the references therein) and that were extended to
SDLCPs in [6].

Definition 4.1 Let L : V → V be a linear transformation.
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– L is a García’s transformation iff there exists a d ∈ int(K) such that
SOL(L, K, τd) = {0} for all τ > 0. In this case we say that L is a G-transformation
with respect to d , or simply L ∈ G(d).

– L is a #-transformation iff [v ∈ SOL(L, K,0) =⇒ (L + L�)(v) ∈ K].
– L is a G#-transformation iff L ∈ G and it is a #-transformation. Similarly, for

a given d ∈ int(K), L is a G(d)#-transformation if L ∈ G(d) and it is a #-
transformation.

Example 4.1

(i) Monotone and copositive transformations are G-transformations.
(ii) Proceeding exactly as in [6, Proposition 4.8], one can prove that L ∈ # if any of

the following conditions is satisfied: L is self-adjoint; L is skew-symmetric; L ∈
R0; L is copositive; −L is a star-transformation; and L is a star-transformation
and −L� ∈ Z.

The next result shows that the class G is invariant under automorphisms.

Lemma 4.2 Let L : V → V be a linear transformation. For Γ ∈ Aut(K), define
L̂ = Γ �LΓ . Then, L is a G-transformation with respect to d if and only if L̂ is
a G-transformation with respect to Γ �(d).

Proof The result follows directly from Γ −1(SOL(L, K, d)) = SOL(L̂, K,Γ �(d))

(see [12, Theorem 5.1]) and Γ � ∈ Aut(K). �

The next proposition provides two characterizations of the class of García’s linear
transformations. This is a symmetric cone version of [16, Proposition 3.1] and [6,
Proposition 4.6] proved for LCPs and SDLCPs, respectively.

Proposition 4.1 Let d ∈ int(K), and L : V → V be a linear transformation. Then,
the following are equivalent:

(a) L ∈ G(d);
(b) [v ∈ K, L(v) − 〈L(v), v〉d ∈ K, 〈d, v〉 = 1] =⇒ 〈L(v), v〉 ≥ 0;
(c) [v ∈ K, 〈d, v〉 = 1, 〈L(v), v〉 < 0] =⇒ L(v) − 〈L(v), v〉d /∈ K.

Proof (a) ⇒ (b): We argue by contradiction. Suppose that the left-hand side of
item (b) holds and 〈L(v), v〉 < 0. It follows that 〈L(v) − 〈L(v), v〉d, v〉 = 0 and
hence v ∈ SOL(L, K, τd) with τ = −〈L(v), v〉 > 0. By linearity we have v/τ ∈
SOL(L, K, d), which implies that v = 0 by item (a), obtaining a contradiction with
the fact that 〈d, v〉 = 1.
(b) ⇒ (c): We argue by contradiction. Suppose that the left-hand side of item (c)

holds and that L(v) − 〈L(v), v〉d ∈ K. Then, by using item (b) we conclude that
〈L(v), v〉 ≥ 0, obtaining a contradiction.
(c) ⇒ (a): We argue by contradiction. Suppose that for some τ > 0, there exists a
v �= 0 such that v/τ ∈ SOL(L, K, d). By changing τ if necessary we may assume that
〈d, v〉 = 1. By assumption we have that v,L(v) + τd ∈ K and 〈v,L(v) + τd〉 = 0.
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From this we deduce that 〈L(v), v〉 = −τ < 0. Then, by using item (c) we con-
clude that L(v) − 〈L(v), v〉d /∈ K, obtaining a contradiction with the fact that
L(v) + τd ∈ K. �

Recall that the positive polar cone and the asymptotic cone of a given set A ⊆ IRn

are respectively defined by A+ := {y ∈ IRn : 〈y, z〉 ≥ 0 ∀z ∈ A} and

A∞ :=
{
d ∈ IRn : ∃tk → +∞,∃xk ∈ A with lim

k→+∞
xk

tk
= d

}
.

We now obtain a bound for the asymptotic cone of the solution set to symmetric
cone LCP’s for G#-transformations.

Proposition 4.2 If L ∈ G#, then SOL(L, K, q)∞ ⊆ SOL(L, K,0) ∩ {−q}+.

Proof Let d ∈ int(K) be such that L ∈ G#(d) and v ∈ SOL(L, K, q)∞. If v = 0,
then the inclusion is trivial. So, we consider that v �= 0. Without loss of generality
we assume that 〈d, v〉 = 1. By definition there exist {xk} and {tk} such that xk ∈
SOL(L, K, q) for all k ∈ N, tk → +∞, and xk

tk
→ v as k → +∞. By defining σk :=

〈d, xk〉 for all k ∈ N it is easy to check that σk → +∞ and xk

σk
→ v. By Lemma 4.1,

Part (a), we have v ∈ SOL(L, K, τvd) \ {0} with τv = −〈L(v), v〉 ≥ 0. If τv > 0, then
we get a contradiction to L being a G-transformation. Therefore, τv = 0, and we

have v ∈ SOL(L, K,0). From this and from Lemma 4.1, Part (f), for z = xkm

σkm
, we get

〈L(v), xkm

σkm
〉 = 0. Then,

0 =
〈
L

(
xkm

) + q,
xkm

σkm

〉
= 〈

L
(
xkm

) + q, v
〉 = 〈

xkm,
(
L + L�)

(v)
〉 + 〈q, v〉,

where we have used Lemma 4.1, Part (d), and the fact that each xkm is a solution to
problem (1). As L ∈ #, we have (L + L�)(v) ∈ K, which in turn by Proposition 2.1,
Part (a), implies that 〈xkm, (L + L�)(v)〉 ≥ 0. Hence, from the above equality we get
〈q, v〉 ≤ 0. �

We now obtain existence results that extend [34, Theorems 9 and 11] given for
LCPs and [6, Theorem 5.1] given for SDLCPs.

Theorem 4.1 Let q ∈ V and L ∈ G#.

(a) If q ∈ SOL(L, K,0)+, then SOL(L, K, q) is nonempty (possibly unbounded);
(b) If q ∈ int[SOL(L, K,0)+], then SOL(L, K, q) is nonempty and compact.

Proof Let d ∈ int(K) be such that L ∈ G#(d). (a): Let {(xk, θk)} be a sequence of
solutions to problems (ASCLCPk). If there exists k ∈ N such that 〈d, xk〉 < σk , then
by implication (17) we have that xk ∈ SOL(L, K, q), and we are done. On the con-

trary, if 〈d, xk〉 = σk for all k ∈ N, then up to subsequences, xk

σk
→ v for some v.
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By Lemma 4.1, Part (a), we have v ∈ SOL(L, K, τvd). Proceeding as in Proposi-
tion 4.2, we prove that τv = 0; thus, v ∈ SOL(L, K,0). From this, by Lemma 4.1

there exist a nonempty subindex set Jv ⊆ {1, . . . , r} and a subsequence { xkm

σkm
} such

that supp{λ(xkm

σkm
)} = Jv and 〈L(v), xkm〉 = 0 for all m ∈ N. By using this, Eq. (18),

and Lemma 4.1, Part (e), we obtain

0 ≤ θkm = −
〈
L

(
xkm

) + q,
xkm

σkm

〉
= −〈

L
(
xkm

) + q, v
〉

= −〈
xkm,

(
L + L�)

(v)
〉 − 〈q, v〉.

As v ∈ SOL(L, K,0), by hypothesis we get 〈q, v〉 ≥ 0 and (L + L�)(v) ∈ K. Thus,
〈xkm, (L + L�)(v)〉 ≥ 0 by Proposition 2.1, Part (a). Consequently, θkm = 0, and by
implication (17) we conclude that xkm ∈ SOL(L, K, q), and we are done.

(b): From item (a) we conclude that SOL(L, K, q) �= ∅. To prove that this set is
bounded, it is sufficient to show that SOL(L, K, q)∞ = {0}. This follows from Propo-
sition 4.2 since by hypothesis SOL(L, K,0)∩{−q}+ = {0}. Indeed, if on the contrary
we suppose that there exists u �= 0 such that u ∈ SOL(L, K,0) and 〈q,u〉 ≤ 0, then
as

q ∈ int
[
SOL(L, K,0)+

] = SOL(L, K,0)s+

(see [35, Exercise 6.22]), we obtain 〈q,u〉 > 0, a contradiction. �

The last theorem directly implies the following result.

Corollary 4.1 If L ∈ G, then L ∈ R0 if and only if L ∈ Qb .

Proof Clearly L ∈ Qb implies that L ∈ R0. In the opposite direction, it suffices to
note that if L ∈ R0, then L ∈ # (see Example 4.1). We conclude thus from Part (b) of
Theorem 4.1. �

Remark 4.1 The hypothesis on q of Theorem 4.1, Part (a), implies the following
necessary condition:

q ∈ SOL(L, K,0)+ =⇒ λmax(q) ≥ 0.

Indeed, if q ∈ SOL(L, K,0)+, then 〈q, x〉 ≥ 0 for all x ∈ SOL(L, K,0). In the case
where V is not simple, we denote by Vj , j = 1, . . . , j̄ , the simple Jordan Algebra
located in the j th position, by Kj its corresponding symmetric cone, by rj its rank,
and by x(j) and q(j) the j th block of x and q , respectively. Thus, Proposition 2.1,

Part (f), applied to Vj , implies that
∑j̄

j=1

∑rj
i=1 λ

↑
i (q(j))λ

↑
i (x(j)) ≥ 〈q, x〉 ≥ 0. But,

since λ
↑
i (x(j)) ≥ 0 for all i = 1, . . . , rj and j = 1, . . . , j̄ (because x(j) ∈ Kj ), it nec-

essarily follows that λmax(q) ≥ 0.

By taking into account Example 4.1 we now list some conditions under which the
linear transformations defined in Sect. 3.2 are G-transformations.
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Example 4.2 Let (V,◦, 〈·, ·〉) be a Euclidean Jordan algebra, and a ∈ V.

1. If a ∈ int(K), then La is strongly monotone (cf. Proposition 2.1, Part(a)). Thus,
La ∈ G(d) ∩ R0 for any d ∈ int(K).

2. If V is simple and ±a ∈ int(K), the quadratic transformation Pa is strongly mono-
tone by [13, Theorem 6.5]. Thus, Pa ∈ G(d) ∩ R0 for any d ∈ int(K).

3. If λi(±a) ⊆ (−1,1), for all i, then the Stein transformation Sa is strongly mono-
tone (see [31, Theorem 3.3]). Thus, Sa ∈ G(d) ∩ R0 for any d ∈ int(K).

4. Let A ∈ IRr×r be a nonnegative matrix. Then the relaxation transformation RA is
copositive. Thus, RA ∈ G(d) for any d ∈ int(K).

5 Concluding Remarks

In this paper, we introduce a new class of linear transformations called F , and, within
this new class, we characterize the class of Qb-transformations in terms of larger
classes, such as Q and R0. Next, we provide conditions to ensure that Lyapunov,
Quadratic, Stein, and Relaxation linear transformations belong to this class. Finally,
we extend the notion of García’s transformations to the SCLCP setting, which is used
to establish coercive and noncoercive existence results for SCLCPs.
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