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Abstract Content-Based Video Copy Detection (CBVCD) consists of detecting
whether or not a video document is a copy of some known original and to retrieve
the original video. CBVCD systems rely on two different tasks: Feature Extraction
task, that calculates many representative descriptors for a video sequence, and
Similarity Search task, that is the algorithm for finding videos in an indexed collection
that match a query video. This work details a CBVCD approach based on a
combination of global descriptors, an automatic weighting algorithm, a pivot-based
index structure, an approximate similarity search, and a voting algorithm for copy
localization. This approach is analyzed using MUSCLE-VCD-2007 corpus, and it
was tested at the TRECVID 2010 evaluation together with other state-of-the-art
CBVCD systems. The results show that this approach enables global descriptors to
achieve competitive results and even outperforms systems based on combination of
local descriptors and audio information. This approach has a potential of achieving
even higher effectiveness due to its seamless ability of combining descriptors from
different sources at the similarity search level.
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1 Introduction

Multimedia Information Retrieval (MIR) aims at searching and retrieving mul-
timedia documents from large collections. MIR systems can be classified in two
approaches: Text-Based, when the search is performed using the textual information
associated with a document (tags, titles, and metadata in general), and Content-
Based (CBMIR), when the search is based on the multimedia content itself (col-
ors, edges, textures, etc.). Content-Based methods can improve the effectiveness
of retrieval even when textual information is present [20]. However, the lack of
coincidence between the information that can be extracted from the multimedia
document and the interpretation that a user gives to the same data is known as the
Semantic Gap [30].

As a part of CBMIR, Content-Based Video Copy Detection (CBVCD) consists
of detecting whether or not a video document is a copy of some known original and
to retrieve the original video. CBVCD systems perform the detection using only the
audio and visual content of videos, ignoring any metadata associated with videos.
In general, the techniques used in CBVCD are similar to those used in CBMIR,
however the main difference is while CBMIR tries to bridge the semantic gap,
CBVCD aims to retrieve a multimedia document even when some transformations
have been applied to them.

In this paper, we present an approach for CBVCD called P-VCD, which is based
on global descriptors and metric spaces. P-VCD was developed by the PRISMA
Research Group at the University of Chile for its participation in TRECVID 2010 [2].
A summarized overview of P-VCD can be found in [3].

The main contributions of this work are: a detailed review of the proposed ap-
proach, a novel automatic weight selection algorithm for combination of descriptors,
a deep analysis of the system parameters and capabilities. This work is the product of
careful analyses and experiments to justify that the global descriptors can indeed be
competitive. Algorithms 1–5 may have been cited from [3], but we included them and
adapted them to the formalism of this paper in order to make clearer the discussion
in the experimental section.

In summary, this work shows a successful application of the metric space approach
to the CBVCD problem. It proves that simple global descriptors can achieve high
effectiveness and even outperform systems based on local descriptor and/or audio
information.

The rest of the paper is structured as follows: Section 2 reviews the current
work for CBVCD. Section 3 shows our approach in detail. Section 4 presents the
experimental evaluation and analysis of results. Section 5 concludes the paper giving
some final thoughts and recommendations about global descriptors.

2 Background and related work

In this section, we review the metric space approach for similarity searches and its
application for MIR. Then, we review the foundations of CBVCD with the most
commonly used techniques for feature extraction and similarity search.
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2.1 Metric spaces

Let D be a set of objects (called the domain), and let d : D × D → R be a function
(called the distance), a metric space [32] M is defined by the pair (D, d), where d
satisfies the metric properties:

reflexivity ∀x, y ∈ D, d(x, x) = 0
positiveness ∀x, y ∈ D, x �= y ⇒ d(x, y) > 0
symmetry ∀x, y ∈ D, d(x, y) = d(y, x)

triangle inequality ∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z)

Given a collection R ⊆ D, and a query object q ∈ D, the range search returns all
the objects in R that are closer than a distance threshold ε to q. The nearest neighbor
search (k-NN) returns the k closest objects to q in R, and the NN+range search
returns the intersection between a k-NN search and a range search.

In the case of Image Retrieval systems, d is usually a dissimilarity function
between images that compares their global descriptors. Let I be the set of images,
let g : I → F be a feature extraction method that calculates a global descriptor
g(o) for an image o, and let dg : F × F → R be a distance function between two
global descriptor, dg(a, b) is a low value (near zero) when descriptors a and b are
similar and it is a high value when a and b are dissimilar. If dg satisfies the metric
properties, then (F , dg) is a metric space, and the metric space (I, d) is defined where
d(x, y) = dg(g(x), g(y)).

The metric properties represent a tradeoff between efficiency and effectiveness
for similarity searches. On one hand, the metric properties enables the use of well
studied index structures, accelerating searches by avoiding distance evaluations (as
we review in next section). On the other hand, metric properties restrict the similarity
model that can be used for comparing two objects [28].

2.1.1 Efficiency in metric spaces

For improving efficiency in metric spaces, the Metric Access Methods (MAMs) [9]
are index structures designed to perform efficient similarity search queries. MAMs
avoid a sequential scan over the whole database by using the metric properties to save
distance evaluations. Given the metric space M = (D, d), the object-pivot distance
constraint [32] guarantees that:

∀a, b , p ∈ D, |d(a, p) − d(b , p)| ≤ d(a, b) ≤ d(a, p) + d(b , p) (1)

This constraint implies that for any two objects a and b , a lower bound and an
upper bound of d(a, b) can be calculated using a third object p, which is called a
pivot object, see Fig. 1. MAMs group objects in the database and for searching they
use (1) to discard groups of objects, thus saving evaluations of d and search time.
MAMs differ in their methods for grouping objects and for selecting pivots. Some
examples of MAMs are the M-Tree [10] and the GNAT [6].

The efficiency that some MAM can achieve is related to: a) the amount of
distance evaluations that are discarded when it performs a similarity search, and b)
the internal cost for deciding whether some distance can be discarded or not. For
analyzing the efficiency that any MAM can achieve in some metric space, Chávez



78 Multimed Tools Appl (2013) 62:75–110

Fig. 1 The object-pivot
distance constraint for distance
d(a, b) using the pivot object p

et al. [9] propose to analyze the histogram of distances. The histogram of distances is
constructed by sampling many pairs of objects a, b , evaluating distances d(a, b), and
accumulating them into a histogram, see Fig. 2.

The intrinsic dimensionality ρ of a metric space is defined as:

ρ(M) = μ2

2σ 2
, (2)

where μ and σ 2 are the mean and the variance of the histogram of distances. The
intrinsic dimensionality tries to quantify the difficulty for indexing a metric space. A
high ρ implies that the difference between any two distances will probably be a small
value, thus the lower bounds for most of the pivots will be too low to discard objects.
Increasing the number of pivots will improve the value of the lower bounds, however
the internal cost of the MAM will also increase.

Due to the inherent subjectiveness of image similarity and imprecision of image
descriptors, approximate searches can improve the efficiency for Image Retrieval
systems with a low cost in the effectiveness. They offer much faster searches at
the cost of losing accurateness, i.e. the nearest neighbors that the approximate NN
search returns might not be the actual nearest neighbors for the query object. The ap-
proaches for approximate searches can be broadly classified into two categories [32]:
(1) a reduction of the data to be examined, analyzing less data than is technically
needed; and (2) a transformation of the metric space, replacing the domain or the
distance of the metric space to reduce the search cost. In this work, we present an
approximate search that replaces a costly distance function with a fast estimator.

Fig. 2 Histogram of distances
with median μ, variance σ 2,
and maximum distance M for
some metric space M = (R, d)
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2.1.2 Ef fectiveness in metric spaces

For improving effectiveness in metric spaces, one approach is to combine metric
spaces defining a dissimilarity function as a linear combination of metrics. Let
D be the set of objects, let {g1, ..., gm} be a set of a feature extraction methods
where gi : D → Fi extracts a global descriptor, let {d1, ..., dm} be a set of distance
functions where di : Fi × Fi → R is a dissimilarity function that defines the metric
space (Fi, di), and let {w1, ..., wm} be the set of weights wi ∈ R, then a multi-metric
space [7] (D, δ) is defined where δ : D × D → R calculates the dissimilarity between
two objects as:

∀x, y ∈ D, δ(x, y) =
m∑

i=1

wi · di(gi(x), gi(y))

We will call the set {d1, ...dm} as the underlying metrics of δ. In this work, we will
focus on convex combinations, i.e. wi ∈ [0, 1] and

∑m
i=1 wi = 1.

Bustos et al. [7] proposed a dynamic weighting of metrics, called entropy impurity,
where each weight changes depending on the query object. This method computes
the set of weights prior to each similarity search by analyzing the result of a search
on a database already classified. A similar technique is also proposed by Deselaers
et al. [11] under the name of maximum entropy. The major problem with dynamic
weighting is that it breaks the metric properties, thus general MAMs cannot be used.

If weights are static (i.e. a fixed value for all searches), then δ also satisfies the
metric properties [4], thus any MAM can be used for indexing the objects. The
value assigned to each weight depends on the actual implementation of descriptors
(a different weight is required depending on whether a descriptor represents colors
or textures), and application specifics (a system that retrieves sport images may
use different weights than a system that retrieves hand-made sketches). The set
of weights can be fixed subjectively as fine tuning parameters [4], or can be fixed
in accordance with evaluations of effectiveness. However, for some systems the
evaluation of the effectiveness might be difficult to define (an evaluation process
and good indicators must be chosen), expensive to perform (requiring the hiring
of users to test the system and fill out evaluation forms), or even impossible (for
corpuses with unknown solution). In this work we present a novel technique for
selecting automatically a set of weights with high effectiveness without performing
any effectiveness evaluation.

2.2 Content-based video copy detection

Content-Based Video Copy Detection (CBVCD) consists of detecting videos that
are copies of known original videos, and retrieving the segment of the original
video that was copied. The detection method must only make use of visual and
audio content, so it cannot embed watermarks or use any metadata in the original
videos. Joly et al. [15] propose a definition of “copy” based on a subjective notion of
tolerated transformations: A tolerated transformation (TT) is a function that creates
a new version of a document where the original document “remains recognizable”.
That is, let T be a set of TTs, and u and v be two videos, v will be a copy of u if
∃t ∈ T, t(u) = v.
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Some problems where CBVCD techniques can be applied are: identification of
known sequences in video streams (like commercials in a television stream), purging
multiple copies of the same video content in a collection, checking for copyright
infringements in videos uploaded by users to video sharing sites, grouping of videos
in a post-processing phase of a video search engine, detection of commons shots for
a video footage managing system, replication of video semantic descriptions, and
mining of video databases.

CBVCD systems usually rely on two different tasks: Feature Extraction and
Similarity Search. On one hand, the Feature Extraction task calculates representative
descriptors for a video sequence. CBVCD systems extract keyframes from each
video, and from those keyframes they extract descriptors. Frame descriptors can be
either global or local. Global descriptors represent the content of a whole frame. In
order to achieve high effectiveness, the descriptors calculated by the feature extrac-
tion method should be as invariant as possible to the TTs. Some examples of global
descriptors for CBVCD are color histograms [14] and the Ordinal Measurement
(OM) [16]. Local descriptors represent the neighborhood of interest points in a
frame. In order to achieve high effectiveness, the interest points detection and the
local descriptor should be as invariant as possible to the TTs. The most commonly
used local descriptors for CBVCD are SIFT [21] and SURF [5].

On the other hand, the Similarity Search task is implemented by an algorithm
that finds objects in an indexed collection that match a given query. Three different
search approaches are typically followed by CBVCD systems: continuous, discrete,
and probabilistic.

First, the continuous approach corresponds to the traditional search in metric
spaces. Given a query video and a distance function, it performs a range or a nearest
neighbor search, selecting the closest objects to the query. This is the preferred
approach for global descriptors. For example, Hampapur et al. [14] compare the
effectiveness of different global descriptors which are extracted from keyframes
selected by regular sampling. They compare their effectiveness by changing the
range threshold of the search. Kim et al. [16] extract an OM descriptor for video
keyframes, and a temporal OM with the changes (increase or decrease) of the
intensity for consecutive keyframes. The distance between two videos is defined
as the combination of a spatial difference and a temporal difference, where the
spatial difference is the average of the differences between their OM descriptors,
and the temporal difference is the average of differences between their temporal
OM descriptors. This distance is compared to a threshold in order to decide the
existence of a copy between the two videos. The search algorithm takes every video
in the database and calculates the distance to the query video probing all possible
alignments without using any index structure. In other work, Gupta et al. [13]
extract audio-based descriptors, which are compared by performing nearest neighbor
searches implemented on GPU (the searches are sequential scans, without an index).

Second, the discrete approach represents each descriptor with a value taken from
a fixed set. It was initially proposed by Sivic and Zisserman [27] and is also known
as the bag-of-features approach. A system implementing this approach proved to be
highly effective and efficient in TRECVID 2008 [12]. In other work, Poullot et al. [26]
create a global descriptor for each frame from its local descriptors, which they call
“glocal descriptors”, and organize them in an inverted index for searching similar
frames.
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Third, the probabilistic approach performs a probability-based approximate
search. Joly et al. [15] partition the space with a Hilbert space filling curve and
estimate a distribution of descriptors for each block. Poullot et al. [25] replace
the Hilbert curves with Z-order curves maintaining the probability-based search
method. Law-To et al. [18] track the trajectories of persistent interest points between
consecutive keyframes. If the points are static, they represent the background,
and if they are moving, they represent objects in motion. A probabilistic search
is performed, and with a voting algorithm based on a geometric model they can
detect copies even for complex TTs, like replacement of background or insertion
of characters in a scene.

In recent years, there has been a lot of research on the video copy detection topic.
The main issues currently being faced are the development of new techniques for
managing local descriptors, and the development of different fusion techniques for
local, global, and audio descriptors.

3 CBVCD using metric spaces and global descriptors

In this section, we introduce our approach for implementing a CBVCD system using
metric spaces. Let V be the set of videos for the reference collection (the known
originals), let T be the set TTs that can be applied to reference videos, and let C be
the set of videos for the query collection (the potential copies). For each query video
c ∈ C, a CBVCD system returns a list of copy detections (c̄, v̄, s), where c̄ is a segment
from c, v̄ is a segment from an original video v ∈ V , and s ∈ R

+ is a confidence score
for t(v̄) = c̄ for some t ∈ T .

In our approach, we divide a CBVCD system into five tasks: (1) Preprocessing,
(2) Video Segmentation, (3) Feature Extraction, (4) Similarity Search, and (5) Copy
Localization. As a general overview, the Preprocessing task processes every query
and reference video with the objective of normalizing reference and query videos
and diminishing the effect of TTs on query videos. This task creates a new set of
query videos C ′ and reference videos V ′. The Video Segmentation task partitions
every video into short video segments, producing a set of query segments and a set of
reference segments. The Feature Extraction task calculates many global descriptors
for every segment. The Similarity Search task performs a NN+range search for
each query segment which returns the k most similar reference segments. The Copy
Localization task takes the sets of similar segments for the segments in a query video,
and it searches for groups of reference segments that belong to the same reference
video. This task produces a set of detection candidates between preprocessed videos
(c̄′, v̄′, s′), which then are combined to return the final set of detections (c̄, v̄, s).

In the following subsections we review in detail each of these tasks.

3.1 Preprocessing

This task has two objectives: (1) to normalize the quality of videos in V and C, and
(2) to diminish the effect of TTs on videos in C.

To normalize a video, it processes every frame and marks a frame fi to be skipped
if it is plain ( fi has low variance between the intensity of its pixels) or it is an outlier
(the image difference between previous frame fi−1 and next frame fi+1 is low and the
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image differences between fi and fi−1 and between fi and fi+1 are high). A frame is
skipped by duplicating the previous frame fi−1 when i > 0, or the next non-skipped
frame when i = 0. Then, it processes the whole video detecting a letter-, pillar-, or
window-boxing and removes it by cropping the black borders. For each video v ∈ V
its normalized version v′ is added to the output set V ′, also for each query video c ∈ C
its normalized version c′ is added to the output set C ′.

For diminishing the effect of TTs on a normalized query video c′, the task
requires that the possible TTs in T are known. The objective is to create new
query videos by detecting and reverting the TTs for which global descriptors are
not invariant. In our work, we have focused on preprocessing two TTs: picture-in-
picture (PIP) and camcording. If PIP ∈ T , a PIP detection is performed by detecting
a persistent rectangle on c′. When a PIP is detected two new query videos are
created: the foreground video (each frame cropped to the detected rectangle) and the
background video (each frame with the detected rectangle filled with black pixels).
If camcording ∈ T , a camcording detection is performed by detecting a wrapping
quadrilateral on c′. When camcording is detected a new query video is created by
mapping the detected quadrilateral to the video corners. All the created query videos
are normalized and added to the output set C ′. See Fig. 3.

3.2 Video segmentation

The objective of this task is to partition every reference video and query video into
short video segments. A short video segment (in the following, a segment) is a group
of similar consecutive frames. It is not required that the segments be the same length.
Optionally, each segment can select one of its frames as a representative frame. More
formally, given a video v ∈ V ′ ∪ C ′ of n frames { f1, ..., fn}, the video segmentation

Fig. 3 Preprocessing task: a query video with PIP, detected rectangle, and new query videos created
by the reversion. b query video with camcording, detected quadrilateral, and new query video created
by the reversion
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task partitions v into a set of r segments {s1, .., sr} where ∀i ∈ {1, ..., r}, |si| = li > 0,
si = { fki , ..., fki+li−1}, and ∀ f ∈ { f1, ..., fn}, ∃! s ∈ {s1, .., sr}, f ∈ s; optionally, for each
segment s ∃! fs ∈ s that fs represents s.

We divide a video into segments instead of shots, because dividing a video into
shots will result in too few segments. Some corpuses contain copies shorter than a
single shot, making a denser division necessary. We do not just select keyframes, be-
cause for feature extraction we will use a whole segment instead of just representative
frames (more details will be given in the next subsection).

In our implementation, we first partition the video into segments of fixed length,
and then we join two consecutive segments when all their frames are almost identical
between them.

3.3 Feature extraction

The objective of this task is to calculate one or more global descriptors to represent
each video segment. Let S be the set of short video segments, the feature extraction
method is defined by the pair (g, d) where g : S → F is the extraction function, g(s) is
the global descriptor for segment s, and d : F × F → R is the function that compares
descriptors.

This task establishes three requirements for a feature extraction method: (1) g(s)
should represent the whole segment s; (2) d must satisfy the metric properties; (3)
the feature extraction method should not be severely affected by the TTs that might
have been applied to s.

The descriptor g(s) is usually a vector, but it is not required to be the same length
for every segment. g can extract a spatio-temporal descriptor for the whole segment,
or it can simply extract a frame-global descriptor for the representative keyframe of
the segment. In the last case, however, we extract the frame-global descriptor for
every frame in the segment and average the results. Thus, the global descriptor for
a segment is the average of the global descriptors for all of its frames. As we will
show in the experimental section, the average descriptor implies more computational
cost for the feature extraction task, but it improves the effectiveness of the similarity
searches.

If a feature extraction method is severely affected by some TT, the inclusion of
some reversion or normalization for that TT in the preprocessing task should be
considered.

Note that adding more global descriptors in our approach is direct. For example,
the Feature Extraction task may include a feature extraction method that considers
the audio track of the segment, for this g should implement an acoustic descriptor for
the segment, and d should compare the descriptors with a metric distance.

The output of this task is a set of m descriptors {g1(s), ..., gm(s)} for each segment
s, and a set of m metrics {d1, ..., dm} for comparing the descriptors. Figure 4 depicts
the Video Segmentation and Feature Extraction tasks for a reference video.

3.4 Similarity search

The objective of this task is to perform NN+range searches which retrieve the most
similar reference segments for every segment in a query video. For each segment
q ∈ Q, the search returns Nq, which is the list with the k closest reference segments
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Fig. 4 Video segmentation and feature extraction tasks: the video is partitioned into seven segments
by the video segmentation task, and for each segment the feature extraction task calculates three
global descriptors

to q inside a distance threshold ε, i.e. Nq = {(r1, dist1), ..., (rk, distk)}, where ri ∈ R is
the ith nearest neighbor at a distance disti to q, and disti ≤ dist j for i ≤ j.

This task follows three steps: (1) it defines a distance function between two
segments, (2) it creates an index structure for efficient evaluation of similarity
searches, and (3) it performs an approximate NN+range search for every q ∈ Q.

3.4.1 Distance function

Let m be the number of descriptors extracted for each segment by the Feature
Extraction task, let gi(s) be the ith descriptor for segment s, and let di be the metric
for comparing the ith descriptor, i ∈ {1, ..., m}. The spatial dissimilarity between two
segments q and r is defined as a weighted combination of the distances between its
descriptors:

γ (q, r) =
m∑

i=1

wi · di(gi(q), gi(r)) (3)

where wi ∈ [0, 1] and
∑m

i=1 wi = 1. The spatio-temporal distance between two video
segments is defined as the average dissimilarity between W consecutive segments:

δ
(
q j, rk

) = 1

W

W∑

w=1

γ
(

q j+w−� W
2 , rk+w−� W

2 
)

(4)

where W is an odd number, q j is the jth segment for a video v partitioned into
segment {q1, ..., qs}, ∀ j < 1 q j = q1, and ∀ j > s q j = qs. The similarity searches are
performed in the metric space M = (D, δ) where D = R ∪ Q.

Some works including a spatio-temporal distance has been reviewed in Section 2.2.
In particular, the temporal distance for the Ordinal Measurement [16] descriptor
is closely related, however δ is more general because it is not associated with any
descriptor.

The first issue that each weight wi in (3) should solve is to scale distances returned
by each underlying metric di to a range whose values between different metrics
are comparable. Usually, these weights are fixed to normalize each distance by its
maximum value. This normalization scales every metric to a bounded value in range
[0,1], thus they can be combined by δ. However, this approach does not reflect the
distribution of distances inside each metric, i.e. for some di a distance threshold 0.5
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could be a very permissive value (a range search selects many objects) while in other
metric d j could be a very strict (selecting just a few objects).

To overcome this issue, we set each weight wi using the histogram of distances of
di. Because the area of the histogram of distances is normalized to 1, then it can be
seen as a probability distribution of di. Next, we define the cumulative distribution in
a similar way as in probabilities.

Definition 1 (Cumulative distribution) Let d be a distance function, and let Hd be its
histogram of distances, the Cumulative Distribution of Distances Fd : R

+ → [0, 1] is
defined as:

Fd(x) =
∫ x

0
Hd(t)dt

We state that two distance values are comparable when they have the same
selectiveness for their respective distributions, i.e. for two distance functions d1 and
d2 the values d1(x) and d2(y) are comparable when Fd1(x) ≈ Fd2(y).

With the objective of scaling distance functions for making their values compara-
ble, we define the α-normalization.

Definition 2 (α-normalization) Let d be a distance function, and let α be a number
in (0,1], the α-Normalization of d corresponds to scale distances of d with the weight:

w = 1

τα,d

where Fd(τα,d) = α, and Fd is the cumulative distribution of distances for d.

Because δ is used to perform NN+range searches, all its underlying metrics should
be α-normalized with a low value. Then, the smaller distances for the underlying
metrics will be comparable between them. As a general rule, a value between 0.1
and 1

|R| is usually good enough. Note that α = 1 implies the normalization by the
maximum distance. Note also that α-normalization with the same α for different
distance functions should imply a different weight for each one. Figure 5 shows the
α-normalization for two distances.

(a) Distance thresholds      are located for
both distances.

(b) Both distances are normalized 
according to their     .

Fig. 5 Example of α-normalization for two distance functions d1 and d2
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The α-normalization tries to select weights that scale the distributions in order
to make the smaller distances comparable between them. Because histograms of
distances may have different shapes and slopes, the distances become comparable
only in a neighborhood of τα . To make underlying metrics comparable in their whole
ranges a variable weight is needed, however in that case the triangle inequality will
not be satisfied.

The second issue that weights should support is to give more importance to
better descriptors for improving effectiveness. Even when underlying metrics are
comparable, depending on the actual descriptors and the dataset, it may be better
to increase or decrease some weight on the combination.

The α-normalization scales each underlying metric di with a weight that for
randomly-selected objects x,y, P[di(x, y) ≤ 1] = α. Because δ is a convex combi-
nation of α-normalized distances, it might be expected that for randomly-selected
objects x,y P[δ(x, y) ≤ 1] = α. If all the underlying metrics were independent, this
statement would be true. However, in general this statement is not true. The reason
is that the same pair (x, y) selected to evaluate δ is used for each of its underlying
distances. If descriptors i and j are highly correlated, then the conditional probability
increases P[d j(x, y) ≤ 1|di(x, y) ≤ 1] > α. For example, if d1 compares segments by
their RGB histogram and d2 compares them by their HSV histogram, when two
segments x and y are similar according to the RGB histogram (d1(x, y) ≤ 1), the
probability of being similar for the HSV histogram will increase (P[d2(x, y) ≤ 1] >

α). In that case, δ(x, y) will be less than 1 with a probability higher than α, thus the
value of τα,δ (i.e. the value that α-normalizes δ) will be smaller than 1. We define the
following weighting method that tries to favor uncorrelated descriptors as:

Definition 3 (Weighting by Max-τ ) Let δ be a convex combination of underlying
metrics {d1, ..., dm} with weights {w1, ..., wm}, and let α be a number in (0,1], the
Weighting by Max-τ first α-normalizes each underlying metric, and then selects the
set of weights that maximizes τα,δ , where τα,δ is the value that α-normalizes δ.

For maximization of τα,δ , the Newton-Raphson method can be used. However, we
use a simpler approach that fixes each weight wi = 1

m , and then iteratively replaces
one wi with wi ± ε if that change increases τα,δ , and ends when every weight has been
tested and none updated.

In practice, each underlying metric has two associated weights: an internal weight
from its α-normalization, and an external weight from the Weighting by Max-τ . Once
selected the internal and external weight, both can be multiplied to fix the final
weight to each underlying metric.

We should stress that the histogram of distances is created by sampling pairs of
objects and not evaluating every possible pair. Depending on the distance function,
the evaluation of a statistically-relevant number of distances should take from a
few seconds up to a few minutes. Thus, the computational time required for the
normalization and weighting algorithms is practically negligible when it is compared
to the computational time required for the similarity searches.
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3.4.2 Pivot-based index

Let P ⊆ R be a set of reference segments, the lower bound function LBP for
distance δ is defined as:

LBP (q, r) = max
p∈P

{|δ(q, p) − δ(r, p)|} (5)

Each object p ∈ P is called a pivot. Because δ defines the metric space M =
(D, δ), the object-pivot distance constraint from (1) implies that:

∀ q, r ∈ D, ∀P ⊆ R, LBP (q, r) ≤ δ(q, r) (6)

Note that if δ(x, p) is precalculated ∀x ∈ D, then the evaluation of LBP costs just
|P | operations. The index structure consists of a |P | × |R| table with distances from
each pivot to every reference segment. Additionally, for efficient calculation of δ,
each segment must have a reference to the previous and the next segment in the
partition of the video.

A naive approach for selecting pivots is to select objects randomly in R. However,
a key property for good pivot selection is that pivots should be far away from each
other [32]. Sparse Spatial Selection (SSS) [8] uses this property for selecting pivots
incrementally, see Algorithm 1. It first randomizes R and then it selects sparse pivots
depending on the distance that all pivots should be from each other. Note that this
algorithm returns a variable number of pivots depending on randomization of R and
the sparse threshold t.

Because Algorithm 1 depends on randomization, it may produce many different
sets of pivots. The obtained sets of pivots must be evaluated with the objective of
selecting the set that will produce tighter values between LBP and δ in the similarity
searches. Given two sets of pivots P1 and P2 from Algorithm 1, the selection of the
best set follows two criteria: a) if |P1| �= |P2| then select the set with more pivots;
b) if |P1| = |P2| then select the set that produces the higher average value of LBP .
The first criterion says that more pivots implies better P , but the computational cost
for evaluating LBP depends directly on |P|. Therefore, a target number of pivots P
must be chosen. Algorithm 1 is then performed many times with decreasing values
for the sparse threshold t until N sets of pivots have been selected. Finally, the N sets
are evaluated with the two previous criteria and the best set P is selected to create
the index.
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3.4.3 Approximate search with pivots

For every query segment q ∈ Q, the first step is to calculate δ(q, p)∀p ∈ P , and then
to perform the NN+range search for selecting the k closest objects inside a distance
threshold ε. Algorithm 2 depicts a classic “exact” algorithm for NN+range search
using pivots. It uses (6) to evaluate δ only when the lower bound is less than both
the range ε and the kth candidate distance. Though Algorithm 2 can achieve a big
improvement compared to a sequential scan over R (and returning the same result),
it might not be fast enough for video copy detection databases.

Algorithm 3, on the other hand, returns an approximation of the exact result of
Algorithm 2. It is based on the fact that the lower bounds of the nearest neighbors
are usually between the smallest lower bounds. Thus, it uses LBP as an estimator for
the actual distance: it evaluates LBP for every object, it discards objects with LBP
greater than threshold ε, it selects the T objects with smallest values of LBP , and just
for them it evaluates δ. Finally, comparing the T evaluated distances, it selects the k
nearest neighbors that are closer than ε to q. This is an approximate search because
there is no guarantee that the LBP for the actual NN will be between the T smallest
values of LBP .

The key difference between classic search and the approximate search is that while
Algorithm 2 uses LBP value as a lower bound for discarding objects that will have a
high value for δ, Algorithm 3 compares LBP values between them, assuming that a
low/high value for LBP implies a low/high value for δ. Note that (6) is not used on
Algorithm 3 because LBP is used just as a fast δ estimator and not as a lower bound.

As said in the previous subsection, selecting more pivots for P implies tighter
estimations, but it also implies a higher computational cost for evaluating LBP .
However, with tighter estimations a smaller T is necessary for selecting actual NNs.
The tradeoff between |P | and T is analyzed in the experimental section. Note
that as T moves to |R|, Algorithm 3 will produce the same results of Algorithm 2
independent of P . In particular, when T=|R| the approximate search will evaluate δ

for the whole reference collection, thus it will select the same nearest neighbors as
the exact search (but at a higher cost).
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In preliminar experiments we tested more complex estimators. In particular we
tested the minimum upper bound, the average bound (the average between lower
and upper bounds), and the median of the average bound for all the pivots. However,
these estimators did not worth their higher computational cost compared with LBP .

3.5 Copy localization

The objective of this task is to decide the existence of a copy for each query video
v by analyzing the result of the Similarity Search task. The localization is based on
searching groups of nearest neighbors belonging to the same reference video and
offset.

The input for this task is: a query video c′ ∈ C ′ partitioned into the segments
{s1, ..., sr}, a set {N1, ..., Nr} where Ni = {(r1

i , dist1
i ), ..., (r

k
i , distk

i )} is the list of the
nearest neighbors for query segment si, r j

i ∈ R is the jth nearest neighbor, dist j
i ∈

[0, ε] is the distance δ(si, r j
i ), dist j

i ≤ dist j+1
i ∀i ∈ {1, .., r}, j ∈ {1, .., k}, and k and ε are

the parameters for the NN+range searches.
This task creates a list of copy detections candidates, where each candidate is

composed of the copy bounds (start/end time in query video), reference video, offset,
and detection score. An offset is the time that needs to be added to query video
bounds for getting reference video bounds, i.e., copy start + of fset = reference start
and copy end + of fset = reference end.

The first step compares every si with its neighbors in Ni collecting all the reference
video v′ ∈ V ′ that owns some segment r j

i and all the minimum and maximum
offsets. The offsets are obtained by comparing start/end times for si with start/end
times for r j

i .
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The second step takes every candidate reference video, divides its minimum and
maximum offsets into small intervals of fixed length (for example, 0.1 s). A copy
candidate is composed of a reference video and an offset interval. Then, it performs
a copy detection by executing Algorithm 4 for every copy candidate.

For each copy candidate (reference video and offset), Algorithm 4 returns the
query video bounds (start/end) and the copy detection score, thus it produces a list
of detections (c̄′, v̄′, s′). The detection score is the sum of votes that received that copy
candidate from reference segments in the lists of nearest neighbors. Each vote and
voter segment are calculated by the function CalculateVote, depicted in Algorithm 5.

In Algorithm 5, MatchVote is the value for a supporting vote (for example, 1),
which is weighted according to the relevance of the distance and rank of the voter
segment. The relevance of a distance is a value near 0 when distance is ε, and it is 1
when the distance is 0, we use de cumulative distribution of δ to evaluate (Fδ(ε) −
Fδ(dist j))/Fδ(ε). The relevance of a rank is a value near 0 when j = k, and it is 1
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when j = 1. MissCost is the cost when there is not a reference segment supporting
the detection. This value should be zero or a negative for favoring detections without
discontinuities (for example, −0.1).

The third and last step combines the list of detections for the query videos created
by the Preprocessing task. For each original query video c ∈ C, it searches all its
derived videos c′ ∈ C in the list of detections and combines them. It eliminates
eventual overlaps between detections by keeping the detection with a higher score.
Additionally, it may adjust the scores comparing the best score with the second best,
or it may scale them to the interval [0,1]. Finally, it reports the final list of detections
(c̄, v̄, s).

4 Experimental evaluation

To assess the impact of the different tasks on effectiveness and efficiency, a series of
experiments were performed and the results are presented below.

4.1 Preliminaries

Two video collections were used for the experiments: MUSCLE-VCD-2007 [17]
and TRECVID 2010 [29]. The experiments on the former collection measured the
behavior of P-VCD in detail, while the experiments with the latter compared its
performance with other state-of-the-art CBVCD systems.

4.1.1 Global descriptors

For the next experiments, eight global descriptors were used:

– Edge Histogram [22]. It converts an input frame to gray scale, partitions it
into Nw × Nh sub-images, divides each sub-image into Mw × Mh blocks, further
partitions each block into 2 × 2 sub-blocks, computes the average intensity of
the pixels for each sub-block, and applies an edge detector to each block. The
edge detector is comprised of b different filters of 2 × 2 pixels. If the filter
with maximum strength exceeds a certain threshold t, the block is marked as an
edge block. A histogram of edge blocks is created for each sub-image, thus the
final vector has Nw × Nh × b dimensions. For this work, we set Nw = Nh = 4,
Mw = Mh = 8, and t = 5. We test two descriptors: EH5 uses the set of five filters
in [22] (b = 5) producing a vector of 80 dimensions; and EH10 uses the same
filters and the opposite versions (b = 10) producing a vector of 160 dimensions
for EH10.

– Gray Histogram. Converts a frame to gray scale, divides it into Nw × Nh blocks,
and for each block calculates a histogram of M bins. We tested two descriptors:
G14 where Nw = 1, Nh = 4, M = 32 producing a vector of 128 dimensions; and
G44 where Nw = Nh = 4, M = 10 producing a vector of 160 dimensions.

– RGB Histogram. Divides a frame into Nw × Nh blocks, and for each block
calculates a histogram of M bins for each Red, Green, and Blue channel. We
tested two descriptors: C14 where Nw = 1, Nh = 4, M = 16; and C44 where
Nw = Nh = M = 4; both producing a vector of 192 dimensions.
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– Reduced Image. Converts a frame to gray scale, scales it down to Nw × Nh pixels,
and creates a vector of Nw × Nh dimensions whose values contains the pixel
intensities. We tested the descriptor K11 where Nw = 11 and Nh = 9, producing
a vector of 99 dimensions.

– Ordinal Measurement [16]. Converts a frame to gray scale, divides it into
Nw × Nh blocks, and for each block it calculates the average intensity. Then,
the average intensities are sorted in ascending order, and the final descriptor
corresponds to the rank assigned to each block. We tested the descriptor OM9
where Nw = Nh = 9, producing a vector of 81 dimensions.

Each value in the extracted vectors were uniformly quantized into a 8-bit value, i.e.
an integer value between 0 and 255. Between the eight tested descriptors, only G14
and C14 are invariant to vertical mirroring. We chose to use the same L1 distance
(Manhattan distance) as the metric for comparing all descriptors:

L1((x1, ..., xn), (y1, ..., yn)) =
n∑

i=1

|xi − yi|

Although we could use a different metric for comparing each of the eight
descriptors, we decided to use only L1 for simplifying the analysis. Moreover, L1

is very fast to evaluate, it satisfies the metric properties, and it achieves a satisfactory
effectiveness for all the eight tested descriptor.

4.1.2 MUSCLE-VCD-2007 dataset

MUSCLE-VCD-2007 is the corpus used for CIVR 2007 video copy detection eval-
uation. Currently, MUSCLE is a publicly available and widely-used video copy
database. The reference collection is composed of 101 videos, 60 h total length
(5,285,921 frames, each video at 25 fps), and the query collection (ST1 and ST2
sets) is composed of 18 query videos (15 from ST1 and 3 from ST2), 4 h total length
(348,321 frames, each video at 25 fps). Query videos contain 31 segments (10 in ST1
and 21 in ST2) extracted from different reference videos mixed with segments from
videos not in the reference collection. Approximately 3 h of query videos proceed
from reference collection. Each segment in query videos may have some TT. The
possible TTs are a combination of blur, mirroring, subtitles, camcording, zoom,
change in brightness and contrast, insertion of logo, noise, and change in color. See
Fig. 6.

Between the public databases for video copy detection, we have chosen the
MUSCLE-VCD-2007 database because it has a well defined ground truth (it is
possible to suit a frame-to-frame match between query videos and reference videos),
and its size is appropriate for the following evaluations. It is big enough to be a
challenging database, and exact searches can be resolved in reasonable time, thus
it is possible to evaluate the real effectiveness of approximate searches.

4.1.3 Evaluation measures

As is previous sections, we define R as the set of reference segments, and Q as the
set of query segments. A similarity search is performed for each q ∈ Q using distance
δ on R. We stated that the correct answer for segment q with representative frame fq
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Fig. 6 Some examples of
video copies in
MUSCLE-VCD-2007. On the
left a query video and on the
right the corresponding
reference video

is the reference segment which contains the original frame for fq, i.e., is the segment
r which t(x)= fq for some frame x ∈ r and some t ∈ T .

Each experiment first fixes some configuration for segmentation, descriptors,
distances, and weights, then the similarity searches are performed. For evaluating the
Similarity Search task, the rank of the correct answer for each segment q is calculated.
The best value for the rank Rq is 1 and the worst value is |R|. Once performed the
|Q| similarity searches, we calculate the following effectiveness measures:

– Mean average precision (MAP): 1
|Q|

∑
q∈Q

1
Rq

. MAP values range between 0 and
1, where 1 means best effectiveness. In these experiments, MAP corresponds to
the inverse of harmonic mean of Rq, thus it is mainly influenced by the smaller
ranks mitigating the impact of large outliers.

– Amount of queries with correct answer between the first k nearest neighbors
(Nk): |Ck|

|Q| where Ck = {q ∈ Q, Rq ≤ k}. Nk values range between 0 and 1, where
1 means best effectiveness. This measure is calculated for k ∈ {1, 10}.

– Number of detected copies without false alarms: First, the Similarity Search task
performs a 5-NN search for each query segment. Then, the Copy Localization
task performs a copy detection (MatchVote = 1, MissCost = −0.1). Finally, the
copy candidates are sorted by their scores, and the correct candidates with a
score greater than the score of the first incorrect candidate are counted, i.e. the
number of true positives without false positives. We stated that a copy candidate
is correct when its query and reference extents intersect the actual copy extents.
The maximum value for correct detections is 31 (10 copies in ST1 and 21 copies
in ST2).
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4.2 Experiments on MUSCLE-VCD-2007

In the following experiments, gi is the ith feature extraction method that can calculate
global descriptors for either a video segment or a frame, gi(s) is the ith global
descriptor for video segment s, and gi( f ) is the ith global descriptor for frame f .

4.2.1 Ef fectiveness vs segmentation

The first experiment tests the effectiveness of each of the eight descriptors varying
the size of the video segments. Each query video and reference video is uniformly
partitioned into segments of fixed length { 1

6 , 1
5 , 1

4 , 1
3 , 1

2 , 1, 2, 3, 4, 5, 6} seconds. The
amount of query segments that have a correct answer in the reference collection
are 60k, 50k, 40k, 30k, 20k, 10k, 5k, 3.3k, 2.5k, 2k, and 1.7k segments, respectively
for each segment length. In this experiment, the descriptor for a segment is just the
descriptor for its middle frame (keyframe).

Figure 7 summarizes the effectiveness of the similarity searches for each segment
size and for each descriptor. It shows that the effectiveness of the similarity search for
each descriptor is relatively independent of the segment size. A coarse segmentation,
on one hand, reduces the number of objects in Q and R which implies faster
similarity searches (e.g. doubling the length of the segments divides by a half the
number of queries to perform and the reference collection to search in). On the other
hand, a coarse segmentation affects the performance of the Copy Localization task
due to the decrease in the query segments that can vote (e.g. a video copy of 4 s length
can have 20 potential voters with a segmentation of 1

5 , but with a segmentation of two
seconds length it will only have two potential voters).

Figure 8 shows the performance of the Copy Localization task for the different
segmentations and descriptors. Even though a coarse segmentation may achieve a
high MAP for the searches, the detection performance is low mainly due to the
reduction of voter segments. A fine segmentation can achieve higher detection
performance however it can eventually produce false positives with high score.

Fig. 7 Effectiveness of each descriptor for different video segmentations
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Fig. 8 Detected copies without false alarms for each descriptor and segmentation

The performance varies for each descriptor, however it is clear that OM9 achieves
the worst overall result. Ordinal Measurement is invariant to some global changes
(like blurring or brightness), but it is highly affected by partial changes that can
convert a dark zone into a bright one (like the insertion of logo), changing the
order of zones and thus affecting the whole descriptor. This behavior for the Ordinal
Measurement can also be verified in [19]. The other evaluated descriptors also divide
the frames, but a change in one zone does not affect the values for the other zones.

An interesting result is that EH10 descriptor with segmentation 1
6 detects correctly

29 of 31 copies, i.e. it achieves precision 1 and recall 93.5%.1 This result outperforms
most of the state-of-the-art systems evaluated with MUSCLE-VCD-2007 corpus, like
a complex system based on local descriptor [26] and a system combining visual with
audio descriptors [1].

In general, a segmentation between 1
3 and 1

2 seconds length achieves a satisfac-
tory balance between detection effectiveness and search time. For the TRECVID
evaluation we chose a variable segmentation, with a basal size of 1

3 seconds and a
postprocessing that joined almost identical consecutive segments [2].

4.2.2 Ef fectiveness vs average descriptor and temporal window

In the next experiment we fix the video segmentation to one second. This experiment
tests: a) the performance of the average descriptor for a segment, defined as the
average of the global descriptors for all of its frames (see Section 3.3); and b) the
performance of increasing the temporal window to W=3 in δ (see (4)).

Table 1 shows the effectiveness of the eight descriptors in four configurations:
the first column shows the MAP of comparing segments by the global descriptors of
their keyframes (already shown in previous experiment), the second column shows

1In particular, the system achieves recall 1 for ST1 and recall 90.5% for ST2. Despite EH10 descriptor
is not invariant to mirroring, the system can detect a flipped copy from ST1 by just matching the
mostly symmetrical frames.
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Table 1 MAP for keyframe
descriptor and average global
descriptor with W = 1 and
W = 3 (segments of one
second length)

Keyframe Average Keyframe Average
W = 1 W = 1 W = 3 W = 3

EH10 0.471 0.664 0.643 0.810
EH5 0.383 0.600 0.564 0.760
G14 0.440 0.489 0.529 0.602
C14 0.457 0.501 0.542 0.611
G44 0.426 0.485 0.541 0.610
C44 0.464 0.504 0.589 0.654
K11 0.443 0.510 0.564 0.670
OM9 0.198 0.341 0.281 0.507

the MAP of comparing segments by the average descriptor of their frames, the third
column shows the MAP of comparing segments by their keyframes and setting W=3
in δ, and the fourth column shows the MAP of comparing segments by their average
descriptor and setting W=3 in δ.

The changes in the effectiveness of the searches show that: a) the effectiveness of
each descriptor can be improved by averaging the descriptor of all the frames in a
segment (it increases MAP by nearly a 9% for C14 and C44 up to more than 50%
for EH5 and OM9); b) the effectiveness of each descriptor can also be improved
by averaging the distance of the previous and the next segment (it increases MAP
by nearly a 20% for C14 and G14 up to more than 40% for EH5 and OM9); c)
both increases are independent and can be combined for greatly improving the
effectiveness of each descriptor (it increases MAP by nearly a 33% for C14, and
by nearly a 100% for EH5).

Additionally, we also tested the effectiveness of extracting a descriptor from
the average frame of a segment. This kind of descriptor always achieved a lower
MAP than the descriptor for the keyframe (for every descriptor, for different video
segmentations, and for different values of W), mainly because average frames usually
have grayed colors and blurred edges where descriptor can not be discriminant
enough. Thus, it is better to average the descriptors extracted from each frame in
a segment than to extract the descriptor from the average frame.

The improvement due to the temporal window of the δ function induces us to
test the performance of even larger values for W. Figure 9 shows the improvements
for each average descriptor when W={1, 3, 5, 7, 9, 11, 13}. Each descriptor increases
its effectiveness in almost a similar proportion, thus larger W can improve the
effectiveness of the similarity search for every descriptor. The experiment uses
segments of one second length, but it should be noted that with different segment
lengths the behavior is similar.

Figure 10 shows the detection performance of using the average descriptor and in-
creasing the temporal window. The results for W=1 show that the average descriptor
improves the detection performance for EH10 and EH5 (they both achieve 29 of 31
detections using segments of one second length instead of 1

6 from Fig. 8). For larger
W, the detection performance does not increase as well as the similarity search MAP.
Then, large temporal windows are mainly useful for improving the localization and
the detection score of copies already detectable by small windows.

A large temporal window, on the other hand, implies more computational effort.
An increase of W from 1 to 11 implies 10 times more evaluations of γ function.
In an exact search, where every query segment is compared to every reference
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Fig. 9 Effectiveness of increasing temporal window (W) for each average descriptor (segments of
one second length)

segment, most of these evaluations are repeated and some optimization can be used
(like memoization). For example, in the case of W = 3, the evaluation of δ(qi, r j)

and δ(qi+1, r j+1) shares the evaluation of γ (qi, r j) and γ (qi+1, r j+1). However, this is
not the case for approximate searches where most of the evaluations of δ are only
estimated and not evaluated. In our system, we chose W = 3 due to its satisfactory
tradeoff between computational effort and effectiveness improvement.

4.2.3 Ef fectiveness vs weighting

The next experiments test the combination of the average descriptors with W=1 and
segments of one second length. The MAP for each single descriptor is given in the
second column of Table 1.

Fig. 10 Detected copies without false alarms for the average descriptor and increasing temporal
window W (segments of one second length)
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Table 2 compares the effectiveness of combining two and three descriptors using
the Normalization by Maximum Distance, the α-Normalization, and the Weighting
by Max-τ . It shows that Weighting by Max-τ improves the performance of α-
Normalization, and both outperform the Normalization by Maximum Distance. The
best effectiveness was achieved for α=0.1.

Figure 11 shows the MAP performance for combining between 1 up to 8 de-
scriptors in the following arbitrary order: EH10, C14, K11, G14, G44, C44, OM9,
and EH5. The combination normalizes distances with α = 0.1. It compares the
effectiveness of combining average descriptor (AvgD) and keyframe descriptor
(KfD) using the α-Normalization and the Weighting by Max-τ . It shows that combin-
ing descriptors improves the effectiveness up to a saturation point (in this case, three
descriptors), and then adding more descriptors may even reduce the effectiveness.
As shown in previous experiments, the average descriptor outperforms the descriptor
for the keyframe. The Weighting by Max-τ automatically selects a good set of weights
that avoids the decrease in effectiveness due to saturation.

Table 2 and Fig. 11 show that the Weighting by Max-τ selects automatically a set of
weights with high MAP. However, it does not necessarily select the set that achieves
the highest MAP. To analyze the relationship between MAP and τα,δ , we calculated
them both for different sets of weights. Table 3 shows the MAP achieved by the
combination of descriptors EH10 with C14 and descriptors C44 with K11 depending
on the α-normalization and weights.

Table 3a shows that the highest MAP for EH10+C14 is reached with weights
around (0.8, 0.2). The maximum τα,δ is reached with weights around (0.6, 0.4). Then,
the Weighting by Max-τ can correct the trivial weights (0.5, 0.5) to a set of weights
with higher MAP. Although, in this case, the weights will be corrected only to
(0.55, 0.45).

Table 2 Effectiveness of
combining two and three
descriptors (segments of one
second length, W = 1)

The best MAP found for each
combination is highlighted
in bold

Combination of EH10 and C14

α wEH10 wC14 τα,δ MAP

1 0.5 0.5 – 0.636
0.1 0.5 0.5 1.066 0.669
0.1 0.55 0.45 1.066 0.686
0.01 0.5 0.5 1.148 0.664
0.01 0.55 0.45 1.150 0.681
0.001 0.5 0.5 1.238 0.656
0.001 0.55 0.45 1.241 0.674

Combination of EH10, C14 and K11

α wEH10 wC14 wK11 τα,δ MAP

1 0.333 0.333 0.333 – 0.671
0.1 0.333 0.333 0.333 1.113 0.692
0.1 0.457 0.170 0.170 1.116 0.712
0.01 0.333 0.333 0.333 1.243 0.685
0.01 0.455 0.176 0.369 1.254 0.706
0.001 0.333 0.333 0.333 1.435 0.676
0.001 0.405 0.192 0.403 1.458 0.686
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Fig. 11 Effectiveness of combining from 1 up to 8 descriptors using α-normalization and weighting
by Max-τ for the average and keyframe descriptors

Table 3b shows the combination C44+K11. In this case the correlation between
MAP and τα,δ is stronger (particularly for α = 0.01 and 0.001). Thus, selecting a set
of weights with higher τα,δ is close related to an improvement in MAP, with the

Table 3 Effectiveness (MAP) for a combination of average descriptors for different weights and for
different α-normalization (segments of one second length, W = 1)

Combination of average descriptors EH10 and C14

δ w1 (EH10) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
w2 (C14) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

MAP α = 1 0.525 0.547 0.569 0.599 0.636 0.672 0.705 0.729 0.722
α = 0.1 0.534 0.561 0.593 0.633 0.670 0.701 0.725 0.729 0.713
α = 0.01 0.532 0.558 0.588 0.626 0.664 0.695 0.723 0.730 0.715
α = 0.001 0.530 0.556 0.582 0.618 0.656 0.690 0.719 0.730 0.717

τα,δ α = 1 0.981 0.979 0.975 0.954 0.953 0.960 0.965 0.975 0.978
α = 0.1 1.021 1.038 1.052 1.061 1.066 1.065 1.057 1.044 1.025
α = 0.01 1.045 1.083 1.113 1.135 1.148 1.149 1.137 1.109 1.064
α = 0.001 1.074 1.135 1.184 1.219 1.238 1.240 1.221 1.180 1.108

Combination of average descriptors C44 and K11

δ w1 (C44) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
w2 (K11) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

MAP α = 1 0.552 0.565 0.566 0.559 0.550 0.542 0.534 0.525 0.516
α = 0.1 0.539 0.554 0.564 0.567 0.565 0.556 0.547 0.536 0.524
α = 0.01 0.540 0.555 0.564 0.566 0.563 0.555 0.545 0.535 0.522
α = 0.001 0.544 0.559 0.566 0.566 0.559 0.551 0.541 0.532 0.520

τα,δ α = 1 1.000 0.997 0.997 0.999 0.997 0.999 0.998 0.999 0.999
α = 0.1 1.014 1.027 1.037 1.044 1.047 1.046 1.040 1.031 1.017
α = 0.01 1.039 1.064 1.077 1.081 1.079 1.072 1.060 1.044 1.024
α = 0.001 1.065 1.102 1.117 1.119 1.109 1.096 1.077 1.057 1.032

For each α, the highest MAP and τα,δ are highlighted in bold
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advantage that τα,δ is a statistical value that can be calculated without any ground
truth or training database.

4.2.4 Ef fectiveness vs approximate search

In the next experiment we analyze the performance of the approximate search for
average descriptors EH10, C14, and KF11 with segments of one second length and
W = 3. Table 4 summarizes the effectiveness of the exact search, the number of cor-
rect detections without false alarms (recall at precision 1), the intrinsic dimensionality
for the search space, and the required number of operations to evaluate δ (roughly,
W× descriptor size).

The approximate search (Algorithm 3) will achieve the same effectiveness as the
exact search when most of the correct answers are located between the T smallest
values of LBP . Figure 12 shows the amount of query segments whose LBP for the
correct answer is located between the T smallest values of LBP (note the logarithmic
scale in the value of T). We have compared the performance for sets of 5, 10, 20
and 40 pivots for the three descriptors. Because the pivot selection algorithm has a
random component, we selected many sets of pivots and we plot the average, the
best and the worst obtained values. The Fig. 12 first shows that the approximation
improves with the number of pivots. It also shows that the improvements are
decreasing: the improvement from 5 to 10 pivots is higher that the improvement from
10 to 20, and the latter is higher than 20 to 40. The approximation performance of the
pivots also depends on the descriptor: the most difficult descriptor to approximate
is EH10, while the approximation for C14 and K11 achieves an almost similar
performance.

For example in EH10, an approximate search that calculates LBP with 10 pivots,
selects just the 1% of the smallest LBP , and evaluates δ just for them (discarding
the other 99% of objects), achieves a similar performance that the exact search for at
least 64% of the queries. In fact, the MAP for the approximate search is 0.553, and
the number of correct answers are N1 = 51.4% and N10 = 60.6%. The search time
is reduced by 95% compared with Algorithm 2, the search effectiveness is reduced
by a 32%, and the detection performance decreases 7% (recall 0.871 with precision
1). For T = 0.1|R| the MAP is 0.754, with N1 = 70.0% and N10 = 82.9%, the search
time is reduced by about a 79%, the search effectiveness is reduced by about a 7%,
and the detection performance decreases 3.5% (recall 0.903 with precision 1).

The search time of the approximate search depends on T, |P | and δ. Figure 13
summarizes the total search time for the approximate search. The graphs show that
the search time grows almost linearly with T independently of the descriptor.

Table 4 Effectiveness of
average global descriptors
(segments of one second
length, W = 3)

EH10 C14 K11

MAP 0.810 0.611 0.670
N1 0.752 0.557 0.610
N10 0.894 0.685 0.765
recall 0.935 0.710 0.742
ρ 10.80 9.66 4.50
#opers. 480 576 297
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Fig. 12 Proportion of query
segments whose correct
answer is between the T
smallest values of LBP , for
each |P| ∈ {5, 10, 20, 40}. The
best, worst and average value
is showed. Logarithmic scale

(a) EH10 (W=3).

(b) C14 (W=3).

(c) K11 (W=3).
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Fig. 13 Computational time
for |Q| approximate searches
for T and |P| ∈ {5, 10, 20, 40}.
Logarithmic scale

(a) EH10 (W=3).

(b) C14 (W=3).

(c) K11 (W=3).

In summary, the effectiveness of the approximate search grows almost expo-
nentially in T, while its search time grows linearly. This behavior shows that the
approximate search is effective and efficient.
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4.3 TRECVID CCD 2010 evaluation

As a part of TRECVID since 2008, the content-based copy detection task (CCD)
evaluates CBVCD systems with large video collections and uniform scoring proce-
dures. Given a collection of reference videos and a collection of query videos, the
goal of the CCD task is to determine if a query video contains a sequence that
originates from a reference video (with possible transformations), and to localize
the original sequences and the duplicated.

TRECVID 2010 considered a reference dataset of around 11K files, with individ-
ual lengths between 10 s and 30 min, and a total duration of more than 400 h. All
these files were collected from video-sharing websites in an aim to bring video copy
detection close to a real-world application scenario. A variety of formats and kinds of
videos were present, as for example movie excerpts, animation videos, mobile phone
videos, user generated videos, slideshows, etc.

The query dataset was created by first selecting 201 base videos each one with a
length between 3s and 3m: 67 videos were an excerpt from a video in the reference
dataset, 67 were an excerpt from a video not in the reference dataset, and 67 were
an excerpt from a video in the reference dataset embedded into a longer excerpt
from a video not in the reference dataset. Then, 56 transformations were applied
to each base video (a combination between 8 visual transformations and 7 audio
transformations) creating around 11K query videos where two thirds of them were
copies. The eight visual transformations evaluated in TRECVID 2010 were: T1:
simulated camcording; T2: picture-in-picture (PIP) original video in foreground; T3:
insertion of pattern; T4: strong reencoding; T5: change of gamma; T6: three transfor-
mations between blur, change of gamma, frame dropping, contrast, reencoding, ratio,
and white noise; T8: three transformations between crop, shift, contrast, caption,
mirroring, insertion of pattern, and PIP original video in background; T10: random
combination of three previous transformations; T7 and T9 were not evaluated.
Figure 14 shows these transformations applied to a base video.

All participant systems should use visual and audio information for copy de-
tection. However, P-VCD combined only visual descriptors, discarding all audio
information.

The evaluation is based on three measures: NDCR, which measures the
effectiveness of the detection weighting the probability of missing a detection and
the probability to falsely indicate that there is a copy for a query video (NDCR =
PMISS + β · PFA, the closer to zero the better the effectiveness); F1, which measures
the accuracy in localization after a copy has been correctly detected (the closer to 1
the better the accuracy); and Mean Processing Time, which measures the efficiency
for processing queries. NDCR was evaluated for two profiles: Balanced (β = 200)
and No False Alarms (NoFA, β = 200,000). TRECVID calculates these measures
separately for each transformation, and for comparison purposes we include the
average result for all transformations.

4.3.1 TRECVID 2010 results

Twenty-two teams participated in the evaluation. Each team submitted 4 Runs,
which resulted in 37 submissions for NoFA profile (with 14 visual-only Runs), and 41
submissions for Balanced profile (with 15 visual-only Runs). We stated that a Run is
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(a) Original. (b) T1: Camcording. (c) T2: PIP.

(d) T3: Insert Pattern. (e) T4: Reencoding. (f) T5: Change of gamma.

(g) T6: gamma+frame drop+
reencoding.

(h) T8: mirroring+PIP+contrast. (i) T10: PIP+noise+caption.

Fig. 14 Example of transformations in TRECVID 2010. a Frame from a reference video, b–i same
frame from each query video for the eight visual transformations

visual-only when its results were independent of changes in audio (i.e. when NDCR,
F1 and processing time did not change for the 7 audio transformations in a same
visual transformation).

Figure 15 shows the results for NoFA profile and Balanced profile. In the NoFA
profile, we tested a combination of EH10 descriptors and a G33 (gray histogram
of 20 bins for 3×3 zones). It achieved a better NDCR than the median for every
transformation, and considering just visual-only Runs it achieved the best results for
average NDCR and F1. For the Balanced profile, we tested two combinations: (1)
EH10 and G33 descriptors, which achieved the best results for NDCR considering
just visual-only Runs, and (2) EH10 and C22 (RGB histogram of 16 bins for each
channel for 2×2 zones) which improved NDCR and F1 for some transformations
but the average results were slightly worse than EH10 and G33. For all Runs, the
parameters for Algorithm 3 were |P| = 9 and T = 0.001|R|. In (4), we fix W = 3 thus
δ function needs more than 1,000 operations to be evaluated, but LBP estimated
it with just 9 operations. Reference and query videos produced |R| = 3,967,815
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(a) Evaluation for submitted Runs. Average values for the 56 transform-
ations at the optimal decision threshold.

(b) Submissions for NoFA profile. (c) Submissions for Balanced profile.

Fig. 15 P-VCD’s results for TRECVID 2010 CCD task compared with all the other participants. A
system with optimal performance would have NDCR = 0 and F1 = 1

reference segments and |Q| = 990,246 query segments, thus actual δ was evaluated
just 3,967 times for each query segment. More details about the implementation and
results by transformation are reviewed in [2].

The preprocessing tasks has a big impact in the system performance. It tries to
detect and revert the transformations of camcording (T1), PIP (T2), and vertical
mirroring (T8) by creating new query videos. Starting with the original 1,608 queries,
the task added 3,770 new queries to the system. Thus, the search times increased
in more than three times with the benefit that the descriptors are invariant to
those three transformations. Figure 16 shows a precision/recall graph for the NoFA
submission together with the results if the preprocessing task is not present (i.e.
discarding detection from query videos with some of those transformations because
they are undetectable). The recall at precision 1 decreases from 0.43 to 0.30, and the
recall at precision 0.5 decreases from 0.56 to 0.39. On the other hand, the search times
are reduced in almost a 70%, thus there is more room for improving the accuracy of
the approximate search.
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Fig. 16 Precision/recall graph
for NoFA run and for NoFA
discarding the detection from
queries with camcording, PIP
and mirroring

4.3.2 Analysis of P-VCD results

After a careful analysis of the results, it becomes clear that the major strength
of P-VCD is its performance for the No False Alarms profile. The NDCR sets a
higher cost to false alarms than to miss detections (even in Balanced profile). Before
returning the first false alarm, P-VCD detected many query videos from all the
transformations, then its average NDCR is low.

Figure 17 shows a precision/recall graph with the four best visual-only submissions
(teams IBM [23], TID [31], VIREO [24], and PRISMA [2]). P-VCD achieves the
highest recall at precision 1, and then as precision decreases, the other systems
(which are based on local descriptors) improves their recall and outperform P-
VCD. A reason for this behavior is that non-copy query videos are usually easy
to discard for global descriptors but can be difficult to discard for local descriptors.
For example, two unrelated videos that share captions or logos can trigger a false
detection under local descriptors, however for global descriptor this is unlikely
because captions and logos only change small zones. Then, the amount of correct
detections up to the first false alarm can be higher for global descriptors than for
local descriptors, however as precision decreases the recall for local descriptors

Fig. 17 Precision/recall graph
for four best visual-only
submissions of TRECVID
2010
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can outperform global descriptors because some complex transformations may be
undetectable under global descriptors.

5 Conclusions and final comments

In this work we have reviewed in detail P-VCD and its experimental evaluation.
The results show that this approach enables global descriptors to achieve competitive
results and even outperform systems based on combination of local descriptors and
audio information.

A general property that a global descriptor should comply with is the division in
independent zones. For example, a gray histogram of 180 bins for the whole frame
achieves poor results for detecting copies, however if we divide the frames in 3 × 3
zones and calculate a gray histogram of 20 bins for each zone, the descriptor size is
kept but the detection performance improves greatly.2 This is because some usual
transformations affect specific zones of the video (like insertion of captions and
logos) leaving unchanged the others. In the case of transformations that can affect
the whole zoning (like mirroring or PIP) a preprocessing should be considered to
create one or more query videos with the transformations reverted.

Another property for global descriptor is the use of the average descriptor for a
segment instead of the descriptor just for the keyframe. Moreover, the performance
can be improved even more by using a temporal distance between segments. The
temporal relationship between frames has already been used in other systems for
different kinds of descriptors, but here we show an approach that is general enough
to use it with most of the global descriptors.

A remarkable reason for the satisfactory performance of this system is the use
of the metric space approach. Most of the systems that use global descriptors
calculate as few dimensions as possible (usually between 5 and 20 dimensions) to
avoid the well known course of dimensionality. We extract global descriptors with
high dimensionality (for example, more than 200 dimensions) that achieve high
effectiveness, because MAMs do not index vectors using their dimensions but using
the distances between them. Even tough the metric spaces also present the course of
dimensionality issue, it is more associated with the distribution of distances between
objects rather than the nominal dimension of the vectors (as is measured by the
intrinsic dimensionality indicator).

It is well known that local descriptors should be used for complex transforma-
tions [19]. However, global descriptors can achieve competitive results and even
outperform many systems that use local descriptors and/or combine visual and
audio information. For this, a combination of global descriptors, a smart weighting
algorithm and a good approximate search are required.

An interesting property of this approach is that the δ function in (4) combines
descriptors at the similarity search level, thus enabling the fusion of descriptors at
an earlier stage rather than at the final decision level. The combination of global
descriptors, local descriptors, and audio information can be made by implementing

2In fact, under the same conditions from Fig. 8 with segments of one second length, the detection
performance for this example increases from recall 0.484 (15 detected copies) to 0.710 (22 detected
copies) for precision 1.
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a feature extraction method for each source of information that complies with the
restrictions stated in Section 3.3. Thus, this approach has a potential of achieving
even higher effectiveness due to its seamless ability of combining descriptors from
different sources.
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