
Theoretical Computer Science 483 (2013) 36–50

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Colored range queries and document retrieval✩

Travis Gagie a, Juha Kärkkäinen b, Gonzalo Navarro c,∗, Simon J. Puglisi d
a Department of Computer Science and Engineering, Aalto University, Finland
b Department of Computer Science, University of Helsinki, Finland
c Department of Computer Science, University of Chile, Chile
d Department of Informatics, King’s College London, United Kingdom

a r t i c l e i n f o

Keywords:
Data structures
1D range queries
Document retrieval
Wavelet trees
Information retrieval

a b s t r a c t

Colored range queries are a well-studied topic in computational geometry and database
research that, in the past decade, have found exciting applications in information retrieval.
In this paper, we give improved time and space bounds for three important one-
dimensional colored range queries — colored range listing, colored range top-k queries
and colored range counting — and, as a consequence, new bounds for various document
retrieval problems on general collections of sequences. Colored range listing is the problem
of preprocessing a sequence S[1, n] of colors so that, later, given an interval [i, i+ℓ−1], we
list the different colors in S[i, i+ ℓ− 1]. Colored range top-k queries ask instead for kmost
frequent colors in the interval. Colored range counting asks for the number of different
colors in the interval.

We first describe a framework including almost all recent results on colored range
listing and document listing, which suggests new combinations of data structures for
these problems. For example, we give the first compressed data structure (using nHk(S)+
o(n log σ) bits, for any k = o(logσ n), where Hk(S) is the k-th order empirical entropy of
S and σ the number of different colors in S) that answers colored range listing queries
in constant time per returned result. We also give an efficient data structure for document
listingwhose size is bounded in terms of the k-th order entropy of the library of documents.
We then show how (approximate) colored top-k queries can be reduced to (approximate)
range-mode queries on subsequences, yielding the first efficient data structure for this
problem. Finally, we show howmodified wavelet trees can support colored range counting
using nH0(S) + O(n) + o(nH0(S)) bits, and answer queries in O(log ℓ) time. As far as we
know, this is the first data structure in which the query time depends only on ℓ and not on
n. We also show how our data structure can be made dynamic.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A range query on a sequence S[1, n] of elements in [1, σ] takes as arguments two indices i and j and returns information
about S[i, j]. This information could be, for example, the minimum or maximum value in S[i, j] [16], the element with a

✩ Early parts of this work appeared in SPIRE 2010 [20] and CPM 2011 [19]. Partially funded by Fondecyt grant 1-110066, Chile; by the Millennium
Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM P05-001-F, Mideplan, Chile; by the Academy of Finland grant 118653 (ALGODAN); and
by the Australian Research Council. Simon J. Puglisi is supported by a Newton Fellowship. Part of this paper was written while Travis Gagie was at the
Department of Computer Science, University of Chile and Simon J. Puglisi was at the School of Computer Science and Information Technology, Royal
Melbourne Institute of Technology.
∗ Corresponding author.

E-mail addresses: travis.gagie@aalto.fi (T. Gagie), juha.karkkainen@cs.helsinki.fi (J. Kärkkäinen), gnavarro@dcc.uchile.cl (G. Navarro),
simon.j.puglisi@gmail.com (S.J. Puglisi).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.08.004

http://dx.doi.org/10.1016/j.tcs.2012.08.004
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:travis.gagie@aalto.fi
mailto:juha.karkkainen@cs.helsinki.fi
mailto:gnavarro@dcc.uchile.cl
mailto:simon.j.puglisi@gmail.com
http://dx.doi.org/10.1016/j.tcs.2012.08.004

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 37

specified rank in sorted order [22] (e.g., the median [10]), the mode [26], a complete list of the distinct elements [47],
the frequencies of the elements [55], a list of the k most frequent elements for a given k [32], or the number of distinct
elements [9]. In this paper, motivated by problems in document retrieval, we consider the latter three kinds of problems,
which are often referred to as ‘‘colored’’ range queries: colored range listing (with or without color frequencies), colored
range top-k queries, and colored range counting. These have been associated, respectively, with very relevant document
retrieval queries on general texts [47,55,57,32,22,16,13,21,6]: listing the documents where a pattern appears (possibly
computing term frequencies), finding the most relevant documents to a query (under a tf × idf scheme, for example), and
computing document frequencies. Such techniques have been shown to be competitive [13], even beating classical inverted
indexes on natural-language texts.

In Section 2, we describe a framework that includes almost all recent results on colored range listing and the related
problem of document listing. This framework suggests new combinations of data structures that yield interesting new
bounds, including the first constant-time compressed data structures for colored range listing and an efficient data structure
for document listing whose space occupancy is bounded in terms of the higher-order entropies of the library of documents.
In Section 3, we describe what seems to be the first data structure to support efficient, general approximate colored range
top-k queries. By ‘‘approximate’’ we mean that we are given an ϵ > 0 with S and we guarantee that no element we do not
list occurs more than 1+ ϵ times more often in the range than any element we list. Finally, in Section 4, we describe a new
solution to the colored range counting problem, reducing the space bound fromO(n log n) bits to nH0(S)+O(n)+o(nH0(S))
bits, where H0(S) ≤ log σ is the zero-order empirical entropy of S and σ ≤ n is the number of colors, and also improving
the time bound to O(log ℓ), where ℓ is the length of the query range.1 The improvements for general colored range queries
we present in Sections 3 and 4 are not competitive with the state of the art when mapped to the more specific problem of
document retrieval. However, as we discuss in Section 5, data structures for general colored range queries can be applied to
information retrieval scenarios that specialized document-retrieval data structures cannot.

2. Color and document listing

2.1. Related work on color range listing

The problem of colored range listing (CRL) is to preprocess a given sequence S[1, n] over [1, σ] such that later, given a
range S[i..j], we can quickly list all the distinct elements (‘‘colors’’) in that range. Many recent data structures for CRL are
based on a key idea by Muthukrishnan [47] (see [34] for older work). He defined C[1, n] to be the array in which C[j] is the
largest value i < j such that S[i] = S[j], or 0 if there is no such i, so that S[q] is the first occurrence of a color in S[i..j] if and
only if i ≤ q ≤ j and C[q] < i. He showed how, if we store C in an O(n log n)-bit data structure due to Gabow et al. [18] that
supports O(1)-time range-minimum queries (RMQs), we can quickly find all the values in C[i..j] less than i and, thus, list all
the colors in S[i..j]. To do this, we find the minimum value C[q] in C[i..j]; if it is less than i, then we output S[q] and recurse
on S[i..q− 1] and S[q+ 1..j]. Muthukrishnan’s CRL data structure uses O(n log n) bits and O(1) time per color reported.

Välimäki and Mäkinen [57] gave an alternative slower-but-smaller version of Muthukrishnan’s CRL data structure, in
which they used a 2n + o(n) bit, O(1) time RMQ succinct index due to Fischer and Heun [17] that requires access to
C . Välimäki and Mäkinen showed how access to C can be implemented by rank and select queries on S; specifically, for
1 ≤ q ≤ n, C[q] = selectS[q](S, rankS[q](S, q)−1), where selecta(S, r) is the position of the rth occurrence of a in S. Välimäki
and Mäkinen stored S in a multiary wavelet tree [14], which takes nH0(S) + o(n) log σ bits and O(1+ log σ/ log log n)
time; when σ is polylogarithmic in n, it takes nH0(S) + o(n) bits and O(1) time. The zero-order empirical entropy
H0(S) =

a

occ(a,S)
n log n

occ(a,S) , where occ(a, S) is the number of times element a occurs in S, is the Shannon entropy of
the distribution of elements in S.

Altogether, their CRL data structure takes nH0(S) + 2n + o(n) log σ bits and O(1+ log σ/ log log n) time per reported
color. They also showed how to compute color frequencies using two rank queries on S, rankc(S, j)− rankc(S, i− 1). Since
multiary wavelet trees support rank queries in the same time as accesses, it follows that reporting the color frequencies in
the range does not affect their time and space bounds.

Gagie et al. [22] showed that a binary wavelet tree [27] can be used to compute range quantile queries on S in O(log σ)
time, and that these queries can be used to enumerate the distinct elements in S[i..j], eliminating the need for RMQs. A
binary wavelet tree for S takes nH0(S)+ o(n) log σ bits and supports access, rank and select in O(log σ) time; thus, by itself
it is a CRL data structure taking O(log σ) time per reported color. In a subsequent paper, Gagie et al. [21] reduced this time
to O(log(σ/ncol)), where ncol is the number of colors reported, by replacing range quantile queries with depth-first-search
traversal on the wavelet tree. They also used a more compact wavelet tree [23] to reduce the space to nH0(S)+ o(n) bits.

Very recently, Belazzougui and Navarro [6] gave a new solution for colored range listing that uses n log σ+O(n log log σ)
bits of space and answers queries in O(1) time per reported color, and another that uses n log σ + O(n log log log σ) bits
and O(log log σ) time per reported color; both solutions return the colors’ frequencies. They replace the structures that
solve rank by weaker structures, based onmonotoneminimum perfect hash functions (mmphfs), that answer queries of the

1 Our logarithms are base 2 by default.

38 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

Table 1
Existing and new solutions for color range listing. We give the time to list each color without and with
frequency information.

Source Space (in bits) Time per color Time including frequencies

[47] O(n log n) O(1)

[57] nH0(S)+ 2n+ o(n) log σ O

1+ log σ

log log n

O

1+ log σ

log log n

[22] nH0 + o(n) log σ O(log σ) O(log σ)

[21] nH0 + o(n) O(log(σ/ncol)) O(log(σ/ncol))

[6] n log σ + O(n log log σ) O(1) O(1)

[6] n log σ + O(n log log log σ) O(1) O(log log σ)

2+8 nH0(S)+ 2n+ o(n) O

1+ log σ

logw

O

1+ log σ

logw

3+8 nHk(S)+ 2n+ o(n) log σ O(1) O

log log σ

logw

4+8 nH0(S)+ 2n+ o(n)(H0(S)+ 1) O

log log σ

logw

O

log log σ

logw

5+8 nH0(S)+ 2n+ o(n)(H0(S)+ 1) O(1) O(log log σ log log log σ)

5+8+10 nH0(S)+ o(n)H0(S)+ O(n log log log σ) O(1) O(log log σ)

5+8+9 nH0(S)+ o(n)H0(S)+ O(n log log σ) O(1) O(1)

3+8+9 nHk(S)+ o(n) log σ + O(n log log σ) O(1) O(1)

form rankS[i](S, i). They show that these are sufficient if one locates the first and last occurrence of each color in the array.
This is achieved using two symmetric RMQ structures. They use this result to give a solution for document listing that takes
O(n log logD) bits on top of the CSA and answers queries in O(search(m)+ ndoc · lookup(n)) time, and another that takes
O(n log log logD) extra bits and answers queries inO(search(m)+ ndoc(lookup(n)+ log logD)) time; again, both solutions
return frequencies.

The top part of Table 1 summarizes the existing solutions for CRL.

2.2. Related work on document listing

Muthukrishnan [47] gave his solution to the CRL problem as part of a solution to the problem of document listing (DL),
in which we are given a library of documents and asked to preprocess them such that later, given a pattern p[1,m], we can
quickly list all the distinct documents containing that pattern (see [43] for older work). Let T [1, n] be the concatenation of
the D documents. Muthukrishnan defined the array E[1, n] such that E[i] is the document containing the starting position
of the lexicographically ith suffix in T . All the positions where p occurs in T correspond to starting positions of suffixes that
start with p, and all those suffixes are listed contiguously in E, say in the range E[i, j]. It follows that the documents where
p appears are those mentioned in E[i, j], and that the multiplicities of the document identifiers in E[i, j] correspond to the
frequencies of p in the corresponding documents. Therefore, once we know i and j, we can implement a DL query as a CRL
query on E[i..j].

To compute i and j, Muthukrishnan used a classical stringology data structure called the suffix tree [58,1] of T . It occupies
O(n log n) bits and gives i and j in time O(m). Thus the DL solution requires O(n log n) bits of space and O(m+ ndoc) time
to list the ndoc documents containing p[1,m].

Just as for CRL, the next developments have focused on reducing the space of this solution. The difference with CRL
solutions is the O(n log n)-bit space suffix tree. A smaller structure, the suffix array A[1, n] [41], simply lists the suffixes of
T in lexicographical order. The suffixes starting with p form an interval A[i, j]. While this structure still requires O(n log n)
bits of space, there is a wealth of compressed variants of it [48], using as little space as that of the compressed text and
including the text. In this paper, we will call them generically compressed suffix arrays (CSAs), and refer to their space in
bits as |CSA|. CSAs find the interval of suffixes starting with p[1,m] in times fromO(m) toO(m log n), to whichwewill refer
generically as search(m). Finally, they compute any cell A[i] in time from constant to polylogarithmic in n, to which we will
refer generically as lookup(n).

Once the issue of the CSA is sorted out, any CRL solution can be converted into a DL solution. For example, Välimäki and
Mäkinen [57] combined their CRL data structure with a CSA, obtaining a DL data structure that takes |CSA|+ n logD+ 2n+
o(n) logD bits and O(search(m)+ ndoc(1+ logD/ log log n)) time. The pattern’s frequency in a document d can also be
computed within the same time. Finally, they noted that, using one select query per occurrence, they can list the positions
of the pattern’s occurrences in a specified document. Similarly, Gagie et al.’s [21] CRL solution, combined with a CSA of T ,

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 39

yields aDL data structure that takes |CSA|+n logD+o(n) logD bits andO(search(m)+ ndoc log(D/ndoc)) time, frequencies
included.

Finally, Belazzougui and Navarro’s [6] CRL solution can be converted into a DL solution that takes |CSA| +O(n log logD)
bits and answers queries inO(search(m)+ ndoc · lookup(n)) time, and another that takes |CSA|+O(n log log logD) bits and
answers queries in O(search(m)+ ndoc(lookup(n)+ log logD)) time. Both solutions return frequencies within the same
time bounds.

Sadakane [55] initiated another line that, although it is based on the idea of Muthukrishnan, does not derive directly
from a CRL solution. He replaced Gabow et al.’s [18] RMQ data structure by a 4n+ o(n) bit index that, given a range C[i..j],
in O(1) time and without consulting C , returns the position of the minimum value in that range (but not the value itself).
He also showed how the CSA and a bit vector V [1, n] can simulate access to E: 1s in V mark the positions in T where the
documents start; then, for 1 ≤ q ≤ n, E[q] = rank1(V ,CSA[q]), where rank1(V , r) is the number of 1s in V [1..r]. It takes
D log(n/D) + O(D) + o(n) bits to store V such that a rank1 query takes O(1) time [53]. Sadakane did not store C at all so,
when listing the distinct documents containing a pattern, he used a D-bit string to mark which documents he had already
listed. He used a recursion similar to Muthukrishnan’s, stopping whenever it finds a document already reported.

Sadakane’s DL data structure uses |CSA| + 4n + D log(n/D) + O(D) + o(n) bits and O(search(m)+ ndoc · lookup(n))
time. He used |CSA| + 4n + o(n) additional bits for data structures to compute the pattern’s frequency in each document,
increasing the time bound to O(search(m)+ ndoc(lookup(n)+ log log ndoc)) (assuming lookup(n) is also the time to find
CSA−1[q], where CSA−1 denotes the inverse permutation of A).

Hon et al. [32] described a solution to DL similar to Sadakane’s but removing the Θ(n)-bit space term. They pack logϵ n
consecutive cells of C into a block and build the RMQ data structure on the block minima (so it takes O(n/ logϵ n) bits of
space), and reports (avoiding repetitions) all the documents in the block that holds theminimum. Their whole data structure
takes |CSA| + D log(n/D)+ O(D)+ o(n) bits and answers queries in time O(search(m)+ ndoc logϵ n · lookup(n)), for any
constant ϵ > 0.

They can also return the number of times the pattern occurs in any document by using, like Sadakane [55], one CSAd
local to each document d. These add up to other |CSA| extra bits. To find out howmany times document d = E[q], i ≤ q ≤ j,
appears in E[i..j], it maps q to position p = CSA[q] − select1(V , d)+ 1 within document d, and then to q′ = CSA−1d [p]. This
is the first lexicographic occurrence of the pattern in CSAd. The last occurrence is found by an exponential search and then
by a binary search on CSAd[q′..], for the largest c such that CSA−1[CSAd[q′ + c] + select1(V , d)− 1)] ≤ j. Then the answer,
c + 1, is obtained in time O(lookup(n) log c) = O(lookup(n) log n).

2.3. New tradeoffs

All the previous solutions have essentially the same ingredients: for CRL, access to S, distinct color enumeration on S
(implemented via RMQs on C or range quantile queries on S) and, to count the number of times each color occurs, rank on
S; for DL, a suffix tree or CSA for T , access to E, distinct document enumeration on E and, to report the pattern’s frequency
in each document, rank on E. Solutions for CRL can be used for DL with the addition of a CSA for T , setting S = E and σ = D.
Recall that Sadakane’s [55] and Hon et al.’s [32] solutions for DL implement access to E using a CSA and bit vector V on T , so
they do not apply to general CRL.

Our main contribution in this section is the observation that, using new data structures for access, color enumeration
and rank, we obtain new bounds for both CRL and DL. This is formalized next.

Observation 1. Suppose we are given a sequence S[1, n] over [1, σ] and we store any data structure supporting access on S
in time tacc and any structure supporting distinct enumeration in a range of S in time tenum per element (and any structure
supporting rank on S in time trank if computing frequencies is desired). Then later, given i and j, we can list the distinct elements
in S[i..j] in time O(tacc + tenum) per reported element. The cost to list, in addition, the frequency in S[i..j] of a reported element is
O(trank).

Corollary 2. Given a concatenation T [1, n] of D documents, we can store either

• the CSA for T and data structures supporting access, enumeration and rank on the corresponding array E[1, n] in times tacc,
tenum and trank, or
• the CSA for T , a bit vector occupying D log(n/D) + O(D) + o(n) bits, and data structures supporting enumeration and rank

on E as above,

such that, given a pattern of length m, we can list the distinct documents containing that pattern in time O(search(m)) plus
O(tacc + tenum + trank) per reported document, where tacc = lookup(n) in the second case and trank is required only in order to
list the frequencies of the documents.

A selection of these data structures is shown in Table 2 (for conciseness, we show only the results that are currently
the best for our purposes, leaving aside many previous ones [15,5,24,28] on which most of the new ones build). Note that
one solution (row 3) achieves high-order entropy space, nHk(S). This is a lower bound to the bits per symbol emitted
by any semistatic statistical compressor that encodes each symbol as a function of the k previous ones [42]. It holds
Hk(S) ≤ Hk−1(S) ≤ H0(S) ≤ log σ .

40 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

Table 2
Space and time bounds for some data structures supporting operations on S[1, n] over [1, σ], where w is the length in bits of the computer word. The
O(σ log n) extra bits of wavelet trees can be avoided [40] so we have not included them. The space bound in row 3 holds for k = o(logσ n). In rows 6 and
7, g is the size (in bits) of a given context-free grammar generating S and only S. In rows 4 and 6, α(·) is the inverse Ackermann function. Rows 9 and 10
only solve queries of the form rankS[i](S, i).

Row Source Space (in bits) tacc tenum trank

1 [21] nH0(S)+ o(n) O(log(σ/ncol)) O(log(σ/ncol)) O(log(σ/ncol))

2 [7, Theorem 7] nH0(S)+ o(n) O

1+ log σ

logw

O

1+ log σ

logw

3 [7, Theorem 9] nHk(S)+ o(n) log σ O(1) O

log log σ

logw

4 [7, Theorem 8] nH0(S)+ o(n)(H0(S)+ 1) O(α(σ)) O

log log σ

logw

5 [4, Theorem 1] nH0(S)+ o(n)(H0(S)+ 1) O(1) O(log log σ log log log σ)

6 [8, Theorem 1] O(g α(g)) O(log n)

7 [8, Theorem 1] O(g) O(log n log log n)

8 [16, Theorem 1] 2n+ o(n) O(1)

9 [6, Theorem 1] O(n log log σ) O(1)

10 [6, Theorem 1] O(n log log log σ) O(log log σ)

If we choose a set of rows covering support for access and enumeration (and rank) then we can answer CRL queries (and
return the frequency of each color). The space bound is the sum of the space bounds and the time bound per reported color
is O(tacc + tenum + trank), the latter term for computing frequencies.

The bottom part of Table 1 shows several combinations that improve upon previous results for CRL. The numbers in
italics correspond to the rows of Table 2 used. The first rows, 2+8 to 5+8, are combinations of a compressed sequence
representation to provide access and rank (by Belazzougui and Navarro [7] or Barbay et al. [4]), with enumeration provided
via Fischer’s [16] succinct index for RMQ (which does not access the array). All those improve upon the previous solution
of Välimäki and Mäkinen [57] in space and time. The next rows, 3/5+8+9/10, incorporate an mmphf to the previous
combination, improving the time (in many cases to constant) in exchange for higher space. The result is a compressed
variant of Belazzougui and Navarro’s [6] solution, and it turns out to be the first compressed CRL data structure (using
nHk(S)+ o(n log σ) bits of space) that answers queries in constant time per returned color.

For conciseness, we do not explicitly enumerate the new DL solutions that derive from our new CRL solutions; those
should be immediate from Corollary 2. It is also possible to derive new solutions that are specific for DL using the table. For
example, an obvious one is that Sadakane’s solution [55] improves by using the newer RMQ solution by Fischer [16], which
requires 2n+ o(n) bits instead of Sadakane’s original 4n+ o(n).

The alternatives listed in Table 1 are not formally comparable. There are some solutions that always use less space than
others; one can order 2+8 < 4/5+8 < 5+8+10 < 5+8+9, and 3+8 < 3+8+9, but those using more space are faster. In
many cases, however, the space comparison depends on the relation between nH0(S) + o(n)H0 and Hk(S) + o(n) log σ ,
and this depends on the application in which the CRL problem arises. In the particular case of DL, H0(E) is related to the
lengths of the documents; that is, it will be smaller if documents have very different lengths, and will approach logDwhen
documents are roughly the same size. More interesting is Hk(E), which depends on how predictable is the next document
if we have seen the k previous cells in E. The more predictable E is in this sense, the lower is Hk(E). While we do not have
formal bounds, we expect that Hk(E) will be lower when E is more repetitive. Next we show that Hk(T), the compressibility
of T , is related to repetitiveness of E, and exploit that relation using a completely different tool.

This result is obtained by combining Bille et al.’s [8] grammar-based data structure for access (lines 6/7), Fischer’s [16]
succinct index for RMQ (line 8), and the smaller mmphfs [6] for rank (line 10). González and Navarro [25] showed how to
build a grammar generating an array that, together with some other small data structures, gives access to the suffix array
(SA) A. Building Bille et al.’s data structure for this grammar, we obtain an O(log n)-time data structure for DL whose size is
bounded in terms of the high-order entropies of the library of documents. This is described next.

Theorem 3. Given a concatenation T [1, n] of D documents, we can store T in

|CSA| + O(n log log logD)+ O

nmin(Hk(T), 1)+ D

log

1

min(Hk(T), 1)+ D/n

α(n) log n

bits, for any k ≤ β logσ n, constant 0 < β < 1 and σ the size of the alphabet of T . Then given a pattern of length m, we can list
the distinct documents containing that pattern in time O(search(m)) plus O(log n) to list each document with its frequency.

Proof. González and Navarro’s algorithm takes advantage of the so-called runs of the SA, that is, areas A[i..i+ ℓ] such that
there is some other area A[j..j+ ℓ]where A[j+ k] = A[i+ k] + 1 for all 0 ≤ k ≤ ℓ. Let R be the number of runs with which

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 41

the SA can be covered; it is known that R ≤ min(n, nHk(T) + σ k) for any k [38]. González and Navarro represent the SA
differentially so that these areas become true repetitions, and use a grammar-based compression algorithm that represents
A usingO(R log(n/R)) rules.We note that, in E, those SA runs become identical areas E[i..i+ℓ] = E[j..j+ℓ] except for atmost
D cells where the document number can changewhenwe advance by one text position. It follows that, by applying the same
compression algorithm [25] to E we obtain O((R+ D) log(n/(R+ D))) rules and hence the space given in the theorem. �

As a final note applying only to document collections, Sadakane’s CSA [54] essentially represents a function Ψ such that
A[Ψ (i)] = A[i]+1,which is stored in compressed formand any value computed in constant time. Thus one advances virtually
in the text by successively applying Ψ . Now assume we sample E with a step r such that, for any i, E[Ψ j(i)] is sampled for
some 0 ≤ j < r . Then one computes any E[i] value in time O(r) by followingΨ until reaching a sampled entry, whose value
will be the same as E[i] if we also sample every document end in the text collection. The space isO((n/r) log r)+ (n/r) logD
for a bitmap marking the sampled cells and an array with the sampled values, respectively. For example, using r = logD
yields access to E (though not rank nor select on it) in the same time as a binary wavelet tree, within bit space n + o(n).
Depending on the relation between n andD, this can be an interesting alternative to using lookup andmarking the document
beginnings [55].

3. Top-k queries

3.1. Improving the current-best solution for documents

Hon et al. [30] described a data structure that stores a library T of D documents of total length n in O

n log2 n

bits such

that later, given a pattern of length m and an integer k ≥ 1, we can find the k documents that contain that pattern most
frequently, inO(m+ log n log log n+ k) time.We call this the document top-k problem (DTK). Hon et al. [32] gave solutions
for DTK that store T in O(n log n) bits and answer queries in O(m+ k log k) time, or in 2|CSA| + o(n)+ D log(n/D)+O(D)
bits and O

search(m)+ k log3+ϵ n · lookup(n)

time.

The last solution consists of a tree τk built for each k power of 2. For τk they divide E into blocks of size z = k log2+ϵ n,
and τk consists of the suffix tree nodes that are lowest common ancestors (lca) of end points of blocks, and transitively all
the lcas of pairs of those nodes. At each node, τk stores the k most frequent documents within the whole blocks it contains,
and their frequencies. Thus each τk requires O((n/z)k log n) = O

n/ log1+ϵ n

bits, and all the trees together add up to

O(n/ logϵ n) bits. At query time, to find the top-k documents in E[i..j], they increase k to the next power of 2 and find the
highest node of τk whose range [i′..j′] is contained in [i..j]. They show that i′ − i ≤ z and j − j′ ≤ z by the lca properties.
Then the query is answered by considering the k candidates given by τk and the O(z) further candidates found at positions
of E[i..i′ − 1] and E[j′ + 1..j], for each of which they compute the frequency. The total time, considering priority queue
operations, is O(search(m)+ z(trank + log k)+ k log k) = O

search(m)+ k log3+ϵ n · lookup(n)

. This time bound can be

improved to O

search(m)+ k logD log(D/k) log1+ϵ n · lookup(n)

by noticing that (a) one needs only O(logD) powers of

2 for k since k ≤ D; (b) one can store the top-k elements in the τk trees and not their frequency. The k frequencies can be
computed at query time without changing the time complexity since k = o(z). Thus the k documents out of D can be stored
in increasing order and as gamma-encoded differences, taking O(k log(D/k)) bits. Therefore we can use smaller blocks of
size z = k logD log(D/k) logϵ n, which are processed faster, and still have O(n/ logϵ n) = o(n) space for the structure.

Note that, for this solution to work for any τk, we also need to represent τk in compact form.2 A succinct tree
representation [56] using just 2+ o(1) bits per node supports in O(1) time many operations, including lca, preorder (whose
consecutive values are used to index an array storing the top-k candidate data on each node), and preorder−1. For each pair
of consecutive block endpoints pi and pi+1 we store the preorder xi of the sampled tree node lca(pi, pi+1). As xi ≥ xi−1, values
xi+ i are increasing, and thus can be stored in a structure of (n/z) lg 2n

n/z +O(n/z) bits that retrieves any xi in constant time
[51].3 This space is O((n/z) lg z) = o(n) bits. With this structure we can find in constant time the lowest sampled node
covering a block interval [L, R] as lca(preorder−1(xL), preorder−1(xR−1)).

In addition, we can replace the |CSA| bits of that solution for computing frequencies, by Grossi et al.’s [28] succinct index
for rank, in the spirit of Section 2.4 This index requires n o(logD) bits of space and computes any rank on E via O(log logD)
accesses to E. In this way, we achieve a new space bound of |CSA| + o(n) + D log(n/D) + O(D) + n o(logD) bits, which
can be better or worse than before, but the time is reduced to O(search(m)+ k logD log(D/k) logϵ n · lookup(n)), for any ϵ
(log–logarithmic terms disappear by adjusting ϵ).

3.2. An approximate solution to the general problem

We now give a solution to the approximate colored range top-k problem (CRTK), which asks us to preprocess a given
sequence S such that later, given a range S[i..j] and an integer k ≥ 1, we can return an approximate list of the k elements

2 This was noted and solved [6] after our conference publication. We reproduce that solution here.
3 Using a constant-time rank/select implementation on their internal bitmap H [46].
4 This index was superseded by another [6] in Section 2, and hence not listed there; however the solution dominating it computes a weaker version of

rank that is of no use here.

42 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

(‘‘colors’’) that occur most frequently in that range. We do not know of any previous efficient solutions to this problem,
although finding the k most frequent or important items in various data sets and models is a well-studied problem and
there has been work on interesting special cases (see, e.g., [33,36]).

Greve et al. [26] recently gave a data structure that, for any ϵ > 0, stores S in O((n/ϵ) log n) bits such that we can find
an element with the property that no element is more than 1+ ϵ times more frequent in S[i, j], in O(log(1/ϵ)) time. Thus,
their data structure solves the approximate CRTK problem for k = 1, which is called the approximate range-mode problem.
As motivation for studying the approximate range-mode problem, they also proved a lower bound implying that a data
structure using n logO(1) n space takes Ω(log n/ log log n) time to answer exact range-mode queries, and any data structure
answering such queries in O(1) time takes nΩ(1) space. (The current upper bounds for exact range-mode queries are much
larger, however: e.g., the best known data structure usingO(n)words ofO(n) bits each, takesO

√
n/ log n

query time [12];

the best known data structure taking O(1) query time uses O

n2 log log n/ log2 n

words [52].) We can assume Greve et al.’s

data structure also returns the frequency of the approximate mode in S[i..j], since adding a rank data structure for S allows
us to compute this and does not change their space bound. We show how to use their data structure as a building block
to store S in O((n/ϵ)(H0(S)+ 1) log n) bits such that, given an integer k, we can approximately list the k most common
elements and their frequencies in O(k log σ log(1/ϵ)) time.

We first build a binary wavelet tree for S [27]. This is a balanced tree where each node represents a range of [1, σ]: the
root represents the full range, the leaves the individual symbols, and the children of a node represent the left and right halves
of the node’s range. For each node v, let Sv be the subsequence of S consisting of characters labeling the leaves in v’s subtree.
The original wavelet tree does not store Sv , but just a bitmap Bv of length |Sv| telling whether each Sv[i] went to the left or
right child. Rank and select over those bitmaps allow accessing any S[i], as well as computing ranka(S, i) and selecta(S, i), in
time O(log σ), and the overall space is n log σ(1+ o(1)). The tree can also track any range S[i..j] down to any node [40].

Here we do store each subsequence Sv in an instance of Greve et al.’s approximate range-mode data structure. For now,
assume [i, j] = [1, n] and that Greve et al.’s data structure returns the exact mode, rather than an approximation. Notice
that, if a1, . . . , ak′ are the k′ most frequent elements and v is an ancestor of the leaf labeled ak′ but not of those labeled
a1, . . . , ak′−1, then ak′ is the mode in Sv . Let V be the set of ancestors of a1, . . . , ak′−1 and let V ′ be the set of nodes who are
not in V themselves but whose siblings are; V ′ contains the root of the tree if V is empty. We can find ak′ by finding the
mode of Sv for each v ∈ V ′, finding their frequencies in S, and taking the most frequent.

We keep the modes for each v ∈ V ′ in a priority queue, ordered by their frequencies and with the corresponding nodes
of the wavelet tree as auxiliary data. Notice ak′ is the head of the queue, so we can find and output it in O(1) time; let v
be the corresponding node, i.e., the node in V ′ such that the mode of Sv is ak′ . To update the queue, we delete ak′ , perform
range-mode queries on the siblings of nodes on the path from v to the leaf labeled ak′ , and add the modes to the queue.
There are always O(k log σ) nodes in the queue (the tree is of height O(log σ)) so, if we use a priority queue allowing
O(log(k log σ)) = O(log σ) time deletion and O(1) time insertion [11], then we can find the kmost frequent elements in S
in O(k log σ log(1/ϵ)) time. We can deal with general i and j by using the wavelet tree to compute the appropriate range in
each subsequence [40].

Suppose that, instead of using a balanced wavelet tree, we use one with the same shape as the code-tree for a code
with expected codeword length O(H0(S)+ 1). For each occurrence of a symbol a in S, there is an occurrence of a in the
subsequence Sv for each node v on the path from the root to the leaf labeled a. It follows that the total length of the
subsequences in the whole tree is O(n(H0(S)+ 1)), so storing all the subsequences in instances of Greve et al.’s data
structure takes O((n/ϵ)(H0(S)+ 1) log n) bits. Using a Huffman-shaped wavelet tree [38] would minimize the total length
of the subsequences, but a Huffman tree can be very deep (height n − 1 for a very skewed distribution), which would
compromise our time bound. Therefore, we use an O(log σ)-restricted Huffman tree [44], which yields both the space and
time bounds we want.

Theorem 4. Given a sequence S[1, n] over an alphabet of size σ and a constant ϵ > 0, we can store S in O((n/ϵ)(H0(S) + 1)
log n) bits such that, given i, j and k, we can list k distinct elements such that no element is more than 1+ ϵ times more frequent
in S[i..j] than any of the ones we list, in O(k log σ log(1/ϵ)) time.

This (1 + ϵ)-approximation makes sense in information retrieval scenarios, where top-k queries are understood to be
just approximations of the ideal answer.

3.3. The K-mining problem

Muthukrishnan [47] defined (document) K -mining (DKM) as the problem of finding all the documents in the library
that contain a given pattern at least K times. He gave an O

n log2 n

-bit data structure that, given K and a pattern of

length m, answers queries in O(m) time plus O(1) time per reported document. Hon et al. [30] noted that we can use
a binary search with a DTK data structure to solve DKM, with an O(log n) slowdown for the queries. They then showed
howwe can use an O

n log2 n

-bit data structure to find the largest k such that k documents contain the pattern K times, in

O(search(m)+ log n log log n) time.Hon et al. [32] gave anO(n log n)-bit data structure that answersK -mine queries in time
O(m) plus O(1) per reported document. They also showed how to improve the space bound to 2|CSA| + o(n)+D log(n/D)
bits at the cost of increasing the time O

search(m)+ k log3+ϵ n · lookup(n)

, which we can improve in much the same way

as in Section 3.1. Neither of these solutions applies, however, to general colored range queries.

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 43

Since our CRTK data structure outputs elements in (approximately) non-increasing order by frequency in the range, it
also solves (approximately) the natural generalization of DKM: i.e., the colored range K -mine (CRKM) problem, which asks
us to report all the elements that occur at least K times in S[i..j]. If we query our data structure until the next element it
would report occurs fewer than (1+ ϵ)K times, then we use O(log σ log(1/ϵ)) time per reported element, but wemaymiss
some elements that occur between K and (1+ϵ)K times. Alternatively, if we query our data structure until the next element
it would report occurs fewer than K/(1 + ϵ) times, then we find all the elements that occur at least K times, but we can
bound our time only in terms of the number of elements that occur at least K/(1+ ϵ) times.

4. Counting

4.1. Related work

For general colored range counting, we are asked to store a set of n colored points in Rd such that later, given an axis-
aligned box, we can quickly count the distinct colors it contains. Most papers on this problem have focused on d ≥ 2
dimensions (see, e.g., [35]). We consider the one-dimensional version of the problem. The best solution known for general
static one-dimensional colored range counting is an O(n)-word data structure by Bozanis et al. [9] that answers queries in
O(log n) time. The best dynamic solutions known [37] take, for queries and updates, either O(n log n) words and O(log n)
time or O(n) words and O

log2 n

time. In this section, we consider the special case in which the colored points are the

integers 1, . . . , n. Storing these points is equivalent to storing a string S[1..n] over an alphabet whose size σ is the number
of distinct colors, such that later, given a substring’s endpoints, we can quickly count how many distinct characters that
substring contains.We describe a data structure for counting colors in strings, one that takes only nH0(S)+O(n)+o(nH0(S))
bits, where H0(S) is the zero-order empirical entropy of S. Furthermore, we simultaneously reduce the query time to
O(log ℓ), where ℓ is the size of the query range. As far as we know, no other data structure for colored range counting
has a non-trivial upper bound depending only on ℓ.

Our solution is based on the array C[1..n] of Muthukrishnan [47] described in Section 2.1. Recall that each cell C[q] stores
the largest value p < q such that S[p] = S[q] (or 0 if no such p exists), and thus S[q] is the first occurrence of that distinct
character in S[i..j] if and only if i ≤ q ≤ j and C[q] < i. Therefore, the number of distinct characters in S[i..j] is the number
of values in C[i..j] strictly less than i. If we store C in a wavelet tree [27], which takes n log n + o(n) bits [23], then we can
count all such values q ∈ [i..j] such that C[q] ∈ [0..i − 1] in O(log n) time; for details see Mäkinen and Navarro [40]. This
is already a slight improvement over the bounds we achieve with Bozanis et al.’s data structure [9]. The wavelet tree could
be compressed using standard techniques, but this would reflect the compressibility of C . Instead, the space can be reduced
to n log σ + O(n log log n) bits, close to the size of S, by modifying the wavelet tree [20]. We reduce the space further by
modifying the representation of C rather than the wavelet trees.

Apart from counting the unique colors, our data structure can support other interesting queries. For example, we can
count

• the ‘‘new colors’’ in an interval S[i..j] (those that do not appear to the left of i) by counting the number of 0s in C[i..j];
• the colors in an interval S[i..j] whose last occurrence was in another interval S[i′..j′], by counting the number of values

in C[i..j] that are between i′ and j′;
• the colors that occur exactly once in S[i..j].

To count the colors that occur exactly once in S[i..j], we use three instances of our data structure. We build the first instance
normally, we build the second instance replacing even occurrences (2nd, 4th, etc.) of each character by a special filler
character #, and we build the third instance replacing odd occurrences (1st, 3rd, etc.) of each character by this filler; e.g.,
if S = abracadabra, then the three instances are abracadabra, abr#cad###a and ###a###abr#, respectively. (Since the
second and third instances are for complementary strings, we could merge them fairly easily; we consider them separately
for the sake of simplicity.) Given S[i..j], we use the first instance to find the total number dall of distinct characters in S[i..j],
we use the second instance to find the number dodd of distinct characters that have an odd occurrence in S[i..j], and we
use the third instance to find the number deven of distinct characters that have an even occurrence in S[i..j]. The number of
distinct characters that have both an odd and an even occurrence is dodd+deven−dall, so the number of characters that have
only an odd or only an even occurrence — i.e., exactly one occurrence — is 2dall − dodd − deven.

In document retrieval, i.e., with S = E (see Section 2.1), colored range counting can be used for computing the document
frequency of a given pattern, i.e., how many documents contain it. We note that Sadakane [55] gave a faster and more
space-efficient data structure for computing the document frequencies of single patterns, but his solution cannot be used
for colored range counting in arbitrary strings. In Section 5, we discuss document retrieval scenarios that are supported by
our data structures but not by Sadakane’s.

In Section 4.2, we describe a simple data structure that takes n(log σ + log log n + 2 + o(1)) bits and answers queries
in O(log n) time. In Section 4.3, we extend the ideas from Section 4.2 to build a data structure that takes nH0(S) + O(n) +
o(nH0(S)) bits and answers queries in O(α(n) log n log log n) time, where α is the inverse Ackermann function. We adjust
our data structure and analysis slightly in Section 4.4, so that our time bounds are in terms of ℓ, the length of the substring
whose distinct colorswe are counting, rather than in terms of n. In Section 4.5, we reorganize our data structure and improve
the query time toO(log ℓ). For this result, we need a couple of simple but non-standard tricks in implementingwavelet trees;

44 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

Fig. 1. The array S, with lines above indicating blocks and arcs indicating characters’ previous occurrences; our representation of the C array overlaid on
the bitvector, with white indicating intra-block pointers and gray indicating inter-block pointers; and the contents of the two wavelet trees — intra-block
pointers in one and inter-block pointers in the other. Notice that, since both copies of b are contained within one block, the distance 3 is measured from
the beginning of that block.

previous sections use standard wavelet trees as a black box. In Section 4.6, we show how our data structure can be made
dynamic. Specifically, we first showhow to achieve the same time bound for querying and a space bound ofO(n(H0(S)+ 1))
bits while supporting anO(log n)-time append operation, which is themost natural update when, e.g., maintaining log files.
We then show how to support color substitutions and deletions, at the cost of using O

log2 n

time for both queries and

updates. Finally, we show how our data structure replaces S (both in the static and dynamic case) by giving access to any
S[i] in reasonable time.

4.2. Simple blocking

In this section, we give a simple proof that, using two normal wavelet trees and a straightforward encoding of C , we
need store only n(log σ + log log n + o(1)) bits to answer queries in O(log n) time. Without loss of generality, assume
σ = o(n/ log n); otherwise, we achieve our desired bound by simply storing C in a single, normal wavelet tree. Our idea
is to break S into blocks of length b = σ log n and encode the entry C[q] differently depending on whether the previous
occurrence S[p] of the character S[q] is contained in the same block. If p is contained in the same block as q, then we write
C[q] as the ⌈log b⌉-bit offset of pwithin the block; otherwise, wewrite it as the ⌈log n⌉-bit binary representation of p. Notice
that, for each block, there are at most σ entries of C encoded as ⌈log n⌉-bit numbers.

We build a bitvector indicating how each entry of C is encoded, which takes n + o(n) bits. We build one wavelet tree
storing all the ⌈log b⌉-bit encodings, which takes atmost n log b+o(n) = n(log σ+log log n+o(1)) bits, and another storing
all the ⌈log n⌉-bit encodings, which takes at most σ⌈n/b⌉ log n + o(σ⌈n/b⌉) = n + o(n) bits. This is illustrated in Fig. 1.
Notice that, if S[q] is the first occurrence of a character in S[i..j] and C[q] is encoded in ⌈log b⌉ bits, then qmust be between
i and the end of the block containing i. This is because, if S[q] were in a later block, then C[q] < i would be encoded using
⌈log n⌉ bits. Therefore we can count all such first occurrences in O(log b) = O(log σ + log log n) time using the bitvector
and the first wavelet tree (looking for positions in C[i..⌈i/b⌉ ·b]with offsets in [0..(imod b)−1]). We can count all the other
first occurrences in O(log n) time using the bitvector and the second wavelet tree (using the normal query after mapping
the positions using the bitvector).

Theorem 5. Given a string S[1..n], we can build a data structure that takes n(log σ + log log n+ 2+ o(1)) bits such that later,
given a substring’s endpoints, in O(log n) time we can count how many distinct characters it contains.

Notice that, if σ ≥ 4 log n, then the data structurewe just presented iswithin a factor of 2 of being succinct. If σ < 4 log n,
then we can store S in a multiary wavelet tree [14], which takes nH0(S)+ o(n) bits, and answer any query by enumerating
the characters in the alphabet and, for each one, using two O(1)-time rank queries to see whether it occurs in the given
substring.

Corollary 6. Given a string S[1..n], we can build a data structure that takes 2n log σ+o(n) bits such that later, given a substring’s
endpoints, in O(log n) time we can count how many distinct characters it contains.

4.3. Multi-size blocking

In this section, we extend our idea from the previous section so that, instead of encoding entries of C differently for only
two block sizes — i.e., σ log n and n—we use many block sizes. In particular, we use O(log log n/ log(1+ δ)) different block
sizes,

21+δ, 2max((1+δ)2,2), 2max((1+δ)3,3), 2max((1+δ)4,4), . . . , n,

where δ ∈ (0, 1] is a value we will specify later. Also, for each block size b, we consider S to consist of about 2n/b evenly
overlapping blocks,

S[1..b], S[b/2+ 1..3b/2], S[b+ 1..2b], S[3b/2+ 1..5b/2], . . . , S[n− b+ 1, n].

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 45

Fig. 2. The array S, with lines above indicating the overlapping block structure (with blocks of three different sizes, in this case) and arcs indicating
characters’ previous occurrences; our representation of the C array overlaid on the string t , with shades of gray indicating which encoding length is used
for each pointer (black for 0s); and the contents of the three wavelet trees — pointers contained in short blocks, pointers contained in medium-length
blocks, and pointers contained in long blocks. Notice that, although 9 is larger than 5, the pointer with value 9 has a shorter encoding because both copies
of b are contained within the same medium-length block, while the two copies of a are not contained in any single block except the one long block, which
contains the whole string.

If C[q] = p and the smallest block containing both S[p] and S[q] has size b, then we write C[q] as the ⌈log b⌉-bit offset
of p within the lefthand block of size b containing S[q] (there are at most two such blocks and, if there are two, then they
overlap). Since, for some k,

2max((1+δ)k−1,k−1)−1 < q− p+ 1 ≤ b = 2max((1+δ)k,k),

we have ⌈log b⌉ < (1+ δ) log(q− p+ 1)+ 3. In other words, if S[p] and S[q] are occurrences of a character a that does not
occur in S[p+ 1..q− 1], then we use fewer than (1+ δ) log(q− p+ 1)+ 3 bits to store C[q]. By Jensen’s Inequality, since
the logarithm is concave, the total number of bits we use to store the offsets for occurrences of a is maximized when those
occurrences are evenly spaced and, thus, the space in bits is at most

(1+ δ)

a

occ(a, S) log

n
occ(a, S)

+ 1

+ 3n = (1+ δ)nH0(S)+ O(n) ,

where occ(a, S) is the number of occurrences of a in S.
Let t be a string indicating whether each entry of C[q] is 0 and, if not, the block size used for it. We build a multiary

wavelet tree [14] storing t . Notice we can always encode a block size b = 2max((1+δ)k,k) in O(log k) = O(log log b) bits.
By the calculations in the paragraph above and another application of Jensen’s Inequality, H0(t) = O(log(H0(S)+ 1)). It
follows that, if H0(S) grows without bound as n goes to infinity, then the size of the wavelet tree for t is o(nH0(S)) bits;
otherwise, it is O(n) bits. As a byproduct, using this wavelet tree, in O(1) time we can count all the characters whose first
appearance in S is in S[i..j].

For each block size b, we build a wavelet tree storing all the ⌈log b⌉-bit encodings. By the same calculation as before,
these wavelet trees take a total of (1 + δ)nH0(S) + O(n) + o(nH0(S)) bits. This is illustrated in Fig. 2. Notice that, for any
block size b, if S[q] is the first occurrence of that distinct character in S[i..j] and C[q] is encoded in ⌈log b⌉ bits, then q must
be between i and the end of the righthand block of size b containing i. Using the multiary wavelet tree and the wavelet tree
for block size b, in O(log b) time we can count all such characters in the right halves of both the lefthand and the righthand
blocks of size b containing S[i]. Since these are the only blocks of size b containing S[i] and the right half of the lefthand
block is the left half of the righthand block, the sum is the total number of such characters. That is, in O(log b) time, we
can count all the first occurrences S[q] of distinct characters in S[i..j] such that C[q] is encoded in ⌈log b⌉ bits. Repeating
this for each of the O(log log n/ log(1+ δ)) block sizes, in O(log n log log n/ log(1+ δ)) = O((1/δ) log n log log n) time we
can count the distinct characters in S[i..j]. Choosing δ = 1/α(n), for example, where α is the inverse Ackermann function,
yields a space bound of (1 + 1/α(n))nH0(S) + O(n) + o(nH0(S)) = nH0(S) + O(n) + o(nH0(S)) bits and a time bound of
O(α(n) log n log log n).

Theorem 7. Given a string S[1..n], we can build a data structure that takes nH0(S) + O(n) + o(nH0(S)) bits such that later,
given a substring’s endpoints, in O(α(n) log n log log n) time we can count how many distinct characters it contains.

46 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

4.4. Time independent of n

Suppose we are to count the distinct colors in S[i..j], and let ℓ = j − i + 1. Let bmax be the size of the smallest
block in the scheme of Section 4.3 that completely contains S[i..j]. Using the technique described in the last paragraph
of Section 4.3, we count the entries C[q] < i in C[i..j] that are encoded using a block size at most bmax. Since there are
O(log log bmax/ log(1+ δ)) = O(α(n) log log(ℓ+ 1)) such block sizes and we need O(log bmax) = O(log ℓ) time for each,
this takes O(α(n) log ℓ log log(ℓ+ 1)) time. Counting the entries encoded with bigger block sizes is made easier by the fact
that, if C[q] = p in C[i..j] is encoded using a block size larger than bmax, then we must have p < i. Therefore, any such big
block entry in C[i..j] indicates the first occurrence of some distinct character in S[i..j]. Instead of directly counting all big
block entries in C[i..j], we count all small block entries in C[i..j] and subtract this count from ℓ. Using the multiary wavelet
tree of t , we can count the entries in C[i..j] that are encodedwith a given block size in constant time, obtaining a time bound
O(α(n) log log(ℓ+ 1)) for processing the big block sizes. Thus, without any modification to the data structures, we have
improved the query time in Theorem 7 to O(α(n) log ℓ log log(ℓ+ 1)). Since α(n) grows very slowly as n increases, our
time bound is now almost independent of n.

To make our time bound completely independent of n, we adjust our block sizes: the first block size b1 is 2; for i ≥ 2, the
kth block size is

bk = 2max
k−1

h=1(1+1/α(bh)),k

.

If the smallest block containing both S[p] and S[q] has size bk then, since

2max
k−2

h=1(1+1/α(bh)),k−1

−1

< q− p+ 1 ≤ 2max
k−1

h=1(1+1/α(bh)),k

,

we have log(q − p + 1) < ⌈log bk⌉ < (1 + 1/α(bk−1)) log(q − p + 1) + 3. Also notice that, since bk−1 can be bounded
from below in terms of bk and bk can be bounded from below in terms of q − p, α(bk−1) increases without bound (albeit
very slowly) as q − p goes to infinity. Therefore, we use fewer than log(q − p + 1) + o(log(q − p + 1)) bits to store C[q].
By calculations similar to those in Section 4.3, we still use nH0(S) + O(n) + o(nH0(S)) bits in total. Now, however, since
α(b1) ≤ · · · ≤ α(bk), more calculation shows that the number of block sizes up to bk is O(log log bk/ log(1+ 1/α(bk))),
from which it follows that our new time bound is O(α(ℓ) log ℓ log log(ℓ+ 1)).
Theorem 8. Given a string S[1..n], we can build a data structure that takes nH0(S) + O(n) + o(nH0(S)) bits such that later,
given a substring’s endpoints i and j, in O(α(ℓ) log ℓ log log(ℓ+ 1)) time we can count howmany distinct characters it contains,
where ℓ = j− i+ 1.

4.5. Reducing time

We now modify the data structure so that instead of having one wavelet tree for each block size, we have a separate
wavelet tree for each block. If C[q] = p is encoded using a block size b then one or two blocks of size b contain both p and q,
and we store the encoding in the wavelet tree of the leftmost block. Notice that q is always in the second half of the block.
The total number of bits in the encodings does not change.

A standard wavelet tree implementation technique is to represent each level of a wavelet tree with a single bitvector,
which is the concatenation of the bitvectors for individual nodes over that level [14,39]. Here we can similarly use a single
bitvector to represent a level over all wavelet trees for a given block size. As in the standard case, given the location of the
bitvector for a node, we can easily locate the bitvectors for the children. For each block size bk, we provide two additional
bitvectors to directly locate nodes, one for the root level and one for the level at height k (where leaves have height 0). The
size of such a bitvector is nk+v+o(nk+v), where nk is the length of the level bitvector, which equals the number of entries
encoded with block size bk, and v is the number of nodes on the given level. Since v = O

n/2k

for height k and is less or

equal for the root level, the size of the locating bitvectors for block size bk isO

nk + n/2k

, which isO(n) over all block sizes.

When counting the number of distinct colors in S[i..j], we handle block sizes larger than bmax as before using themultiary
wavelet tree for t in O(α(ℓ) log log(ℓ+ 1)) time. For each block size b ≤ bmax, we need to query the wavelet trees for the
two blocks that contain i. For block size bmax we do this as before in O(log bmax) = O(log ℓ) time. Block sizes smaller than
bmax are handled differently.

If B is a block of size bk < bmax that contains i, it does not contain j. If C[q] = p is stored in the wavelet tree for B, then
q < j. We want to count an entry C[q] = p in B if (i) q ≥ i and (ii) p < i. Since p < q, both conditions cannot be violated
simultaneously. Thuswe count entries that violate (i) and entries that violate (ii) and subtract the sum from the total number
of entries for block B. Notice that this does not work for larger block sizes because we need an additional condition q ≤ j.
Using the multiary wavelet tree for t we can count in constant time all entries C[q] = p that are encoded using block size
bk and have q in a given range. This is sufficient to count all entries in B as well as those that violate (i). Counting (ii) can be
done by locating the leaf that represents the position i in the wavelet tree for block B, so that all the positions to the right
at the last level of the wavelet tree for B are those that violate (ii). We locate the leaf by locating its ancestor at height k in
constant time and traversing down inO(k) time. Thus block size bk can be processed inO(k) time and all block sizes smaller
than bmax in O

(α(ℓ) log log(ℓ+ 1))2

time.

Theorem 9. Given a string S[1..n], we can build a data structure that takes nH0(S) + O(n) + o(nH0(S)) bits such that later,
given a substring’s endpoints i and j, inO(log ℓ) time we can count howmany distinct characters it contains, where ℓ = j− i+1.

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 47

4.6. Dynamism

Suppose we want to append a character S[n+ 1] to S. To maintain C , we must append C[n+ 1] = p to it, where p is the
position of the last occurrence of S[n+1] in S[1..n], or 0 if there is no such occurrence.Wemaintain a separate data structure
of σ log n bits to find the last occurrence of any character in O(log σ) time. We will describe how to append C[n+ 1] to our
representation of C stored in the data structure we gave in Section 4.3 (as appending it to the data structure from Section 4.2
is similar and simpler).

Our first concern is to append to the string t a character indicating whether p is 0 and, if not, the block size used for
it. Instead of storing t with a multiary wavelet tree, we now store it with a Huffman-shaped binary wavelet tree [38],
with the bitvectors at the internal nodes stored separately from each other (i.e., not concatenated, as would be usual). As
long as these bitvectors are each stored with at most linear redundancy, they take a total of at most O(n(H0(t)+ 1)) ⊆
O(n log(H0(S)+ 1)+ n) bits. Also, since t is over an alphabet of size O(log log n/ log(1+ δ)), which is O

(log log n)2

with

our choice of δ = 1/α(n), we can store the shape of the tree using O(log n)-bit pointers at each internal node without
increasing our overall space bound.

To append a character to t , we append a bit to each bitvector on the path from the root of the wavelet tree to the leaf
labeled with the character we append (we create this leaf if it does not already exist). Each bit indicates whether the next
node on the path is the current node’s left child or its right child. Many implementations of bitvectors are based on breaking
them into blocks (see, e.g., [40] for more discussion) and, thus, make appending relatively easy. Since we allow ourselves
linear redundancy, whenever a bitvector outgrows the space allocated to it, we double that space; we use background
processing to copy the bitvector into its new location, so that our time bounds are still worst-case. Appending to t takes
a total of O(log log log n) time.

Our other concern is to append C[n + 1] to a sequence of values encoded with the same block size b, all of which are
stored in a wavelet tree. We use essentially the same approach as when appending a character to t . One complication is that
the sequence of values is no longer guaranteed to be over a small alphabet, so it is not immediately clear how we can use
O(log n)-bit pointers at the internal nodes. If b is small, at most n/ log n, then, as with t , there is no problem: calculation
shows that using pointers in all the wavelet trees for small block sizes increases our space bound by at most O(n). For the
case when b > n/ log n, we replace the standard trie shape of wavelet trees with a Patricia trie shape. From the standard
wavelet tree, we remove all nodes associated with an empty sequence. If any remaining node has exactly one child, the
associated bitvector is all 0s or all 1s and can be encoded with a single bit stored in the closest existing descendant of the
node. The resulting wavelet tree shape is a Patricia trie [45], where the number of internal nodes is less than the number
of leaves, which is equal to the number of distinct values in the sequence and, thus, at most the length of the sequence.
Recall that, if we use log b bits for each value stored in the wavelet tree for block size b, for every b, then we use a total of
(1+δ)nH0(S)+O(n)+o(nH0(S)) bits. Therefore, if we useO(log n) ⊆ O(log b) bits for pointers at each internal node, then
we use O(n(H0(S)+ 1)) bits altogether. Appending to the sequence stored in a wavelet tree for a block size takes O(log n)
time.

Theorem 10. We can modify the data structure from Theorem 7 such that we achieve the same time bound for querying and a
space bound of O(n(H0(S)+ 1)+ σ log n) bits while supporting an O(log n)-time append operation.

If we modify the data structure from Section 4.3 by replacing all the wavelet trees (including the multiary wavelet tree)
with dynamic wavelet trees [29], which support queries, insertions and deletions in O

log2 n/ log log n

time,5 we still use

nH0(S) + O(n) + o(nH0(S)) bits, but O

log2 n

time for queries and appends. This data structure can also support color

substitutions and deletions in O

log2 n

time. In order to replace a character S[q] = a by a′, we find the last occurrences

S[p] and S[p′] of a and a′ strictly before S[q], and the first occurrences S[r] and S[r ′] of a and a′ strictly after S[q]. We update
C such that C[q] = p′, C[r] = p and C[r ′] = q, again using O

log2 n

time.

To quickly find the preceding and succeeding occurrence of a character, we maintain a sampled version S ′ of S that
contains approximately every (log log n)th occurrence of each distinct character. More precisely, we maintain the invariant
that between every sampled occurrence of a character a, there is between log log n and 2 log log n unsampled occurrences
of a. Also, the last occurrence of each character is in the sample. We store a dynamic bit vector F [1, n] to mark the sampled
positions and a dynamic wavelet tree for S ′. Since the distribution of symbols is approximately the same in S and S ′, the
space we need is o(nH0(S))+O(n)+ σ log n bits. We can now find the preceding and succeeding occurrence of a character
using a constant number of rank and select queries on F and S ′ and O(log log n) accesses to C . This takes O

log2 n

time. The

same time is also sufficient to modify S ′ when necessary to maintain the invariants.
To delete a character from S, we replace it with a special null character not in the alphabet (which we search for and

excludewhen performing queries). If Sd is a string S with d extra null characters added, then (n+d)H0(Sd)−nH0(S) ≤ n+d.
We also maintain a background process that keeps removing null characters. In one O

log2 n

time step of the process, we

move a run of consecutive null characters one step to the right. The background process works in phases. In the beginning
of a phase, we find the leftmost null character and start moving it to the right. Any null characters encountered will join

5 Multiary wavelet trees achieve O

(log n/ log log n)2

time, but for C we need binary wavelet trees.

48 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

the moving group. The phase ends after at most n steps, when the group reaches the end and can be easily removed. For
every new deletion, we perform two steps of the background process. This ensures that, if at most half of characters are null
characters in the beginning of a phase, the same is true at the end. Thus the number of null characters and the extra bits
needed to store them remains O(n).

Theorem 11. We can modify the data structure from Theorem 7 such that it takes nH0(S) + O(n) + o(nH0(S)) + σ log n bits,
and supports queries, appends, color substitutions and deletions in O

log2 n

time.

We note that our sampled string S ′, together with F and C , indeed replace the original sequence S, in the sense that any
symbol S[i] can be obtained from S ′ and C in timeO

log2 n

, as follows. First check if F [i] = 1; if so then S[i] = S ′[rank1(F , i)].

Else, do i← C[i], which sends us to the previous occurrence in S of the (yet unknown) symbol c = S[i], and iterate. Due to
our sampling invariants, after O(log log n) steps we will find a sampled position i such that F [i] = 1 (actually we need to
make sure that the first occurrence of each symbol is sampled,which addsσ log nbits). Note this technique applies also in the
static case, where also with just σ log n extra bits we can obtain any S[i] from our representation, in time O(log n log log n).

5. Concluding remarks

We have presented new and efficient solutions for three natural colored range queries: colored range listing, colored
range top-k queries, and colored range counting. Our solutions for colored range listing lead to the fastest compressed data
structures for that problem and for document listing; our (approximate) solution for colored range top-k queries is, as far as
we know, the first efficient data structure for that problem; and our solution for colored range counting reduces the space
bound fromO(n log n) bits to nH0(S)+O(n)+o(nH0(S)) bits while simultaneously improving query time toO(log ℓ), where
ℓ is the size of the query range. Although our solutions for general colored range top-k queries and colored range counting
do not give improved bounds for the corresponding document retrieval problems, our more general data structures may
find applications to other information retrieval scenarios beyond ranges induced by searching for exact patterns in suffix
trees or arrays.

A simple example of natural queries not fitting in the restricted model are lexicographic range queries. Imagine we
look for patterns lexicographically in the range [‘‘1969’’,‘‘2010’’] in documents; the result is a suffix array range that
does not correspond to any suffix tree node. In this case, existing techniques for document retrieval based on suffix tree
properties (such as for computing top-k queries [32] and for computing document frequencies [55]) will not work. The
general techniques we have introduced in this article do.

Yet another scenario that is not captured by the suffix treemodel is inverted indices for natural language text (as opposed
to the general texts addressed in this paper) [3]. Consider that we store the list of documents where each vocabulary
word appears, consecutively according to the order of the words in the vocabulary. If queries are simple words, then all
the document retrieval problems we have considered are easily solved by storing the documents of each list ordered by
decreasing term frequency. Yet, imagine we wish to provide also the same functionality on stemmed searching, upon user
request at query time. One solution is to group together the vocabularywords sharing the same stem so that,while individual
word queries can be handled as usual, stemmed queries are handled by considering the concatenation of the lists of the
words sharing the same stem. Then we can regard the concatenation of all inverted lists as the array E and use the general
techniques developed in this paper to answer various document queries on stems:Document listing and counting algorithms
apply verbatim, while those involving frequencies pose further challenges as each entry in the inverted lists is weighted by
the term frequency of the word in the document. Other query operations, from case folding to thesauri expansion, can also
be reduced to a proper grouping of lists.

Finally, there are information retrieval scenarios completely different from the text search framework. For example,
colored range queries seem a natural tool for query mining [2], where logs of queries posed to search engines are recorded
over periods of time, and then analyzed to discover trends in user behavior. By considering that each different query is a color,
we can find the most popular queries or the number of distinct queries within any given time period; by considering each
visitor as a color, we can find the number of unique visitors within any given time period. There are many other potential
queries of interest, which could in turn become new challenging colored range queries.

5.1. Postscript

Document retrieval is an active research topic, as demonstrated by some very recent publications improving (and in some
cases building upon) our results. Apart from the results described in Section 2, Belazzougui andNavarro [6] built on ourwork
in Section 3.1, and improved our time bounds for the document top-k problem to O(search(m)+ k log k log(D/k) logϵ n)
while keeping the same space bounds, and also gave a solution that takes O(n log log logD) extra bits and answers queries
in O

search(m)+ k lookup(n) log k log1+ϵ n

time. Hon et al. [31] and Navarro and Nekrich [49] also gave solutions for

the document top-k problem that use more space than ours but answer queries faster. Hon et al.’s first solution takes
2n logD + o(n logD) extra bits on top of a CSA and answers queries in O(search(m)+ k log k) time; their second solution
takes n logD + o(n logD) extra bits and answers queries in O

search(m)+ k(log k+ (log log n)2+ϵ)

time. Navarro and

Nekrich’s solution takes a total of O(n(log σ + logD+ log log n)) bits, where σ is the size of the alphabet of the documents,

T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50 49

and answers queries in optimal O(m+ k) time. On the practical side, Navarro et al. [50] implemented the idea in our
Theorem 3 and showed it was competitive in practice, achieving significantly less space than the alternative solutions.

Acknowledgments

Many thanks to Djamal Belazzougui, Veli Mäkinen, Giovanni Manzini and Jorma Tarhio, for helpful discussions, and the
referees of the earlier versions of this paper, for helpful comments.

References

[1] A. Apostolico, The myriad virtues of subword trees, in: Combinatorial Algorithms on Words, Springer-Verlag, 1985, pp. 85–96.
[2] R. Baeza-Yates, Applications of web query mining, in: Proceedings of the 27th European Conference on IR Research, Springer, 2005, pp. 7–22.
[3] R. Baeza-Yates, B. Ribeiro, Modern Information Retrieval, Addison-Wesley, 1999.
[4] J. Barbay, T. Gagie, G. Navarro, Y. Nekrich, Alphabet partitioning for compressed rank/select with applications, in: Proceedings of the 21st International

Symposium on Algorithms and Computations, Springer, 2010, pp. 315–326.
[5] J. Barbay, M. He, J.I. Munro, S.S. Rao, Succinct indexes for strings, binary relations and multi-labelled trees, in: Proceedings of the 18th Symposium on

Discrete Algorithms, SIAM, 2007, pp. 680–689.
[6] D. Belazzougui, G. Navarro, Improved compressed indexes for full-text document retrieval, in: Proceedings of the 18th SymposiumonString Processing

and Information Retrieval, Springer, 2011, pp. 386–397.
[7] D. Belazzougui, G. Navarro, New lower and upper bounds for representing sequences, in: Proceedings of the 20th Annual European Symposium on

Algorithms, in: LNCS, vol. 7501, Springer, 2012, pp. 181–192.
[8] P. Bille, G.M. Landau, R. Raman, K. Sadakane, S.R. Satti, O. Weimann, Random access to grammar-compressed strings, in: Proceedings of the 22nd

Symposium on Discrete Algorithms, SIAM, 2011, pp. 373–389.
[9] P. Bozanis, N. Kitsios, C. Makris, A.K. Tsakalidis, New upper bounds for generalized intersection searching problems, in: Proceedings of the 22nd

International Colloquium on Algorithms, Languages and Programming, Springer, 1995, pp. 464–474.
[10] G.S. Brodal, B. Gfeller, A.G. Jørgensen, P. Sanders, Towards optimal range medians, Theoretical Computer Science 412 (2011) 2588–2601.
[11] S. Carlsson, J.I. Munro, P.V. Poblete, An implicit binomial queue with constant insertion time, in: Proceedings of the 1st Scandinavian Workshop on

Algorithm Theory, Springer, 1988, pp. 1–13.
[12] T. Chan, S. Durocher, K.G. Larsen, J. Morrison, B.T. Wilkinson, Linear-space data structures for range mode query in arrays, in: Proceedings of the 29th

Symposium on Theoretical Aspects of Computer Science, in: Leibnitz Zentrum für Informatik, 2012, pp. 290–301.
[13] J.S. Culpepper, G. Navarro, S.J. Puglisi, A. Turpin, Top-k ranked document search in general text databases, in: Proceedings of the 18th European

Symposium on Algorithms, Springer, 2010, pp. 194–205.
[14] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representations of sequences and full-text indexes, ACM Transactions on Algorithms 3

(2007) article 20.
[15] P. Ferragina, R. Venturini, A simple storage scheme for strings achieving entropy bounds, Theoretical Computer Science 371 (2007) 115–121.
[16] J. Fischer, Optimal succinctness for rangeminimumqueries, in: Proceedings of the 9th LatinAmerican SymposiumonTheoretical Informatics, Springer,

2010, pp. 158–169.
[17] J. Fischer, V. Heun, A new succinct representation of RMQ-information and improvements in the enhanced suffix array, in: Proceedings of the 1st

Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, Springer, 2007, pp. 459–470.
[18] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, in: Proceedings of the 16th Symposium on Theory of

Computing, ACM, 1984, pp. 135–143.
[19] T. Gagie, J. Kärkkäinen, Counting colours in compressed strings, in: Proceedings of the 22nd Annual Symposium on Combinatorial Pattern Matching,

Springer, 2011, pp. 197–207.
[20] T. Gagie, G. Navarro, S.J. Puglisi, Colored range queries and document retrieval, in: Proceedings of the 17th Symposium on String Processing and

Information Retrieval, Springer, 2010, pp. 67–81.
[21] T. Gagie, G. Navarro, S.J. Puglisi, New algorithms on wavelet trees and applications to information retrieval, Theoretical Computer Science 426–427

(2012) 25–41.
[22] T. Gagie, S.J. Puglisi, A. Turpin, Range quantile queries: Another virtue of wavelet trees, in: Proceedings of the 16th Symposium on String Processing

and Information Retrieval, Springer, 2009, pp. 1–6.
[23] A. Golynski, Optimal lower bounds for rank and select indexes, Theoretical Computer Science 387 (2007) 348–359.
[24] A. Golynski, R. Raman, S. Rao, On the redundancy of succinct data structures, in: Proceedings of the 11th ScandinavianWorkshop on Algorithm Theory,

Springer, 2008, pp. 148–159.
[25] R. González, G. Navarro, Compressed text indexes with fast locate, in: Proceedings of the 18th Symposium on Combinatorial Pattern Matching,

Springer, 2007, pp. 216–227.
[26] M.Greve, A.G. Jørgensen, K.D. Larsen, J. Truelsen, Cell probe lower bounds and approximations for rangemode, in: Proceedings of the 37th International

Colloquium on Algorithms, Languages and Programming, Springer, 2010, pp. 605–616.
[27] R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: Proceedings of the 14th Symposium on Discrete Algorithms, SIAM,

2003, pp. 636–645.
[28] R. Grossi, A. Orlandi, R. Raman, Optimal trade-offs for succinct string indexes, in: Proceedings of the 37th International Colloquium on Algorithms,

Languages and Programming, Springer, 2010, pp. 678–689.
[29] M. He, I. Munro, Succinct representations of dynamic strings, in: Proceedings of the 17th International Symposium on String Processing and

Information Retrieval, Springer, 2010, pp. 334–346.
[30] W. Hon, R. Shah, S. Wu, Efficient index for retrieving top-k most frequent documents, in: Proceedings of the 16th Symposium on String Processing

and Information Retrieval, Springer, 2009, pp. 182–193.
[31] W.K. Hon, R. Shah, S.V. Thankachan, Towards an optimal space-and-query-time index for top-k document retrieval, in: Proceedings of the 23rd

Symposium on Combinatorial Pattern Matching, Springer, 2012, pp. 173–184.
[32] W.K. Hon, R. Shah, J. Vitter, Space-efficient framework for top-k string retrieval problems, in: Proceedings of the 50th Symposium on Foundations of

Computer Science, IEEE, 2009, pp. 713–722.
[33] I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-K query processing techniques in relational database systems, ACM Computing Surveys 40 (2008).
[34] R. Janardan, M.A. Lopez, Generalized intersection searching problems, International Journal of Computational Geometry and Applications 3 (1993)

39–69.
[35] H. Kaplan, N. Rubin, M. Sharir, E. Verbin, Efficient colored orthogonal range counting, SIAM Journal on Computing 38 (2008) 982–1011.
[36] M. Karpinski, Y. Nekrich, Top-K color queries for document retrieval, in: Proceedings of the 22nd Symposium on Discrete Algorithms, SIAM, 2011,

pp. 401–411.
[37] Y.K. Lai, C.K. Poon, B. Shi, Approximate colored range and point enclosure queries, Journal of Discrete Algorithms 6 (2008) 420–432.
[38] V. Mäkinen, G. Navarro, Succinct suffix arrays based on run-length encoding, Nordic Journal of Computing 12 (2005) 40–66.

50 T. Gagie et al. / Theoretical Computer Science 483 (2013) 36–50

[39] V. Mäkinen, G. Navarro, Implicit compression boostingwith applications to self-indexing, in: Proceedings of the 14th Symposium on String Processing
and Information Retrieval, Springer, 2007, pp. 229–241.

[40] V. Mäkinen, G. Navarro, Rank and select revisited and extended, Theoretical Computer Science 387 (2007) 332–347.
[41] U. Manber, G. Myers, Suffix arrays: a new method for on-line string searches, SIAM Journal on Computing 22 (1993) 935–948.
[42] G. Manzini, An analysis of the Burrows-Wheeler transform, Journal of the ACM 48 (2001) 407–430.
[43] Y. Matias, S. Muthukrishnan, S.C. Sahinalp, J. Ziv, Augmenting suffix trees, with applications, in: Proceedings of the 6th European Symposium on

Algorithms, Springer, 1998, pp. 67–78.
[44] R.L. Milidiú, E.S. Laber, Bounding the inefficiency of length-restricted prefix codes, Algorithmica 31 (2001) 513–529.
[45] D.R. Morrison, PATRICIA — practical algorithm to retrieve information coded in alphanumeric, Journal of the ACM 15 (1968).
[46] I. Munro, Tables, in: Proceedings of the 16th Conference on Foundations of Software Technology and Theoretical Computer Science, Springer, 1996,

pp. 37–42.
[47] S. Muthukrishnan, Efficient algorithms for document retrieval problems, in: Proceedings of the 13th Symposium on Discrete Algorithms, SIAM, 2002,

pp. 657–666.
[48] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Computing Surveys 39 (2007).
[49] G. Navarro, Y. Nekrich, Top-k document retrieval in optimal time and linear space, in: Proceedings of the 22nd Symposium on Discrete Algorithms,

SIAM, 2012, pp. 1066–1077.
[50] G. Navarro, S.J. Puglisi, D. Valenzuela, Practical compressed document retrieval, in: Proceedings of the 10th International Symposium on Experimental

Algorithms, Springer, 2011, pp. 193–205.
[51] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proceedings of the Workshop on Algorithm Engineering and

Experiments, SIAM, 2007.
[52] H. Petersen, S. Grabowski, Rangemode and rangemedian queries in constant time and sub-quadratic space, Information Processing Letters 109 (2009)

225–228.
[53] R. Raman, V. Raman, S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Proceedings of the 13th

Symposium on Discrete Algorithms, SIAM, 2002, pp. 233–242.
[54] K. Sadakane, New text indexing functionalities of the compressed suffix arrays, Journal of Algorithms 48 (2003) 294–313.
[55] K. Sadakane, Succinct data structures for flexible text retrieval systems, Journal of Discrete Algorithms 5 (2007) 12–22.
[56] K. Sadakane, G. Navarro, Fully-functional succinct trees, in: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,

2010, pp. 134–149.
[57] N. Välimäki, V. Mäkinen, Space-efficient algorithms for document retrieval, in: Proceedings of the 18th Symposium on Combinatorial Pattern

Matching, Springer, 2007, pp. 205–215.
[58] P. Weiner, Linear pattern matching algorithm, in: Proceedings of the 14th IEEE Symposium on Switching and Automata Theory, IEEE, 1973, pp. 1–11.

	Colored range queries and document retrieval
	Introduction
	Color and document listing
	Related work on color range listing
	Related work on document listing
	New tradeoffs

	Top-k queries
	Improving the current-best solution for documents
	An approximate solution to the general problem
	The K-mining problem

	Counting
	Related work
	Simple blocking
	Multi-size blocking
	Time independent of n
	Reducing time
	Dynamism

	Concluding remarks
	Postscript

	Acknowledgments
	References

