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• We solve the density classification problem.
• This is one of the most studied inverse problems in cellular automata.
• We solve this problem with a CA inspired by two mechanisms that are ubiquitous in nature.
• These mechanisms are diffusion and nonlinear sigmoidal response.
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a b s t r a c t

One of themost studied inverse problems in cellular automata (CAs) is the density classification problem.
It consists in finding a CA such that, given any initial configuration of 0s and 1s, it converges to the all-
1 fixed point configuration if the fraction of 1s is greater than the critical density 1/2, and it converges
to the all-0 fixed point configuration otherwise. In this paper, we propose an original approach to solve
this problem by designing a CA inspired by two mechanisms that are ubiquitous in nature: diffusion and
nonlinear sigmoidal response. This CA, which is different from the classical ones because it has many
states, has a success ratio of 100%, andworks for any system size, any dimension, and any critical density.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cellular automata (CAs) are discrete dynamical systems. They
were introduced by John von Neumann [1] after a suggestion of
Stanislaw Ulam [2]. Here, we consider finite CAs: more precisely,
nd cells arranged uniformly spaced in the d-dimensional torus and
following a local rule identical in every cell. This local rule, which
specifies how the state of each cell is updated as a function of the
states of its neighbor cells, is applied in parallel and in discrete time
steps.

One of the most studied inverse problems in CAs is the density
classification problem. The challenge is to find a CA such that, given
any initial configuration x0 of 0s and 1s, it converges to the all-1
fixed point configuration if the fraction of 1s in x0 is greater than
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ρc, and it converges the all-0 fixed point configuration otherwise.
The number 0 < ρc < 1 denotes the critical density.

The problem was first formulated for dimension d = 1 (a ring)
and critical density ρc = 1/2 [3]. The best-known two-state CA
for tackling this instance of the density classification problem is
called GKL [4,5]. Its original purpose was to resist small amounts
of noise. The performance of GKL was very good but not perfect. In
fact, an impossibility result was proved: there is no perfect density
classifier with two states [6].

The impossibility of finding perfect classifiers led many re-
searchers to use different evolutionary computation approaches
to evolve good approximate solutions [7–11]. But, in order to ob-
tain perfect density classifiers, researchers were forced to modify
the original problem. One idea was to change the output specifi-
cations [12]. Another idea was to allow the existence of more than
one local rule [13,14] or to embed a memory on the cells [15,16]. A
very subtle and interesting relaxation of the original problem is re-
lated to determinism. In fact, following other works [17,18], Fatès
designed a two-state stochastic CA that solves the density classifi-
cation problem with arbitrary precision [19].

http://dx.doi.org/10.1016/j.physd.2013.07.002
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mailto:rapaport@dim.uchile.cl
http://dx.doi.org/10.1016/j.physd.2013.07.002
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The idea of the present paper is to use a continuous approach for
solving the density classification problem deterministically. More
precisely, our idea is to use local averaging and saturation, a process
represented by a bistable heat equation. This bistablemodel, which
exhibits two stable critical points (0 and 1), is a particular case of a
reaction–diffusion equationwidely used for studying phase transi-
tions and front propagation in spatial ecology [20], physiology [21],
and chemistry and physics [22]. The large diffusion small amplifica-
tion CA Φ that we define in this work is a discretization of such
bistable nonlinear heat equation (similar approaches have been
previously used [23,24]).

Two parameters characterize CA Φ: the amount of nonlinear-
ity σ (or amplification factor) and the number of states s (or dis-
cretization factor). The main result of this paper is that—given
arbitrary parameters n, d, and ρc—there exist σ and s such that the
large diffusion and small amplification CA Φ(σ , s) solves the den-
sity classification problem with a success ratio of 100%.

CA Φ , besides solving the density classification problem per-
fectly in any dimension d for an arbitrary number of cells nd, and
with any critical density ρc, allows an intuitive interpretation to-
gether with a deep theoretical analysis. It also maintains the same
classification properties for a wide range of different averages and
nonlinear amplifications.

The theoretical result concerning the existence of CA Φ does
not give us any indication about the critical values of s and σ
(even simply as a function of n, with ρc and d fixed). Therefore, in
Section 6, we implement Φ and we compare it not only with GKL
but also against a variant of the elementary CA Rule 184 [25]. This
CA, that we denote by 184∗, is particularly interesting because it is
similar to CAΦ in two senses: (1) it is hand designed, and (2) cells
are augmented with much more memory (note that the only way
to increase the memory capabilities of a finite-state machine is by
augmenting its number of states).

We run simulations using a fixed set of extremely hard in-
stances (initial configurations). These initial configurations are
generated by randomly permuting m 1s and n − m 0s. It turns out
that CAΦ with σ = 0.007 (and before discretizing the set of states,
i.e., s ∼ 200 000), classifies all instances except a few cases when
m = 75 and n = 149. By contrast, both GKL and 184∗ have a suc-
cess ratio slightly above 50% (which can be interpreted as random
success). Note that, when the initial configurations are generated
with a uniform independent probability law (a binomial law of pa-
rameters n = 149 and p = 1/2), the observed success ratio of GKL
and 184∗ is ∼80%.

2. The density classification problem

Let [n]d = {0, . . . , n − 1}d represent a set of nd cells arranged
uniformly spaced in the d-dimensional torus. For instance, [n]1 is
the ring, [n]2 is the two-dimensional grid with periodic boundary
conditions, etc.

Let v0 ∈ [n]d be a cell, and let r be a natural number. The r-(von
Neumann) neighborhood of v0 is Nr,d(v0) = {v ∈ [n]d : |v − v0| ≤

r}, where the differences are takenmodulo n and |u| =


i |ui|. The
size of the neighborhood is independent of v0, and we denote it by
Nr,d. For instance, Nr,2 = 2r(r + 1)+ 1.

A configuration x ∈ [0, 1]n
d
is an assignment of real numbers

(that we call states) to the cells of the lattice. Later in this work we
are going to restrict the set of states to a finite one. For simplicity,
we write N to denote nd.

A radius r cellular automaton (CA), that we denote by Ψ ,
transforms a configuration xk ∈ [0, 1]N into a new configuration
xk+1

∈ [0, 1]N by applying in parallel, to all the cells of xk, its local
functionψ : [0, 1]Nr,d → [0, 1]. Hence, by fixing the local function
ψ , we fix the CA Ψ .
Given a configuration x ∈ [0, 1]N , its mean value x corresponds
to the density. Therefore, the value x0 denotes the fraction of 1s
in the initial configuration x0. Given ρc ∈ (0, 1) and ε > 0, we
introduce the sets
Xρc(−ε) = {x ∈ [0, 1]N | x < ρc − ε},

Xρc(+ε) = {x ∈ [0, 1]N | x > ρc + ε}.

Definition 1 (Generalized Density Classification Problem). Given
ρc ∈ (0, 1) and ε > 0, we say that a CA Ψ solves the density
classification problem with accuracy ε if, regardless of the initial
configuration x0, the repeated application of Ψ converges to the
configuration of only 0s if x0 is less than ρc − ε and converges to
the configuration of only 1s if x0 is greater than ρc + ε. That is,

∀x0 ∈ Xρc(−ε), lim
k→∞

xk = [0 · · · 0]T and

∀x0 ∈ Xρc(+ε), lim
k→∞

xk = [1 · · · 1]T .

Remark 1. Note that a configuration of the form [c · · · c]T denotes
the all-c vector (the letter T stands for transposition). The problem
just defined is a generalization of the original density classification
problem in the following senses.
1. In our definition, the initial configuration is arbitrary (not

restricted to 0s and 1s).
2. The dimension d, the number of cells N , the radius r , and the

critical density ρc are also arbitrary.
3. The definition of convergence as a limit when k → ∞ is

useful because it can be applied for CAs having either infinite
or finite number of states. When the set of states is finite, the
convergence definition implies that all cells reach state 0 or 1
in a finite number of steps. In the next section, we are going
to introduce a CA with states in [0, 1]. Later, in Section 5, we
are going to discretize it in order to obtain a standard CA. The
discretized version will have a finite number of states.

Remark 2. In the classical density classification problem, initial
configurations are restricted to 0s and 1s. Therefore, if we prove
that some CAΨ solves the problemwith accuracy ε < 1

2n , then we
will be proving that Ψ solves the problem for every initial config-
uration in {0, 1}n. In fact, suppose without loss of generality that
the critical density ρc =

2l+1
2n . In other words, if the initial config-

uration has at most l 1s, then Ψ must converge to the all-0 config-
uration. Otherwise, if it has at least l + 1 1s, then it must converge
to the all-1 configuration. Obviously, if Ψ solves the problem with
accuracy ε < 1

2n , then it solves the problem for every initial con-
figuration in {0, 1}n.

3. The large diffusion and small amplification CAΦ

In this section, we define the large diffusion and small ampli-
fication CA Φ . Its local rule φ is based on the discretization of a
bistable nonlinear heat equation (see Fig. 1). More precisely, given
a critical density ρc ∈ (0, 1), the idea is to build a local rule based
on a discrete version of the following equation:

∂u
∂t

− ν1u = γ bρc(u), (1)

where u(x, t) is the state at time t ≥ 0 of the cell at point x in a
domain Ω = (0, 1)d with periodic boundary conditions. The pa-
rameter ν > 0 is a diffusion coefficient, γ > 0 is an amplification
parameter, and bρc is some suitable bistable function. In this paper
(readers can see a discussion about other choices in Appendix A)
we choose the cubic polynomial:
bρc(u) = u(1 − u)(u − ρc).

The resulting nonlinear heat equation is called the bistable
heat equation, since it exhibits two stable critical points (0 and 1,
attractors) and one unstable critical point (ρc, repulsor).
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3.1. Cases d = 1 and d = 2

Before presenting the CA that solves the general instance of the
density classification problem, let us consider the one-dimensional
case d = 1 with radius r = 1. We can discretize Eq. (1) with an ex-
plicit finite differences scheme on a uniform lattice of size h > 0
defined by xi = ih and discrete time steps tk = k1t for some
1t > 0. Let uk

i ≈ u(xi + h/2, tk) denote the corresponding ap-
proximate discrete values in each cell of the lattice. An explicit first
order in time and second order in space discretization of Eq. (1) by
finite differences is

uk+1
i − uk

i

1t
− ν

uk
i−1 − 2uk

i + uk
i+1

h2
= γ bρc(u

k
i ),

where the sums in the subindices are modulo the size of the lat-
tice (because of the periodic boundary conditions). If we define
β = 1t/h2 and we fix νβ = 1/3, then we obtain the particular
local rule:

uk+1
i =

1
3
(uk

i−1 + uk
i + uk

i+1)+
γ h2

3ν
bρc(u

k
i ).

If we denote σ =
γ h2

3ν and

uk
i =

1
3
(uk

i−1 + uk
i + uk

i+1),

then the previous relation can be rewritten as

uk+1
i = uk

i + σ bρc(u
k
i ). (2)

Now, we are in position to define the local rule φ of the large
diffusion and small amplification CA Φ for d = 1. More precisely,
if we define f as

f (x) = x + σ bρc(x),

then we can write φ as

φ(uk
i−1, u

k
i , u

k
i+1) = f (uk

i ). (3)

In other words, the local rule φ is obtained by first averaging
and then applying a nonlinear amplification function f . Note that,
for our purposes, Eqs. (2) and (3) are equivalent. In fact, it is easy
to see that vector u converges to a constant vector in Eq. (2) if and
only if it converges to the same constant vector in Eq. (3).

The two-dimensional case with radius 1 is very similar. Take
β = 1t/h2, fix νβ = 1/5, and define σ =

γ h2

5ν . The local update
rule is

uk+1
i,j = φ(uk

i−1,j, u
k
i+1,j, u

k
i,j, u

k
i,j−1, u

k
i,j+1) = f (uk

i,j), (4)

where uk
i,j =

1
5 (u

k
i−1,j + uk

i+1,j + uk
i,j + uk

i,j−1 + uk
i,j+1).

Note that previous CAs, defined by Eq. (3) in one dimension
and by Eq. (4) in two dimensions, correspond to discrete approx-
imations of Eq. (1) that satisfy (even strictly) the corresponding
Courant–Friedrich–Lewy stability condition ν1t

h2
=

1
3 <

1
2 in di-

mension 1 or ν1t
h2

=
1
5 <

1
4 in dimension 2. This guarantees con-

vergence of the corresponding CAs to the continuous equation as h
and1t tend to zero, but only in the casewhenσ = 0 [26]. This con-
vergence result cannot be directly extended to small positive val-
ues of σ by a perturbation argument. The reason is that this small
perturbation could be arbitrarily amplified (causing instability).

Nevertheless, the properties of the continuous nonlinear heat
equation (1) can give us some insight and intuition about the prop-
erties of CAΦ for small σ . This is exactly the goal of the theoretical
study of Section 4.
Fig. 1. Schematic view of Φ . Given an initial state, the CA corresponds to a rule
obtained by first averaging neighbors (arrows towards the diagonal) and then
applying a nonlinear amplification function f (arrows towards the curve). In the
figure the system is converging to the all-1 vector configuration.

3.2. General case

The neighborhood of cell i is denoted by Ni. Recall that |Ni| =

Nr,d. We are considering periodic boundary conditions (d-dimen-
sional torus).

Definition 2 (Large Diffusion and Small Amplification CA). For small
values of σ , we define the local rule φ of the large diffusion and
small amplification CAΦ as follows:

xki =
1

Nr,d


j∈Ni

xkj (diffusion), (5)

xk+1
i = fσ (xki ) (amplification), (6)

where fσ (x) = x + σ x(1 − x)(x − ρc) and σ =
γ

ν n2Nr,d
.

Recall that ν and γ are respectively the diffusion and amplifica-
tion parameters of Eq. (1), the bistable heat equation.We are going
to prove in next section that the CAΦ given by Definition 2 solves
the density classification problem for any given accuracy ε, pro-
vided that the constant factor σ is sufficiently small. We impose
the following:

0 < σ < min


1
ρc
,

1
1 − ρc


. (7)

These bounds guarantee that fσ is restricted to [0, 1] and it
is monotonically increasing. Both bounds are strictly required for
CA Φ to solve the density classification problem, as we explain
in Section 4. Moreover, the values σ that solve the problem are
typically much smaller than the upper bound, as our experiments
of Section 6 show.

We say that CA Φ solves the density classification problem if,
regardless of how close the average of the initial configurations is
to ρc, there is a range of values for the nonlinearity σ that guar-
antees convergence to the correct answer. Formally, we have the
following.

Definition 3 (Solution of Accuracy ε). We say that the large diffu-
sion and small amplification CAΦ solves the density classification
problem with accuracy ε if the following property holds. For all
ε > 0 there existsσ0 > 0 such that for all x0 ∈ Xρc(−ε)∪Xρc(+ε)
classification succeeds.
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4. Mathematical analysis of CAΦ

Eq. (5) can be rewritten using matrix notation. This notation
turns out to be very useful for analyzingΦ .

The N × N averaging matrix A is given by Ai,j = 1/Nr,d if j ∈ Ni

and is zero otherwise. Obviously, if xk ∈ [0, 1]N is a configuration,
then xki = (Axk)i.

Example 1. For instance, in the casewhen d = 1, n = 8, and r = 2,
the averaging matrix is the following:

A =
1
5



1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1


.

Note that A has a very regular structure. It is doubly stochastic
(its entries are non-negative and their sums by rows and columns
are always 1) and symmetric. Moreover, A is a primitive matrix.
More precisely, there exists m > 0 such that (Am)ij ≠ 0 for all
i, j. The minimum m satisfying this property is called the length
path of A. The existence of such m simply follows from the fact
that the underlying graph [n]d is connected. Because of A being
symmetric, we know that all of its eigenvalues are real. From
the Perron–Frobenius theorem for primitive matrices with non-
negative entries, we infer some properties. First, λ = 1 is an
eigenvalue of A. Itsmultiplicity is 1. Also, the eigenspace associated
with the eigenvalue λ = 1 is spanned by [1 · · · 1]T . The absolute
value of all the other eigenvalues is strictly less than 1. Finally,A can
bedecomposed asMTDM , whereD is diagonal. The elements on the
main diagonal of D are the eigenvalues of A, andM is orthonormal.
The decomposition of A is unique up to a permutation of rows and
columns. Hence, without loss of generality, we can assume that
D1,1 = 1. Note that

lim
k→∞

Dk
=


1 0 · · · 0
0 0 · · · 0

. . .

0 0 · · · 0

 .
The next identity is obtained by considering that Ak

= MTDkM
and noting that the first column of M is the vector 1

√
N
[1 · · · 1]T

(because it is in the eigenspace associated with λ = 1). Therefore,

lim
k→∞

Ak
=

1
N


1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 . (8)

Note that Eq. (8) has a counterpart for the continuous bistable
model. For instance, if we integrate (1) in Ω with γ = 0 we
obtain d

dt


Ω
u =


∂Ω

u du
dx = 0 thanks to the periodic boundary

conditions, showing that the mean value is conserved in time.
Parameter σ is the nonlinear amplification factor. The case σ =

0 corresponds to zero amplification, and the corresponding CA only
acts by diffusion. In such a case, the average of the initial con-
figuration is preserved in time. Moreover, from (8), limk→∞ xk =

limk→∞ Akx0 = [x0 · · · x0]T . Therefore, it would be impossible to
solve the density classification without having σ > 0.

Let x0 ∈ [0, 1]N be an initial configuration. It follows that
xk ∈ [0, 1]N for all k. In fact, since fσ is strictly increasing, fσ (0) = 0
and fσ (1) = 1, and then we have, by continuity, that fσ is a one to
one map from [0, 1] onto [0, 1] (see Fig. 1).
Suppose that x0 = [c · · · c]T with c ∈ (ρc, 1]. In this case,
xk = [xk · · · xk] with xk ∈ (ρc, 1]. Since fσ (x) > x for x ∈ (ρc, 1), it
follows that ρc < xk < fσ (xk) = xk+1

≤ 1. Therefore, xk → 1 as
k → ∞. The case x0 = [c · · · c]T with c ∈ [0, ρc) is analogous
because fσ (x) < x for x ∈ (0, ρc). In short, if c < ρc then
xk → [0 · · · 0]T , and if c > ρc then xk → [1 · · · 1]T .

Remark 3. The property we just proved can be generalized. Sup-
pose that not all the components of x0 are equal, but ρc < x0i ≤ 1
for all i. In this case, it is clear that ρc < x0i ≤ 1 for all i. Therefore,
ρc < x0i < fσ (x0i ) = x1i ≤ 1 for all i. Inductively, this property
is preserved throughout the iterations. Let c0 = mini x0i . Consider
the initial configuration z0 = [c0 · · · c0]T . We already know that
zk → [1 · · · 1]T . Since zk is dominated by xk (in every coordinate),
we conclude that xk → [1 · · · 1]T . The case 0 ≤ x0i < ρc is analo-
gous. Therefore, if ρc < x0i ≤ 1 for all i then xk → [1 · · · 1]T , and if
0 ≤ x0i < ρc for all i then xk → [0 · · · 0]T .

Clearly, configurations [0 · · · 0]T and [1 · · · 1]T are stable equi-
librium points. On the other hand, [ρc · · · ρc]

T is an unstable equi-
librium point.

There is also an analogous property for the continuous model
(1). Indeed, if ρc < u(x, 0) ≤ 1 for all x ∈ Ω , then ρc < u(x, t) ≤ 1
for all t ≥ 0 and x ∈ Ω . Let z0 = minx∈Ω u(x, 0), and let z(t) be the
solution of Eq. (1) with (constant) initial condition z0. By a compar-
ison principle we have ρc < z(t) ≤ u(x, t) ≤ 1 for all x ∈ Ω and
t ≥ 0. Since z(t) converges to 1 (the only equilibrium point of zt =

γ bρc(z) greater than ρc is 1), we have that u(·, t) → 1 as t → ∞

uniformly inΩ . Therefore ρc < u(x, 0) ≤ 1 implies that u(·, t) →

1. Analogously, 0 ≤ u(x, 0) < ρc implies that u(·, t) → 0.

Remark 4. If we allow an initial configuration x0 such that x0i1 <
ρc < x0i2 for some indices i1 ≠ i2, then the dynamics of CA Φ
could be non-trivial. More precisely, consider the following initial
configuration:

x0 =


1 · · · 1

1
3

· · ·
1
3

1 · · · 1
T

,

where the blocks of consecutive 1s and 1
3 s have the same size.

Suppose that d = 1, r = 1, and ρc = 1/2. With these parameters,
xk should converge to [1 . . . 1]T . As we are going to see in the proof
that follows immediately, this is indeed the case. Nevertheless, it
can be checked that there exists a transient periodwhere the global
average decreases. For instance, x1 < x0.

Let ε > 0. Now we prove that CA Φ solves the density classifi-
cation problemwith accuracy ε. We split the proof into three parts.
1. Because of Eq. (8), there exists k0 = k0(N, ε) such that, for every

k ≥ k0,

max
x0∈[0,1]n


Ak

−
1
N
U


x0


∞

≤
ε

3
, (9)

where U is the N × N matrix such that all its entries are 1. This
is true because all the functions involved are continuous and
[0, 1]N is compact.

2. Recall that xk = Φk(x0). In order to include parameter σ in the
notation, we are going to write xk = Φk

σ (x
0). Therefore, Φk

0(x
0)

corresponds to the case where only diffusion is present in the
dynamics. In Appendix B, we show that, for every k ∈ N and for
every i,

Φk
σ (x)i ≥ min

i′
Φk

0(x)i′ −
σkρc
4
. (10)

Similarly, using that bρc(·) ≤
(1−ρc)

4 , we can prove that, for
every k ∈ N and for every i,

Φk
σ (x)i ≤ max

i′
Φk

0(x)i′ +
σk(1 − ρc)

4
. (11)
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Combining the result of Appendix B with Eq. (11), and now
considering the particular case k = k0, for all i,

min
i′
Φ

k0
0 (x)i′ −

σk0ρc
4

≤ Φk
σ (x)i

≤ max
i′
Φ

k0
0 (x)i′ +

σk0(1 − ρc)

4
.

Using Eq. (9), we can bracket the valuesΦk
σ (x)i:

x0 −
ε

3
−
σk0ρc

4
≤ Φk

σ (x)i

≤ x0 +
ε

3
+
σk0(1 − ρc)

4
.

Thusx0 − Φk0
σ (x)i

 ≤
ε

3
+
σk0 max(ρc, 1 − ρc)

4
.

3. We shall see now that, if σ is sufficiently small, the values for
the σ -amplified dynamic at time k0 are not far away from the
original average x0. If
ε

3
+
σk0 max(ρc, 1 − ρc)

4
≤

2ε
3
,

that is, if σ ≤
4ε

3k0 max(ρc,1−ρc)
=: σ0, it follows thatx0 − Φk0

σ (x)i
 ≤

2ε
3
. (12)

Now consider the case of x0 ∈ Xρc(+ε), whichmeans that x0 >
ρc + ε. This, combined with Eq. (12), implies thatΦk0

σ (x)i > ρc.
By Remark 3, we can conclude that Φk

σ (x
0) → [1 · · · 1]T . The

case x0 ∈ Xρc(−ε) is similar, and hence is omitted.

5. Quantization

Every CA has a finitewell-defined set of states. Therefore, at this
point, we need to quantize the values of xki to some number s of
discrete values in [0, 1]. To this end, we define the quantization
function (see Fig. 2) as

Qs(x) =


min


1,

⌈s(x − ρc)⌉

s
+ ρc


if ρc ≤ x ≤ 1,

max

0,

⌊s(x − ρc)⌋

s
+ ρc


if 0 ≤ x < ρc.

By projecting at each iteration the state of each cell, we define
a new CA as follows:

xk+1
i = Qs(fσ (xki )). (13)

We are going to show that the CA defined in Eq. (13) also solves
the density classification problem with accuracy ε. First, if δ ∈

[0, 1] is sufficiently small, it can be proven (see Appendix C) thatbρc(x ± δ)− bρc(x)
 ≤ δ.

Using this fact, provided that s is sufficiently large, the CA
defined in Eq. (13) behaves like the one of Definition 2. More
precisely (see Appendix D),(Qs ◦ Φσ )

k(x)i − Φk
σ (x)i

 ≤
(1 + σ)k − 1

sσ
.

Now we can prove that, if 1
s is sufficiently small, every initial

condition reaches the correct classification.
Let k0 be as before. We know from the previous section that

max
x0∈Qs(Xρc (+ε))

 1
N
Ux0 − Φk0

σ (x
0)


∞

≤
2ε
3
.

Fig. 2. Quantization function Qs(x) of the number of states near ρc = 0.3 for
s = 102.5 and s = 103 .

If s is sufficiently large such that 1
s +

(1+σ)k0−1
sσ < ε

3 (or, equiv-

alently, if s > 3
ε


1 +

(1+σ)k0−1
σ


=: s0), then(Qs ◦ Φσ )

k0(x)i − Φk0
σ (x)i

 < ε

3
−

1
s
.

Therefore,

max
x0∈Qs(Xρc (+ε))

(Qs ◦ Φσ )
k0(x0)− Φk0

σ (x
0)


∞
<
ε

3
−

1
s
.

It follows that

max
x0∈Qs(Xρc (+ε))

 1
N
Ux0 − (Qs ◦ Φσ )

k0(x0)


∞

<
2ε
3

+
ε

3
−

1
s  

ε− 1
s

.

Finally, for the case x0 ≥ ρc + ε, we have that

xk0i := (Qs ◦ Φσ )
k0(x0)i ≥ x0 − ε +

1
s

≥ ρc +
1
s
> ρc.
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Since Qs rounds up the values above ρc, it can be easily checked
that

Φk
σ (x

k0)i ≤ (Qs ◦ Φσ )
k(xk0)i.

Thanks to Remark 3, we have (Qs ◦Φσ )
k(xk0) → [1 · · · 1]T , and we

conclude. The other case, where x0 ≤ ρc − ε, is analogous, and we
have (Qs ◦ Φσ )

k(xk0) → [0 · · · 0]T .

Remark 5. The choice of our quantization function may seem un-
necessarily intricate. A simpler quantization function Qs would be
the onewhich assigns, to anynumber, the closer value of the 1

s -step
staircase. However, we can construct counterexampleswhere such
natural quantization fails to induce the behavior that we want. In
fact, consider the case d = 1 and r = 1 with the following initial
configuration x0:
0,

1
s
,
1
s
, . . . ,

m − 1
s

,
m − 1

s
,
m
s
,
m
s
,
m − 1

s
,
m − 1

s
, . . . ,

1
s
,
1
s
, 0

T

,

where s is the quantization number andm is any number between
1 and s. If σ is sufficiently small (σ < 2

3s ), then

x02i =
1
3


i − 1
s

+
i
s

+
i
s


=

i
s

−
1
3s
,

x02i+1 =
1
3


i
s

+
i
s

+
i + 1
s


=

i
s

+
1
3s

and

fσ (x0)2i =


i
s

−
1
3s


+ σbρc


i
s

−
1
3s


,

fσ (x0)2i+1 =


i
s

+
1
3s


+ σbρc


i
s

−
1
3s


.

Therefore, if 1
3s +

σ
4 <

1
2s , i.e., if σ <

2
3s , we would haveQs(fσ (x0)) = x0.

In other words, with this choice of quantization Qs, the CA would
have a non-constant-valued fixed point.

Remark 6. Fromnowon,we are going to assume that the large dif-
fusion and small amplification CAΦ is the one defined in Eq. (13).

Remark 7. By considering Remark 2, we conclude that our CA Φ
solves the density classification problem for every initial config-
uration in {0, 1}n (provided that the parameters σ and s are fine
tuned).

6. Testing CAΦ empirically

We start by comparing the performance of the large diffusion
and small amplification CA Φ with a well-known two-state, one-
dimensional, radius r = 3 CA called GKL [4]. GKL is one of the best-
known density classifiers when ρc = 1/2 and n = 149. The GKL
local rule is the following.
If the state of a cell is 0, then it takes the majority vote of the first
neighbor to its right, the third neighbor to its right, and itself. If the
state of the cell is 1, it does so in the opposite direction.

We replicated some simulations of the literature. Initial config-
urationswere generated randomly. More precisely, the initial state
for each of the n cells was assigned independently: 1 with proba-
bility p and 0 with probability 1 − p. For different values of p, we
generated 105 initial configurations. GKL was applied repeatedly,
starting from each of these initial configurations, until one of the
following conditions was satisfied.

• GKL reached a fixed point.
• The number of iterations was 108.
Fig. 3. GKL success ratio for n = 149, n = 249, and n = 1001.

In all of these experiments, GKL ended up in a fixed point
before reaching 108 iterations. Then, for each outcome,we checked
whether GKL classified or misclassified the initial configuration.

For analyzing the scalability of GKL, we explored the success
ratio for different values of n. Fig. 3 describes the results for n =

149, n = 249, and n = 1001. This figure shows, as we expected,
that the ratio of correctly classified initial configurations decreases
as n increases. It is also clear that the hardest instances of the
density classification problem are those for which p = 1/2. The
success ratio of GKL for these hard instances is 82% (in the case
n = 149).

Recall that the local rule of the large diffusion and small
amplification CAΦ that we considered is the following:

xki =
xki−3 + xki−2 + xki−1 + xki + xki+1 + xki+2 + xki+3

7
,

xk+1
i = fσ (xki ).

To approximate the continuous values, we used standard
double-precision floating-point variables. In order to compare Φ
with GKL, we focused on the hardest instances (p = 1/2). Our
existential result does not indicatewhat the critical values of σ and
s are, given n. Also, it does not relate the rate of convergence to the
value of σ .

Therefore, we fixed a range 0 < σ < 1. We ran simulations for
different values of n and σ . Probability p was always 1/2. For each
pair (n, σ )we ran1000 simulations using random initial conditions
generated in the usual way. CAΦ was applied repeatedly, starting
from each of these initial configurations, until one of the following
conditions was satisfied.

1. Either all the xi are above 3/4 = ρc + 1/4 or all of them
are below 1/4 = ρc − 1/4. This is a realistic surrogate for
convergence to 1 or 0, based on Remark 3.We call this condition
convergence to a constant.

2. No more progress is detected. That is, the system is at/ap-
proaches a fixed point. To detect such a condition, we checked
whether ∥xk − xk+1

∥1 ≤ n × 10−8. We call this condition
convergence.

3. The number of iterations exceeded a threshold, which was
chosen to be 2 × 108. This suggests some form of oscillatory
behavior although itmay not be the case. The boundwas chosen
by trial and error.
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Fig. 4. Breakdown of the success ratio for n = 149, n = 249, and n = 1001.

Table 1
Comparison between GKL andΦ (for p = 1/2).

n GKL success ratio Φ success ratio for σ ∗

149 0.82 1.0
249 0.80 1.0

1001 0.75 1.0

n GKL maximal time Φ maximal time for σ ∗

149 80 500
249 140 1000

1001 500 30000

If the system converged to a constant, we tested whether Φ
reached the ‘‘correct’’ fixed point. In Fig. 4, we plot the ratio ofwell-
classified instances (as a function of σ ).

In order to study the scalability of Φ , we repeated the
simulations with n = 249 and n = 1001 (also presented in Fig. 4).
The estimated values for the critical σ are 0.030 for n = 149,
0.011 for n = 249, and 0.001 for n = 1001, showing a reciprocal
dependency (Fig. 5).

We can see in Table 1 the comparison between the perfor-
mances of GKL andΦ .We already knew that below some threshold
σ ∗ the success ratio ofΦ would be 100%. Nevertheless, the conver-
gence time increases a lot (with respect to GKL). There seems to be
a trade-off between reliability and convergence speed. It may also
be interesting to explore the performance degradation of Φ as σ
grows.

Stone and Bull [25] studied a variant of the elementary CA Rule
184. They augmented the state of each cell with a real number.
We call the resulting CA 184∗. Since CAΦ also uses more memory
(more number of states), it is interesting to compare the behavior
of our method against CA 184∗. In a notation consistent with ours,
the rule is described as follows. The state of cell i consists of two
values: xi ∈ {0, 1} andmi ∈ [0, 1]. Initiallymi = 0.5, for all i, while
the configuration of the xi is the configuration of 0s and 1s to be
classified. To update the state of cell i, we compute

mk+1
i = mk

i + β(xki − mk
i ),

ski =


0, mk+1

i ≤ 0.5
1, otherwise,

xk+1
i = R184(ski−1, s

k
i , s

k
i+1).
Fig. 5. Critical σ as a function of n.

Table 2
The local function R184 .

ski−1 ski ski+1 R184(ski−1, s
k
i , s

k
i+1)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

β is a positive real parameter. It acts as a learning rate. Follow-
ing [25], we set β = 0.48 for all our experiments. Note that, unlike
Φ , CA 184∗ does not have direct access to the continuous state of
the neighboring cells. The function R184 is defined in Table 2.

In order to compare 184∗ with both Φ and GKL, we considered
even harder instances than before. In fact, unlike previous exper-
iments, we did not choose the initial configurations by tossing a
coin with probability p = 1/2 for every cell. Instead, we chose,
with uniform probability, a permutation ofm 1s and n − m 0s. We
chose values of m close to n/2.

This allowed us to analyze the behavior of the systemwithmore
precision. The variance of the binomial distribution results from
populating an array using a fair coin in the usual way, and the
averages result from cases of different difficulties. Therefore, for
each pairm, n thatwe used in our experiments, we generated 1000
random configurations. We ran our simulations using the same
1000 initial configurations for the three CAs. As we did before, we
measured the success ratio. The results are summarized in Fig. 6.

Fig. 6 describes the cases n = 149 and m = 75, 76, . . . , 85. For
CA Φ , we chose σ = 0.007. Note that Φ classified all instances
except a few cases when m = 75. Both GKL and 184∗ had a
success ratio slightly above 1/2. This contrasts with the ∼80%
ratio observed when independent probabilities are used in the
population process.

We tested larger instances of the problem. Fig. 7 describes the
cases n = 1001 and m = 501, 502, . . . , 520. For CA Φ , we chose
σ = 0.0002 and σ = 0.0003. These numbers are close to σ ∗,
and they allow us to show how the reliability of CA Φ can dete-
riorate when cases are hard. In fact, we can observe that, when
σ = 0.0003, CA Φ failed to classify about ∼ 80% of the hardest
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Fig. 6. Success ratios for n = 149.

Fig. 7. Success ratios for n = 1001.

instances. On the other hand, σ = 0.0002 made the method much
more robust.

We also explored a natural question: how does CAΦ behave as
we change the number of states s? Note that s is the memory size
of each cell.

Conceptually, we divide the [0, 1] interval into s subintervals
of the same size, centered at ρc (see Fig. 2). The cells perform the
intermediate computations using exact rational arithmetic, and
the results are rounded to the center of their closest interval. This
is equivalent to using fixed-point arithmetic with q = log10 s
significant digits.

In Fig. 8, we present the results for s = 128 (q = 2.1), s =

2000 (q = 3.3) and s = 200 000 (q = 5.3), obtaining in this last
case a result similar to the ‘‘almost continuous’’ case of Fig. 4.

If s is too small, regardless of σ , the success ratio is low. As s
grows, the behavior of the discrete systemapproaches the behavior
of the continuous system. Note that, unlike the continuous case,
the reliability of the classification can decrease when decreasing
the value of σ , as can be seen in Fig. 8, for s = 2000.

Finally, in order to illustrate the dimensional scalability of CA
Φ , we show some examples of density classification in a two-
dimensional lattice with periodic boundary conditions. We con-
sider twodifferent types of initial configuration: uniformly random
and strip shape, both with initial mean near the critical threshold
ρc = 1/2. In all the simulations we considered σ = 0.05 and
Fig. 8. Breakdown of the success ratio for n = 149 and s = 128, 2000, 200000.

s = 104. With these parameters we obtained a success ratio of
100% (in more than 200 random trials). In Fig. 9 we show two par-
ticular runs.

7. Conclusions and perspectives

The most important advantage of the large diffusion and small
amplification CA Φ we present in this work is its success ratio
of 100%. This can be achieved by tuning two parameters: the
amplification factor σ and the number of states s. Other important
advantages ofΦ are the following.
Scalability. It can be easily modified to work for arbitrary-size
regular grids in any dimension d.
Generalized classification. The critical density ρc can be arbitrary.
Analogywith continuousmodel. The fact thatΦ was originated from
a partial differential equation bistable model allows us to gain
theoretical and physical insight.
Robustness. The method maintains the same classification proper-
ties for a wide range of different parameters.

In order to achieve a 100% success ratio, we need small values
for σ and large values for s. Small values of σ imply large conver-
gence time. Therefore, it seems that the price one has to pay for
achieving a 100% success ratio is somehow related to the twomost
relevant resources in computer systems: time and memory (also
known as space).

In other words, the main question this paper leaves open is a
complexity question. More precisely, let ρc be the critical density,
d the dimension, nd the size of the system, s(ρc, n, d, ) the number
of states, t(ρc, n, d) the convergence time, and χ the success ratio.
The general question is the following:what are the critical values of
s(ρc, n, d, ) and t(ρc, n, d) for which there exists a CA that solves
the density classification problem with a success ratio of χ? This
question has been partially studied for χ = 100%, d = 1, 2, and
s = 2.
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Fig. 9. Two-dimensional CA Φ with radius r = 1. Random and stripe type initial
configurations with initial mean 0.4811 in the first case and 0.4667 in the second
case (i.e., slightly more 0s than 1s). Both systems should converge to the all-0 fixed
point configuration (black pixels).

Appendix A

Our choice of a cubic polynomial as a sigmoid function fσ was
somewhat arbitrary, but this choice seems not to be critical for the
results of this paper. For example, take ρc = 1/2, and consider the
family of functions

gα(x) =
1
2


tanh(α(2x − 1))

tanh(α)
+ 1



characterized by an arbitrary real α > 0. Clearly, regardless of α,
gα(0) = 0, gα(1) = 1, and gα(1/2) = 1/2, g ′

α(1/2) > 1. Also, gα is
convex on [0, 1/2) and concave on (1/2, 1]. Finally, if α → 0, then
gα resembles the identity, as can be proved easily using a Taylor
approximation. These are all desirable properties for our nonlinear
amplification function. In fact, most proofs in this paper can be
easily adapted to gα .

The relation between these two functions is even stronger.
In order to achieve a high success ratio, we are interested in
amplification functions with a small amount of nonlinearity. For
the cubic function fσ that means small σ . For gα that means small
values of α. We are interested in the behavior for values x ≃

ρc = 1/2, because they correspond to the cases when the density
classification problem is hard to solve. If we approximate fσ (x) at
α = 0, x = 1/2 using a Taylor polynomial, we obtain fσ (x) ≃
1
2 + (x −

1
2 ) +

1
4σ(x −

1
2 )

3. Similarly, we approximate gα(x) ≃

1
2+(x− 1

2 )+
1
3α

2(x− 1
2 )

3. Note that ifσ = 4α2/3 then fσ (x) ≃ ga(x)
at α ≃ 0, σ ≃ 0, x ≃ 1/2. This establishes an equivalence
between the choices of α and σ at least for ρc = 1/2.

Appendix B

To prove that

Φk
σ (x)i ≥ min

i′
Φk

0(x)i′ −
σkρc
4
,

we proceed by induction. First, observe that, if x ∈ [0, 1], then
−
ρc
4 ≤ bρc(x) ≤

(1−ρc)
4 . That follows immediately from the

definition of bρc . Now, if k = 1, we have

Φσ (x)i = xi + σbρc(xi)

= Φ0(x)i + σbρc(xi)

≥ min
i′
Φ0(x)i′ −

σρc

4
.

For the inductive step, suppose that the property holds for k.
Then

Φk+1
σ (x)i = Φk

σ (x)i + σbρc(Φk
σ (x)i)

≥ min
i′
Φk
σ (x)i′ −

σρc

4

≥


min
i′
Φk

0(x)i′ −
σkρc
4


−
σρc

4

= min
i′
Φk

0(x)i′ −
σ(k + 1)ρc

4
.

Appendix C

Given δ sufficiently small and 0 < ρc < 1, we are going to
analyze the difference,bρc(x + δ)− bρc(x)

 .
By a Taylor expansion, we have that

bρc(x + δ) = bρc(x)+ b′

ρc
(x)δ +

1
2
b′′

ρc
(x)δ2 +

1
6
b′′′

ρc
(x)δ3,

where

bρc(x) = −x3 + (1 + ρc)x2 − ρcx

b′

ρc
(x) = −3x2 + 2(1 + ρc)x − ρc

b′′

ρc
(x) = −6x + 2(1 + ρc)

b′′′

ρc
(x) = −6.



R. Briceño et al. / Physica D 261 (2013) 70–80 79
Let us define an auxiliary functionΦδ(x), given by

bρc(x + δ)− bρc(x) = δ


b′

ρc
(x)+

1
2
b′′

ρc
(x)δ +

1
6
b′′′

ρc
(x)δ2


  

Ψδ(x)

.

We are going to study the minima and maxima of Ψδ(x).

Ψ ′

δ(x) = b′′

ρc
(x)+

1
2
b′′′

ρc
(x)δ

= −6x + 2(1 + ρc)− 3δ.

The critical points of Ψδ(x) over [0, 1] are 0 and 1. Hence,

x∗
=
(1 + ρc)

3
−
δ

2
.

Note that

b′

ρc
(0) = −ρc, b′′

ρc
(0) = 2(1 + ρc),

b′

ρc
(1) = −1 + ρc, b′′

ρc
(1) = −4 + 2ρc.

b′

ρc
(x∗) = −3


(1 + ρc)

3
−
δ

2

2

+ 2(1 + ρc)


(1 + ρc)

3
−
δ

2


− ρc

=
1
3
(ρ2

c − ρc + 1)−
3
4
δ2.

b′′

ρc
(x∗) = −6


(1 + ρc)

3
−
δ

2


+ 2(1 + ρc) = 3δ.

Then

Ψδ(x) = b′

ρc
(x)+

1
2
b′′

ρc
(x)δ +

1
6
b′′′

ρc
(x)δ2.

Ψδ(0) = b′

ρc
(0)+

1
2
b′′

ρc
(0)δ +

1
6
b′′′

ρc
(0)δ2

= −ρc + (1 + ρc)δ − δ2.

Ψδ(1) = b′

ρc
(1)+

1
2
b′′

ρc
(1)δ +

1
6
b′′′

ρc
(1)δ2

= −(1 − ρc)+ (−2 + ρc)δ − δ2.

Ψδ(x∗) = b′

ρc
(x∗)+

1
2
b′′

ρc
(x∗)δ +

1
6
b′′′

ρc
(x∗)δ2

=


1
3
(ρ2

c − ρc + 1)−
3
4
δ2


+

1
2
(3δ)δ +

1
6
(−6)δ2

=
1
3
(ρ2

c − ρc + 1)+
δ2

2
.

Therefore,bρc(x + δ)− bρc(x)
 = |δ||Ψδ(x)|

≤ |δ|max

|Φδ(0)|, |Ψδ(1)|, |Φδ(x∗)|


≤ |δ|max


ρc + (1 + ρc)|δ| + δ2, (1 − ρc)+ 3|δ|

+ δ2,
1
3
(ρ2

c − ρc + 1)+ δ2


= |δ|


max


ρc, (1 − ρc),

1
3
(ρ2

c − ρc + 1)


+ 3|δ| + δ2


< |δ|.

The last inequality is satisfied when |δ| is sufficiently small
(depending on ρc). More precisely, when

3|δ| + δ2 < 1 − max

ρc, (1 − ρc),

1
3
(ρ2

c − ρc + 1)

. (C.1)
Appendix D

To prove that(Qs ◦ Φσ )
k(x)i − Φk

σ (x)i
 ≤

(1 + σ)k − 1
sσ

,

we proceed by induction. For k = 1,

|(Qs ◦ Φσ )(x)i − Φσ (x)i| ≤
1
s

=
(1 + σ)1 − 1

sσ
.

The case k + 1 goes as follows:

(Qs ◦ Φσ )
k+1(x)i ≤

1
s

+ Φσ ◦ (Qs ◦ Φσ )
k(x)i

=
1
s

+ (Qs ◦ Φσ )k(x)i + σbρc((Qs ◦ Φσ )k(x)i)

≤
1
s

+ Φk
σ (x)i +

(1 + σ)k − 1
sσ

+ σbρc(Φk
σ (x)i)+ σ

(1 + σ)k − 1
sσ

= Φk+1
σ (x)i +

(1 + σ)k+1
− 1

sσ
.

The opposite direction is similar. Note that, whenσ = 0,we can
recover from the previous bound (making σ → 0 and using the
L’Hôpital rule) a linear bound for the non-amplified case (which is
very tight):(Qs ◦ Φ0)

k(x)i − Φk
0(x)i

 ≤
k
s
.

In addition, in the amplified case, the previous bounds are
correct if s is sufficiently large and k is not so big. More precisely,
when (see Appendix C, Eq. (C.1))

3
(1 + σ)k − 1

sσ
+


(1 + σ)k − 1

sσ

2

< 1 − max

ρc, (1 − ρc),

1
3
(ρ2

c − ρc + 1)

.
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