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Abstract

We consider the semilinear equation

ε2s (−�)su + V (x)u − up = 0, u > 0, u ∈ H 2s
(
RN

)
where 0 < s < 1, 1 < p < N+2s

N−2s
, V (x) is a sufficiently smooth potential with infR V (x) > 0, and ε > 0 is a

small number. Letting wλ be the radial ground state of (−�)swλ + λwλ − w
p
λ = 0 in H 2s (RN), we build

solutions of the form

uε(x) ∼
k∑

i=1

wλi

((
x − ξε

i

)
/ε

)
,

where λi = V (ξε
i
) and the ξε

i
approach suitable critical points of V . Via a Lyapunov–Schmidt variational

reduction, we recover various existence results already known for the case s = 1. In particular such a solu-
tion exists around k nondegenerate critical points of V . For s = 1 this corresponds to the classical results
by Floer and Weinstein [13] and Oh [24,25].
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1. Introduction and main results

We consider the fractional nonlinear Schrödinger equation

ih̄ψt = h̄2s(−�)sψ + W(x)ψ − |ψ |p−1ψ (1.1)

where (−�)s , 0 < s < 1, denotes the usual fractional Laplace operator, W(x) is a bounded po-
tential, p > 1 and h̄ designates the usual Planck constant. Eq. (1.1) was introduced by Laskin
[19] as an extension of the classical nonlinear Schrödinger equation s = 1 in which the Brown-
ian motion of the quantum paths is replaced by a Lévy flight. Here ψ = ψ(x, t) represents the
quantum mechanical probability amplitude for a given unit-mass particle to have position x at
time t (the corresponding probability density is |ψ |2), under a confinement due to the potential
W . We refer to [19–21] for detailed physical discussions and motivation of Eq. (1.1).

We are interested in the semi-classical limit regime, 0 < ε := h̄ � 1. For small values of ε the
wave function tends to concentrate as a material particle.

Our purpose is to find standing-wave solutions of (1.1), which are those of the form ψ(x, t) =
u(x)eiEt/ε with u(x) a real-valued function. Letting V (x) = W(x) + E, Eq. (1.1) becomes

ε2s(−�)su + V (x)u − |u|p−1u = 0 in RN. (1.2)

We assume in what follows that V satisfies

V ∈ C1,α
(
RN

) ∩ L∞(
RN

)
, inf

RN
V (x) > 0. (1.3)

We are interested in finding solutions with a spike pattern concentrating around a finite number
of points in space as ε → 0. This has been the topic of many works in the standard case s = 1,
relating the concentration points with critical points of the potential, starting in 1986 with the
pioneering work by Floer and Weinstein [13], then continued by Oh [24,25]. The natural place
to look for solutions to (1.2) that decay at infinity is the space H 2s(RN), of all functions u ∈
L2(RN) such that ∫

RN

(
1 + |ξ |4s

)∣∣û(ξ)
∣∣2

dξ < +∞,

wherêdenotes Fourier transform. The fractional Laplacian (−�)su of a function u ∈ H 2s(RN)

is defined in terms of its Fourier transform by the relation

̂(−�)su = |ξ |2s û ∈ L2(RN
)
.

We will explain next what we mean by a spike pattern solution of Eq. (1.2). Let us consider
the basic problem

(−�)sv + v − |v|p−1v = 0, v ∈ H 2s
(
RN

)
. (1.4)
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We assume the following constraint in p,

1 < p <

{
N+2s
N−2s

if 2s < N,

+∞ if 2s � N.
(1.5)

Under this condition it is known the existence of a positive, radial least energy solution v = w(x),
which gives the lowest possible value for the energy

J (v) = 1

2

∫
RN

v(−�)sv + 1

2

∫
RN

v2 − 1

p + 1

∫
RN

|v|p+1,

among all nontrivial solutions of (1.4). An important property, which has only been proven re-
cently by Frank, Lenzmann and Silvestre [15] (see also [2,14]), is that there exists a radial least
energy solution which is nondegenerate, in the sense that the space of solutions of the equation

(−�)sφ + φ − pwp−1φ = 0, φ ∈ H 2s
(
Rn

)
(1.6)

consists of exactly of the linear combinations of the translation-generators, ∂w
∂xj

, j = 1, . . . ,N .
It is easy to see that the function

wλ(x) := λ
1

p−1 w
(
λ

1
2s x

)
satisfies the equation

(−�)swλ + λwλ − w
p
λ = 0 in RN.

Therefore for any point ξ ∈ RN , taking λ = V (ξ), the spike-shape function

u(x) = wV (ξ)

(
x − ξ

ε

)
(1.7)

satisfies

ε2s(−�)su + V (ξ)u − up = 0.

Since the ε-scaling makes it concentrate around ξ , this function constitutes a good positive ap-
proximate solution to Eq. (1.2), namely of

ε2s(−�)su + V (x)u − up = 0,

u > 0, u ∈ H 2s
(
RN

)
. (1.8)

We call a k-spike pattern solution of (1.8) one that looks approximately like a superposition
of k spikes like (1.7), namely a solution uε of the form

uε(x) =
k∑

i=1

wV (ξε
i )

(
x − ξε

i

ε

)
+ o(1) (1.9)

for points ξε, . . . , ξ ε , where o(1) → 0 in H 2s(RN) as ε → 0.
1 k
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In what follows we assume that p satisfies condition (1.5) and V condition (1.3).
Our first result concerns the existence of multiple spike solution at separate places in the case

of stable critical points.

Theorem 1. Let Λi ⊂RN , i = 1, . . . , k, k � 1 be disjoint bounded open sets in RN . Assume that

deg(∇V,Λi,0) �= 0 for all i = 1, . . . , k.

Then for all sufficiently small ε, problem (1.8) has a solution of the form (1.9) where ξε
i ∈ Λi and

∇V
(
ξε
i

) → 0 as ε → 0.

An immediate consequence of Theorem 1 is the following.

Corollary 1.1. Assume that V is of class C2. Let ξ0
1 , . . . , ξ0

k be k nondegenerate critical points
of V , namely

∇V
(
ξ0
i

) = 0, D2V
(
ξ0
i

)
is invertible for all i = 1, . . . k.

Then, a k-spike solution of (1.8) of the form (1.9) with ξε
i → ξ0

i exists.

When s = 1, the result of Corollary 1.1 is due to Floer and Weinstein [13] for N = 1 and
k = 1 and to Oh [24,25] when N � 1, k � 1. Theorem 1 for s = 1 was proven by Yanyan Li [22].

Remark 1.1. As the proof will yield, Theorem 1 for 0 < s < 1 holds true under the following,
more general condition introduced in [22]. Let Λ = Λ1 × · · · × Λk and assume that the function

ϕ(ξ1, . . . , ξk) =
k∑

i=1

V (ξi)
θ , θ = p + 1

p − 1
− N

2s
> 0 (1.10)

has a stable critical point situation in Λ: there is a number δ0 > 0 such that for each g ∈ C1(Ω̄)

with ‖g‖L∞(Λ) +‖∇g‖L∞(Λ) < δ0, there is a ξg ∈ Λ such that ∇ϕ(ξg)+∇g(ξg) = 0. Then for all
sufficiently small ε, problem (1.8) has a solution of the form (1.9) where ξε = (ξε

1 , . . . , ξ ε
k ) ∈ Λ

and ∇ϕ(ξε) → 0 as ε → 0.

Theorem 2. Let Λ be a bounded, open set with smooth boundary such that V is such that either

c = inf
Λ

V < inf
∂Λ

V (1.11)

or

c = sup
Λ

V > sup
∂Λ

V

or, there exist closed sets B0 ⊂ B ⊂ Λ such that

c = inf
Φ∈Γ

sup V
(
Φ(x)

)
> supV , (1.12)
x∈B B0
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where Γ = {Φ ∈ C(B, Λ̄) /Φ|B0 = Id} and ∇V (x) · τ �= 0 for all x ∈ ∂Λ with V (x) = c and
some tangent vector τ to ∂Λ at x.

Then, there exists a 1-spike solution of (1.8) with ξε ∈ Λ with ∇V (ξε) → 0 and V (ξε
i ) → c.

In the case s = 1, the above results were found by del Pino and Felmer [7,8]. The case of
a (possibly degenerate) global minimizer was previously considered by Rabinowitz [26] and
X. Wang [28]. An isolated maximum with a power type degeneracy appears in Ambrosetti, Ba-
diale and Cingolani [1]. Condition (1.12) is called a nontrivial linking situation for V . The cases
of k disjoint sets where (1.11) holds was treated in [9,17]. Multiple spikes for disjoint nontrivial
linking regions were first considered in [10], see also [5,16] for other multiplicity results.

Our last result concerns the existence of multiple spikes at the same point.

Theorem 3. Let Λ be a bounded, open set with smooth boundary such that V is such that

sup
Λ

V > sup
∂Λ

V .

Then for any positive integer k there exists a k-spike solution of (1.8) with spikes ξε
j ∈ Λ

satisfying V (ξε
j ) → maxΛ V .

In the case s = 1, Theorem 3 was proved by Kang and Wei [18]. D’Aprile and Ruiz [6] have
found a phenomenon of this type at a saddle point of V .

The rest of this paper will be devoted to the proofs of Theorems 1–3. The method of construc-
tion of a k-spike solution consists of a Lyapunov–Schmidt reduction in which the full problem is
reduced to that of finding a critical point ξε of a functional which is a small C1-perturbation of
ϕ in (1.10). In this reduction the nondegeneracy result in [15] is a key ingredient.

After this has been done, the results follow directly from standard degree theoretical or varia-
tional arguments. The Lyapunov–Schmidt reduction is a method widely used in elliptic singular
perturbation problems. Some results of variational type for 0 < s < 1 have been obtained for
instance in [12] and [27]. We believe that the scheme of this paper may be generalized to con-
centration on higher dimensional regions, while that could be much more challenging. See [11,
23] for concentration along a curve in the plane and s = 1.

2. Generalities

Let 0 < s < 1. Various definitions of the fractional Laplacian (−�)sφ of a function φ defined
in RN are available, depending on its regularity and growth properties.

As we have recalled in the introduction, for φ ∈ H 2s(RN) the standard definition is given via
Fourier transform .̂ (−�)sφ ∈ L2(RN) is defined by the formula

|ξ |2s φ̂(ξ) = ̂(−�)sφ. (2.1)

When φ is assumed in addition sufficiently regular, we obtain the direct representation

(−�)sφ(x) = ds,N

∫
N

φ(x) − φ(y)

|x − y|N+2s
dy (2.2)
R
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for a suitable constant ds,N and the integral is understood in a principal value sense. This in-
tegral makes sense directly when s < 1

2 and φ ∈ C0,α(RN) with α > 2s, or if φ ∈ C1,α(RN),
1 + α > 2s. In the latter case, we can desingularize the integral representing it in the form

(−�)sφ(x) = ds,N

∫
RN

φ(x) − φ(y) − ∇φ(x)(x − y)

|x − y|N+2s
dy.

Another useful (local) representation, found by Caffarelli and Silvestre [3], is via the following
boundary value problem in the half space R

N+1+ = {(x, y) /x ∈ RN, y > 0}:{
∇ · (y1−2s∇φ̃

) = 0 in R
N+1+ ,

φ̃(x,0) = φ(x) on RN.

Here φ̃ is the s-harmonic extension of φ, explicitly given as a convolution integral with the
s-Poisson kernel ps(x, y),

φ̃(x, y) =
∫
RN

ps(x − z, y)φ(z) dz,

where

ps(x, y) = cN,s

y4s−1

(|x|2 + |y|2)N−1+4s
2

and cN,s achieves
∫
RN p(x, y) dx = 1. Then under suitable regularity, (−�)sφ is the Dirichlet-

to-Neumann map for this problem, namely

(−�)sφ(x) = lim
y→0+ y1−2s∂yφ̃(x, y). (2.3)

Characterizations (2.1), (2.2), (2.3) are all equivalent for instance in Schwartz’s space of rapidly
decreasing smooth functions.

Let us consider now for a number m > 0 and g ∈ L2(RN) the equation

(−�)sφ + mφ = g in RN.

Then in terms of Fourier transform, this problem, for φ ∈ L2, reads(|ξ |2s + m
)
φ̂ = ĝ

and has a unique solution φ ∈ H 2s(RN) given by the convolution

φ(x) = Tm[g] :=
∫
N

k(x − z)g(z) dz, (2.4)
R
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where

k̂(ξ) = 1

|ξ |2s + m
.

Using the characterization (2.3) written in weak form, φ can then be characterized by φ(x) =
φ̃(x,0) in trace sense, where φ̃ ∈ H is the unique solution of∫ ∫

R
N+1+

∇φ̃ ∇ϕ y1−2s + m

∫
RN

φϕ =
∫
RN

gϕ, for all ϕ ∈ H, (2.5)

where H is the Hilbert space of functions ϕ ∈ H 1
loc(R

N+1+ ) such that

‖ϕ‖2
H :=

∫ ∫
R

N+1+

|∇ϕ|2y1−2s + m

∫
RN

|ϕ|2 < +∞,

or equivalently the closure of the set of all functions in C∞
c (RN+1+ ) under this norm.

A useful fact for our purposes is the equivalence of the representations (2.4) and (2.5) for
g ∈ L2(RN).

Lemma 2.1. Let g ∈ L2(RN). Then the unique solution φ̃ ∈ H of problem (2.5) is given by the
s-harmonic extension of the function φ = Tm[g] = k ∗ g.

Proof. Let us assume first that ĝ ∈ C∞
c (RN). Then φ given by (2.4) belongs to H 2s(RN). Take

a test function ψ ∈ C∞
c (RN+1+ ). Then the well-known computation by Caffarelli and Silvestre

shows that ∫ ∫
R

N+1+

∇φ̃∇ψ y1−2s dy dx =
∫
RN

lim
y→0

y1−2s∂yφ̃(y, ·)ψ dx

=
∫
RN

ψ(−�)sφ dx =
∫
RN

(g − mφ)dx.

By taking ψ = φ̃ηR for a suitable sequence of smooth cut-off functions equal to one on expand-
ing balls BR(0) in R

N+1+ , and using the behavior at infinity of φ̃ which resembles the Poisson
kernel ps(x, y), we obtain∫ ∫

R
N+1+

|∇φ̃|2y1−2s dy dx + m

∫
RN

|φ|2 =
∫
RN

gφ

and hence ‖φ̃‖H � C‖g‖L2 and satisfies (2.5). By density, this fact extends to all g ∈ L2(RN).
The result follows since the solution of problem (2.5) in H is unique. �
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Let us recall the main properties of the fundamental solution k(x) in the representation (2.4),
which are stated for instance in [15] or in [12].

We have that k is radially symmetric and positive, k ∈ C∞(RN \ {0}) satisfying

• ∣∣k(x)
∣∣ + |x|∣∣∇k(x)

∣∣ � C

|x|N−2s
for all |x| � 1,

• lim|x|→∞ k(x)|x|N+2s = γ > 0,

• |x|∣∣∇k(x)
∣∣ � C

|x|N+2s
for all |x| � 1.

The operator Tm is not just defined on functions in L2. For instance it acts nicely on bounded
functions. The positive kernel k satisfies

∫
RN k = 1

m
. We see that if g ∈ L∞(RN) then

∥∥Tm[g]∥∥∞ � 1

m
‖g‖∞.

We have indeed the validity of an estimate like this for L∞ weighted norms as follows.

Lemma 2.2. Let 0 � μ < N + 2s. Then there exists a C > 0 such that

∥∥(
1 + |x|)μ

Tm[g]∥∥
L∞(RN)

� C
∥∥(

1 + |x|)μ
g
∥∥

L∞(RN)
.

Proof. Let us assume that 0 � μ < N + 2s and let ḡ(x) = 1
(1+|x|)μ . Then

T [ḡ](x) =
∫

|y−x|< 1
2 |x|

k(y)

(1 + |y − x|)μ dy +
∫

|y−x|> 1
2 |x|

k(y)

(1 + |y − x|)μ dy.

Then, as |x| → ∞ we find

|x|μ
∫

|y−x|< 1
2 |x|

k(y)

(1 + |y − x|)μ dy ∼ |x|−2s → 0,

and since k ∈ L1(RN), by dominated convergence we find that as |x| → ∞∫
|x−y|> 1

2 |x|

k(y)|x|μ
(1 + |x − y|)μ dy →

∫
RN

k(z) dz = 1

m
.

We conclude in particular that for a suitable constant C > 0, we have

Tm

[(
1 + |x|)−μ]

� C
(
1 + |x|)−μ

.
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Now, we have that

±Tm[g] �
∥∥(

1 + |x|)μ
g
∥∥

L∞(RN)
Tm

[(
1 + |x|)−μ]

,

and then

∥∥(
1 + |x|)μ

T [g]∥∥
L∞(RN)

� C
∥∥(

1 + |x|)μ
g
∥∥

L∞(RN)

as desired. �
We also have the validity of the following useful estimate.

Lemma 2.3. Assume that g ∈ L2 ∩ L∞. Then the following holds: if φ = Tm[g] then there is a
C > 0 such that

sup
x �=y

|φ(x) − φ(y)|
|x − y|α � C‖g‖L∞(RN) (2.6)

where α = min{1,2s}.

Proof. Since ‖Tm[g]‖∞ � C‖g‖∞, it suffices to establish (2.6) for |x − y| < 1
3 . We have

∣∣φ(x) − φ(y)
∣∣ �

∫
RN

∣∣k(z + y − x) − k(z)
∣∣dz‖g‖∞.

Now, we decompose∫
RN

∣∣k(z + y − x) − k(z)
∣∣dz

=
∫

|z|>3|y−x|

∣∣k(z + y − x) − k(z)
∣∣dz +

∫
|z|<3|y−x|

∣∣k(z + y − x) − k(z)
∣∣dz.

We have

∫
|z|>3|y−x|

∣∣k(
z + (y − x)

) − k(z)
∣∣ �

1∫
0

dt

∫
|z|>3|y−x|

∣∣∇k
(
z + t (y − x)

)∣∣dz |y − x|,

and, since 3|y − x| < 1,∫ ∣∣∇k
(
z + t (y − x)

)∣∣dz � C

(
1 +

∫
dz

|z|N+1−2s

)
� C

(
1 + |y − x|2s−1).
|z|>3|y−x| 1>|z|>3|y−x|
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On the other hand∫
|z|<3|y−x|

∣∣k(z + y − x) − k(z)
∣∣dz � 2

∫
|z|<4|y−x|

∣∣k(z)
∣∣dz � C|y − x|2s ,

and (2.6) readily follows. �
Next we consider the more general problem

(−�)sφ + W(x)φ = g in RN (2.7)

where W is a bounded potential.
We start with a form of the weak maximum principle.

Lemma 2.4. Let us assume that

inf
x∈RN

W(x) =: m > 0

and that φ ∈ H 2s(RN) satisfies Eq. (2.7) with g � 0. Then φ � 0 in RN .

Proof. We use the representation for φ as the trace of the unique solution φ̃ ∈ H to the problem∫ ∫
R

N+1+

∇φ̃∇ϕy1−2s +
∫
RN

Wφϕ =
∫
RN

gϕ, for all ϕ ∈ H.

It is easy to check that the test function ϕ = φ− = min{φ,0} does indeed belong to H . We readily
obtain ∫ ∫

R
N+1+

|∇φ̃−|2y1−2s +
∫
RN

Wφ2− =
∫
RN

gφ−.

Since g � 0 and W � m, we obtain that φ− ≡ 0, which means precisely φ � 0, as desired. �
We want to obtain a priori estimates for problems of the type (2.7) when W is not necessarily

positive. Let μ > N
2 , and let us assume that∥∥(

1 + |x|μ)
g
∥∥

L∞(RN)
< +∞.

The assumption in μ implies that g ∈ L2(RN).
Below, and in all what follows, we will say that φ ∈ L2(RN) solves Eq. (2.7) if and only if φ

solves the linear problem

φ = Tm

(
(m − W)φ + g

)
.
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Similarly, we will say that

(−�)sφ + W(x)φ � g in RN

if for some g̃ ∈ L2(RN) with g̃ � g we have

φ = Tm

(
(m − W)φ + g̃

)
.

The next lemma provides an a priori estimate for a solution φ ∈ L2(RN) ∩ L∞(RN) of (2.7).

Lemma 2.5. Let W be a continuous function, such that for k points qi i = 1, . . . , k a number
R > 0 and B = ⋃k

i=1 BR(qi) we have

inf
x∈RN\B

W(x) =: m > 0.

Then, given any number N
2 < μ < N + 2s there exists a constant C = C(μ,k,R) > 0 such

that for any φ ∈ H 2s ∩ L∞(RN) and g with∥∥ρ−1g
∥∥

L∞(RN)
< +∞

that satisfy Eq. (2.7) we have the validity of the estimate∥∥ρ−1φ
∥∥

L∞(RN)
� C

[‖φ‖L∞(B) + ∥∥ρ−1g
∥∥

L∞(RN)

]
.

Here

ρ(x) =
k∑

i=1

1

(1 + |x − qi |)μ .

Proof. We start by noticing that φ satisfies the equation

(−�)sφ + Ŵφ = ĝ

where

ĝ = (m − W)χBφ, Ŵ = mχB + W(1 − χB).

Observe that

∣∣ĝ(x)
∣∣ � M

k∑
i=1

(
1 + |x − qi |

)−μ
, M = C

(‖φ‖L∞(B) + ∥∥ρ−1g
∥∥

L∞(RN)

)
where C depends only on R, k and μ and

inf
N

Ŵ (x) � m.

x∈R
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Now, from Lemma 2.2, since 0 < μ < N + 2s we find a solution φ0(x) to the problem

(−�)sφ̄ + mφ̄ = (
1 + |x|)−μ

such that φ̄ = O(|x|−μ) as |x| → ∞. Then we have that

(
(−�)s + Ŵ

)
(φ̄) � M

k∑
i=1

(
1 + |x − qi |

)−μ

where

φ̄(x) = M

k∑
i=1

φ0(x − qi).

Setting ψ = (φ − φ̄) we get

(−�)sψ + Ŵψ = g̃ � 0

with g̃ ∈ L2. Using Lemma 2.4 we obtain φ � φ̄. Arguing similarly for −φ, and using the form
of φ̄ and M , the desired estimate immediately follows. �

Examining the proof above, we obtain immediately the following.

Corollary 2.1. Let ρ(x) be defined as in the previous lemma. Assume that φ ∈ H 2s(RN) satisfies
Eq. (2.7) and that

inf
x∈RN

W(x) =: m > 0.

Then we have that φ ∈ L∞(RN) and it satisfies

∥∥ρ−1φ
∥∥

L∞(RN)
� C

∥∥ρ−1g
∥∥

L∞(RN)
. (2.8)

A last useful fact is that if f,g ∈ L2(RN) and W = T (f ), Z = T (g) then the following
holds: ∫

RN

Z(−�)sW −
∫
RN

W(−�)sZ =
∫
RN

Tm[f ]g −
∫
RN

Tm[g]f = 0,

the latter fact since the kernel k is radially symmetric.
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3. Formulation of the problem: the ansatz

By a solution of the problem

ε2s(−�)su + V (x)u − up = 0 in RN

we mean a u ∈ H 2s(RN)∩L∞(RN) such that the above equation is satisfied. Let us observe that
it suffices to solve

ε2s(−�)su + V (x)u − u
p
+ = 0 in RN (3.1)

where u+ = max{u,0}. In fact, if u solves (3.1) then

ε2s(−�)su + V (x)u � 0 in RN

and, as a consequence to Lemma 2.4, u � 0.
After absorbing ε by scaling, the equation takes the form

(−�)sv + V (εx)v − v
p
+ = 0 in RN. (3.2)

Let us consider points ξ1, . . . , ξk ∈RN and designate

qi = ε−1ξi, q = (q1, . . . , qk).

Given numbers δ > 0 small and R > 0 large, we define the configuration space Γ for the
points qi as

Γ :=
{
q = (q1, . . . , qk) /R � max

i �=j
|qi − qj |, max

i
|qi | � δ−1ε−1

}
. (3.3)

We look for a solution with concentration behavior near each ξj . Letting ṽ(x) = v(x + ξj ) trans-
lating the origin to qj , Eq. (3.2) reads

(−�)sṽ + V (ξj + εx)ṽ − ṽ
p
+ = 0 in RN.

Letting formally ε → 0 we are left with the equation

(−�)sṽ + λj ṽ − ṽ
p
+ = 0 in RN, λj = V (ξj ).

So we ask that v(x) ≈ wλj
(x − qj ) near qj . We consider the sum of these functions as a first

approximation. Thus, we look for a solution v of (3.2) of the form

v = Wq + φ, Wq(x) =
k∑

wj(x), wj (x) = wλj
(x − qj ), λj = V (ξj ),
j=1
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where φ is a small function, disappearing as ε → 0. In terms of φ, Eq. (3.2) becomes

(−�)sφ + V (εx)φ − pW
p−1
q φ = E + N(φ) in RN (3.4)

where

N(φ) := (Wq + φ)
p
+ − pW

p−1
q φ − W

p
q ,

E :=
k∑

j=1

(
λj − V (εx)

)
wj +

(
k∑

j=1

wj

)p

−
k∑

j=1

w
p
j . (3.5)

Rather than solving problem (3.4) directly, we consider first a projected version of it. Let us
consider the functions

Zij (x) := ∂jwi(x)

and the problem of finding φ ∈ H 2s(RN) ∩ L∞(RN) such that for certain constants cij

(−�)sφ + V (εx)φ − pW
p−1
q φ = E + N(φ) +

k∑
i=1

N∑
j=1

cijZij , (3.6)

∫
RN

φZij = 0 for all i, j. (3.7)

Let Z be the linear space spanned by the functions Zij , so that Eq. (3.6) is equivalent to

(−�)sφ + V (εx)φ − pW
p−1
q φ − E − N(φ) ∈ Z.

On the other hand, for all ε sufficiently small, the functions Zij are linearly independent, hence
the constants cij have unique, computable expressions in terms of φ. We will prove that problem
(3.6)–(3.7) has a unique small solution φ = Φ(q). In that way we will get a solution to the full
problem (3.4) if we can find a value of q such that cij (Φ(q)) = 0 for all i, j . In order to build
Φ(q) we need a theory of solvability for associated linear operator in suitable spaces. This is
what we develop in the next section.

4. Linear theory

We consider the linear problem of finding φ ∈ H 2s(RN) such that for certain constants cij we
have

(−�)sφ + V (εx)φ − pW
p−1
q (x)φ + g(x) =

N∑
i=1

k∑
i=1

cijZij , (4.1)

∫
N

φZij = 0 for all i, j. (4.2)
R
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The constants cij are uniquely determined in terms of φ and g when ε is sufficiently small, from
the linear system

∑
i,j

cij

∫
RN

ZijZlk =
∫
RN

Zlk

[
(−�)sφ + V (εx)φ − pW

p−1
q (x)φ + g

]
. (4.3)

Taking into account that∫
RN

Zlk(−�)sφ =
∫
RN

φ(−�)sZlk =
∫
RN

(
pw

p−1
l − λl

)
Zlkφ,

we find

cij

∫
RN

ZijZlk =
∫
RN

gZlk + (
pw

p−1
l − pW

p−1
q + V (εx) − λl

)
Zlkφ. (4.4)

On the other hand, we check that∫
RN

ZijZlk = αlδijkl + O
(
d−N

)
where the numbers αl are positive, and independent of ε, and

d = min
{|qi − qj |/ i �= j

} � 1.

Then, we see that relations (4.4) define a uniquely solvable (nearly diagonal) linear system,
provided that ε is sufficiently small. We assume this last fact in what follows, and hence that the
numbers cij = cij (φ, g) are defined by relations (4.4).

Moreover, we have that∣∣(pw
p−1
l − pW

p−1
q + V (εx) − λl

)
Zlk(x)

∣∣ � C
(
R−N + ε|x − qj |

)(
1 + |x − qj |

)−N−s

and then from expression (4.4) we obtain the following estimate.

Lemma 4.1. The numbers cij in (4.1) satisfy:

cij = 1

αi

∫
RN

gZij + θij ,

where

|θij | � C
(
ε + d−N

)[‖φ‖L2(RN) + ‖g‖L2(RN)

]
.

In the rest of this section we shall build a solution to problem (4.1)–(4.2).
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Proposition 4.1. Given k � 1, N
2 < μ < N + 2s, C > 0, there exist positive numbers d0, ε0, C

such that for any points q1, . . . , qk and any ε with

k∑
i=1

|qi | � C

ε
, R := min

{|qi − qj |/ i �= j
}

> R0, 0 < ε < ε0

there exists a solution φ = T [g] of (4.1)–(4.2) that defines a linear operator of g, provided that

∥∥ρ(x)−1g
∥∥

L∞(RN)
< +∞, ρ(x) =

k∑
j=1

1

(1 + |x − qj |)μ .

Besides

∥∥ρ(x)−1φ
∥∥

L∞(RN)
� C

∥∥ρ(x)−1g
∥∥

L∞(RN)
.

To prove this result we require several steps. We begin with corresponding a priori estimates.

Lemma 4.2. Under the conditions of Proposition 4.1, there exists a C > 0 such that for any so-
lution of (4.1)–(4.2) with ‖ρ(x)−1φ‖L∞(RN) < +∞ we have the validity of the a priori estimate

∥∥ρ(x)−1φ
∥∥

L∞(RN)
� C

∥∥ρ(x)−1g
∥∥

L∞(RN)
.

Proof. Let us assume the a priori estimate does not hold, namely there are sequences εn → 0,
qjn, j = 1, . . . , k, with

min
{|qin − qjn|/ i �= j

} → ∞

and φn, gn with

∥∥ρn(x)−1φn

∥∥
L∞(RN)

= 1,
∥∥ρn(x)−1gn

∥∥
L∞(RN)

→ 0,

where

ρn(x) =
k∑

j=1

1

(1 + |x − qjn|)μ ,

with φn,gn satisfying (4.1)–(4.2). We claim that for any fixed R > 0 we have that

k∑
‖φn‖L∞(BR(qjn)) → 0. (4.5)
j=1
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Indeed, assume that for a fixed j we have that ‖φn‖L∞(BR(qjn)) � γ > 0. Let us set φ̄n(x) =
φn(qjn + x). We also assume that λn

j = V (qjn) → λ̄ > 0 and

(−�)sφ̄n + V (qjn + εnx)φ̄n + p
(
wλn

j
(x) + θn(x)

)p−1
φ̄n = ḡn

where

ḡn(x) = gn(qjn + x) −
k∑

l=1

n∑
i=1

ci
ln∂iwλn

l

(
qjn − q ′

ln + x
)
.

We observe that ḡn(x) → 0 uniformly on compact sets. From the uniform Hölder estimates
(2.6), we also obtain equicontinuity of the sequence φ̄n. Thus, passing to a subsequence, we may
assume that φ̄n converges, uniformly on compact sets, to a bounded function φ̄ which satisfies
‖φ̄‖L∞(BR(0)) � γ . In addition, we have that∥∥(

1 + |x|)μ
φ̄
∥∥

L∞(RN)
� 1

and that φ̄ solves the equation

(−�)sφ̄ + λ̄φ̄ + pw
p−1
λ̄

φ̄ = 0.

Let us notice that φ̄ ∈ L2(RN), and hence the nondegeneracy result in [15] applies to yield that
φ̄ must be a linear combination of the partial derivatives ∂iwλ̄. But the orthogonality conditions
pass to the limit, and yield ∫

RN

∂iwλ̄φ̄ = 0 for all i = 1, . . . ,N.

Thus, necessarily φ̄ = 0. We have obtained a contradiction that proves the validity of (4.5). This
and the a priori estimate in Lemma 2.5 shows that also, ‖ρn(x)−1φn‖L∞(RN) → 0, again a con-
tradiction that proves the desired result. �

Next we construct a solution to problem (4.1)–(4.2). To do so, we consider first the auxiliary
problem

(−�)sφ + V φ = g +
k∑

i=1

N∑
j=1

cijZij , (4.6)

∫
RN

φZij = 0 for all i, j , (4.7)

where V is our bounded, continuous potential with

inf
RN

V = m > 0.
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Lemma 4.3. For each g with ‖ρ−1g‖∞ < +∞, there exists a unique solution of problem
(4.1)–(4.2), φ =: A[g] ∈ H 2s(RN). This solution satisfies∥∥ρ−1A[g]∥∥

L∞(RN)
� C

∥∥ρ−1g
∥∥

L∞(RN)
. (4.8)

Proof. First we write a variational formulation for this problem. Let X be the closed subspace
of H defined as

X =
{
φ̃ ∈ H /

∫
RN

φZij = 0 for all i, j

}
.

Then, given g ∈ L2, we consider the problem of finding a φ̃ ∈ X such that

〈φ̃, ψ̃〉 :=
∫ ∫
R

N+1+

∇φ̃∇ψ̃y1−2s +
∫
RN

V φψ =
∫
RN

gψ for all ψ ∈ X. (4.9)

We observe that 〈·, ·〉 defines an inner product in X equivalent to that of H . Thus existence and
uniqueness of a solution follows from Riesz’s theorem. Moreover, we see that

‖φ‖L2(RN) � C‖g‖L2(RN).

Next we check that this produces a solution in strong sense. Let Z be the space spanned by
the functions Zij . We denote by Π [g] the L2(RN) orthogonal projection of g onto Z and by
Π̃ [g] its natural s-harmonic extension. For a function ϕ̃ ∈ H let us write

ψ̃ = ϕ̃ − Π̃ [ϕ]

so that ψ̃ ∈ X. Substituting this ψ̃ into (4.9) we obtain∫ ∫
R

N+1+

∇φ̃∇ϕ̃y1−2s +
∫
RN

V φϕ =
∫
RN

gϕ +
∫
RN

[V φ − g]Π [ϕ] +
∫
RN

φ(−�)sΠ [ϕ].

Here we have used that Π̃ [ϕ] is regular and∫ ∫
R

N+1+

∇φ∇Π̃ [ϕ]y1−2s =
∫
RN

φ(−�)sΠ [ϕ].

Let us observe that for f ∈ L2(RN) the functional

�(f ) =
∫
N

φ(−�)sΠ [f ]

R
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satisfies ∣∣�(f )
∣∣ � C‖φ‖L2(RN)‖ψ‖L2(RN),

hence there is an h(φ) ∈ L2(RN) such that

�(ψ) =
∫
RN

hψ.

If φ was a priori known to be in H 2s(RN) we would have precisely that

h(φ) = Π
[
(−�)sφ

]
.

Since Π is a self-adjoint operator in L2(RN) we then find that∫ ∫
R

N+1+

∇φ̃∇ϕ̃y1−2s +
∫
RN

V φϕ =
∫
RN

ḡϕ

where

ḡ = g + Π [V φ − g] + h(φ).

Since ḡ ∈ L2(RN), it follows then that φ ∈ H 2s(RN) and it satisfies

(−�)sφ + V φ − g = Π
[
(−�)sφ + V φ − g

] ∈ Z,

hence Eqs. (4.6)–(4.7) are satisfied. To establish estimate (4.8), we use just Corollary 2.1, ob-
serving that ∥∥ρ−1Π

[
(−�)sφ + V φ − g

]∥∥
L∞(RN)

� C
(‖φ‖L2(RN) + ‖g‖L2(RN)

)
� C‖g‖L2(RN)

�
∥∥ρ−1g

∥∥
L∞(RN)

.

The proof is concluded. �
Proof of Proposition 4.1. Let us solve now problem (4.1)–(4.2). Let Y be the Banach space

Y := {
φ ∈ C

(
RN

)
/‖φ‖Y := ∥∥ρ−1φ

∥∥
L∞(RN)

< +∞}
. (4.10)

Let A be the operator defined in Lemma 4.3. Then we have a solution to problem (4.1)–(4.2) if
we solve

φ − A
[
pW

p−1
q φ

] = A[g], φ ∈ Y. (4.11)
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We claim that

B[φ] := A
[
pW

p−1
q φ

]
defines a compact operator in Y . Indeed. Let us assume that φn is a bounded sequence in Y . We
observe that for some σ > 0 we have∣∣Wp−1

q φn

∣∣ � C‖φn‖Y ρ1+σ .

If σ is sufficiently small, it follows that fn := B[φn] satisfies∣∣ρ−1fn

∣∣ � Cρσ .

Besides, since fn = Tm((V − m)fn + gn) we use estimate (2.6) to get that for some α > 0

sup
x �=y

|fn(x) − fn(y)|
|x − y|α � C.

Arzela’s theorem then yields the existence of a subsequence of fn which we label the same way,
that converges uniformly on compact sets to a continuous function f with∣∣ρ−1f

∣∣ � Cρσ .

Let R > 0 be a large number. Then we estimate∥∥ρ−1(fn − f )
∥∥

L∞(RN)
�

∥∥ρ−1(fn − f )
∥∥

L∞(BR(0))
+ C max|x|>R

ρσ (x).

Since

max|x|>R
ρσ (x) → 0 as R → ∞

we conclude then that ‖fn − f ‖∞ → 0 and the claim is proven.
Finally, the a priori estimate tells us that for g = 0, Eq. (4.11) has only the trivial solution.

The desired result follows at once from Fredholm’s alternative. �
We conclude this section by analyzing the differentiability with respect to the parameter q of

the solution φ = Tq [g] of (4.1)–(4.2). As in the proof above we let Y be the space in (4.10), so
that Tq ∈ L(Y )

Lemma 4.4. The map q �→ Tq is continuously differentiable, and for some C > 0,

‖∂qTq‖L(Y ) � C (4.12)

for all q satisfying constraints (3.3).
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Proof. Let us write q = (q1, . . . , qk), qi = (qi1, . . . , qiN ), φ = Tq [g], and (formally)

ψ = ∂qij
Tq [g], dlk = ∂qij

clk.

Then, by differentiation of Eqs. (4.1)–(4.2), we get

(−�)sψ + V (εx)ψ − pW
p−1
q ψ = p∂qij

W
p−1
q φ +

∑
l,k

clk∂qij
Zlk +

∑
l,k

dlkZlk, (4.13)

∫
RN

ψZlk = −
∫
RN

φ∂qij
Zlk for all l, k. (4.14)

We let

ψ̃ = ψ − Π [ψ]

where, as before, Π [ψ] denotes the orthogonal projection of ψ onto the space spanned by the
Zlk . Writing

Π [ψ] =
∑
l,k

αlkZlk (4.15)

and relations (4.14) as ∫
RN

Π [ψ]Zlk = −
∫
RN

φ∂qij
Zlk for all l, k, (4.16)

we get

|αlk| � C‖φ‖Y � C‖g‖Y . (4.17)

From (4.13) we have then that

(−�)sψ̃ + V (εx)ψ̃ − pW
p−1
q ψ̃ = g̃ +

∑
l,k

dlkZlk, (4.18)

or ψ̃ = Tq [g̃] where

g̃ = p∂qij
W

p−1
q φ +

∑
l,k

clk∂qij
Zlk − [

(−�)s + V (εx) − pW
p−1
q

]
Π [ψ]. (4.19)

Then we see that

‖ψ̃‖Y � C‖g̃‖Y .
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Using (4.17) and Lemma 4.1, we see also that

‖g̃‖Y � C‖g‖Y ,
∥∥Π [ψ]∥∥ � C‖g‖Y

and thus

‖ψ‖ � C‖g‖Y . (4.20)

Let us consider now, rigorously, the unique ψ = ψ̃ + Π [ψ] that satisfies Eqs. (4.14) and (4.19).
We want to show that indeed

ψ = ∂qij
Tq [g].

To do so, qt
i = qi + tej where ej is the j -th element of the canonical basis of RN , and set

qt = (
q1, . . . qi−1, q

t
i , . . . , qk

)
.

For a function f (q) we denote

Dt
ij f = t−1(f (

qt
) − f (q)

)
we also set

φt := Tqt [g], Dt
ij Tq [g] =: ψt = ψ̃ t + Π

[
ψ̃ t

]
so that

(−�)sψ̃t + V (εx)ψ̃ t − pW
p−1
q ψ̃ t = g̃t +

∑
l,k

dt
lk Zlk,

where

g̃t = pDt
ij

[
W

p−1
q

]
φ +

∑
l,k

clkD
t
ijZlk − [

(−�)s + V (εx) − pW
p−1
q

]
Π

[
ψt

]
,

dt
lk = Dt

ij clk

and

Π
[
ψt

] =
∑
l,k

αt
lkZlk,

where the constants αt
lk are determined by the relations∫

N

Π
[
ψt

]
Zlk = −

∫
N

φDt
ijZlk.
R R
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Comparing these relations with (4.15), (4.16), (4.18) defining ψ , we obtain that

lim
t→0

∥∥ψt − ψ
∥∥

Y
= 0

which by definition tells us ψ = ∂qij
Tq [g]. The continuous dependence in q is clear from that of

the data in the definition of ψ . Estimate (4.12) follows from (4.20). The proof is concluded. �
5. Solving the nonlinear projected problem

In this section we solve the nonlinear projected problem

(−�)sφ + V (εx)φ − pW
p−1
q φ = E + N(φ) +

k∑
i=1

N∑
j=1

cijZij , (5.1)

∫
RN

φZij = 0 for all i, j. (5.2)

We have the following result.

Proposition 5.1. Assuming that ‖E‖Y is sufficiently small problem (5.1)–(5.2) has a unique small
solution φ = Φ(q) with ∥∥Φ(q)

∥∥
Y

� C‖E‖Y .

The map q �→ Φ(q) is of class C1, and for some C > 0∥∥∂qΦ(q)
∥∥

Y
� C

[‖E‖Y + ‖∂qE‖Y

]
, (5.3)

for all q satisfying constraints (3.3).

Proof. Problem (5.1)–(5.2) can be written as the fixed point problem

φ = Tq

(
E + N(φ)

) =: Kq(φ), φ ∈ Y. (5.4)

Let

B = {
φ ∈ Y /‖φ‖Y � ρ

}
.

If φ ∈ B we have that ∣∣N(φ)
∣∣ � C|φ|β, β = min{p,2},

and hence ∥∥N(φ)
∥∥ � C‖φ‖2.
Y
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It follows that ∥∥Kq(φ)
∥∥

Y
� C0

[‖E‖ + ρ2]
for a number C0, uniform in q satisfying (3.3). Let us assume

ρ := 2C0‖E‖, ‖E‖ � 1

2C0
.

Then

∥∥Kq(φ)
∥∥

Y
� C0

[
1

2C0
ρ + ρ2

]
� ρ

so that Kq(B) ⊂ B . Now, we observe that∣∣N(φ1) − N(φ2)
∣∣ � C

[|φ|β−1 + |φ|β−1]|φ1 − φ2|

and hence ∥∥N(φ1) − N(φ2)
∥∥

Y
� Cρβ−1‖φ1 − φ2‖Y

and ∥∥Kq(φ1) − Kq(φ2)
∥∥ � Cρβ−1‖φ1 − φ2‖Y .

Reducing ρ if necessary, we obtain that Kq is a contraction mapping and hence has a unique
solution of Eq. (5.4) exists in B . We denote it as φ = Φ(q). We prove next that Φ defines a C1

function of q . Let

M(φ,q) := φ − Tq

(
E + N(φ)

)
.

Let φ0 = Φ(q0). Then M(φ0, q0) = 0. On the other hand,

∂φM(φ,q)[ψ] = ψ − Tq

(
N ′(φ)ψ

)
where N ′(φ) = p[(W + φ)p−1 − Wp−1], so that∥∥N ′(φ)ψ

∥∥
Y

� Cρβ−1‖ψ‖Y .

If ρ is sufficiently small we have then that DφM(φ0, q0) is an invertible operator, with uniformly
bounded inverse. Besides

∂qM(φ,q) = (∂qTq)
(
E + N(φ)

) + Tq

(
∂qE + ∂qN(φ)

)
.

Both partial derivatives are continuous in their arguments. The implicit function applies in a small
neighborhood of (φ0, q0) to yield existence and uniqueness of a function φ = φ(q) with φ(q0) =
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φ0 defined near q0 with M(φ(q), q) = 0. Besides, φ(q) is of class C1. But, by uniqueness, we
must have φ(q) = Φ(q). Finally, we see that

∂qΦ(q) = −DφM
(
Φ(q), q

)−1[
(∂qTq)

(
E + N

(
Φ(q)

)) + Tq

(
∂qE + ∂qN

(
Φ(q)

))]
,

∂qN(φ) = p
[
(W + φ)p−1 − pWp−1 − (p − 1)Wp−2φ

]
∂qW

and hence ∥∥(∂qN)
(
Φ(q)

)∥∥
Y

� C
∥∥Φ(q)

∥∥β

Y
� C‖E‖β

Y .

From here, the above expressions and the bound of Lemma 4.4 we finally get the validity of
estimate (5.3). �
5.1. An estimate of the error

Here we provide an estimate of the error E defined in (3.5),

E :=
k∑

j=1

(
λj − V (εx)

)
wj +

(
k∑

j=1

wj

)p

−
k∑

j=1

w
p
j

in the norm ‖ · ‖Y . Here we need to take μ ∈ (N
2 , N+2s

2 ). We denote

R = min
i �=j

|qi − qj | � 1.

The first term in E can be easily estimated as∣∣∣∣∣ρ−1(x)

k∑
j=1

(
λj − V (εx)

)
wj

∣∣∣∣∣ � Cεmin(2s,1).

To estimate the interaction term in E, we divide the RN into the k sub-domains

Ωj = {wj � wi, ∀i �= j}, j = 1, . . . , k.

In Ωj , we have

∣∣∣∣∣
(

k∑
j=1

wj

)p

−
k∑

j=1

w
p
j

∣∣∣∣∣ � Cw
p−1
j

∑
i �=j

1

|x − qi |N+2s

� C
1

(1 + |x − qj |)(N+2s)(p−1)+μ

∑
i �=j

1

|qj − qi |N+2s−μ

� Cρ(x)Rμ−N−2s .
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In summary, we conclude that

‖E‖Y � Cε2s + CRμ−N−2s . (5.5)

As a consequence of Proposition 5.1 and the estimate (5.5), we obtain that

∥∥Φ(q)
∥∥

Y
� Cεmin(2s,1) + CRμ−N−2s .

Let us now take

τ = Cεmin(2s,1) + CRμ−N−2s .

6. The variational reduction

We will use the above introduced ingredients to find existence results for the equation

(−�)sv + V (εx)v − v
p
+ = 0. (6.1)

An energy whose Euler–Lagrange equation corresponds formally to (6.1) is given by

Jε(ṽ) := 1

2

∫
RN

v(−�)sv + V (εx)v2 − 1

p + 1

∫
RN

V (εx)v2.

We want to find a solution of (6.1) with the form

v = vq := Wq + Φ(q)

where Φ(q) is the function in Proposition 5.1. We observe that

(−�)svq + V (εx)vq − (vq)
p
+ =

∑
i,j

cijZij (6.2)

hence what we need is to find points q such that cij = 0 for all i, j . This problem can be formu-
lated variationally as follows.

Lemma 6.1. Let us consider the function of points q = (q1, . . . , qk) given by

I (q) := Jε

(
Wq + Φ(q)

)
,

where Wq + Φ(q) is the unique s-harmonic extension of Wq + Φ(q). Then in (6.2), we have
cij = 0 for all i, j if and only if

∂qI (q) = 0.
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Proof. Let us write vq = Wq + φ(q). We observe that

∂qij
I (q) =

∫
R

N+1+

∇ṽq∇(∂qij
ṽq)y1−2s +

∫
RN

V (εx)vq∂qij
vq −

∫
RN

(vq)
p−1
+ ∂qij

vq

=
∫
RN

[
(−�)svq + V (εx)vq − (vq)

p
+
]
∂qij

vq

=
∑
k,l

ckl

∫
RN

Zkl∂qij
vq . (6.3)

We observe that

∂qij
vq = −Zij + O(ερ) + ∂qij

Φ(q).

Since, according to Proposition 5.1∥∥∂qΦ(q)
∥∥

Y
= O

(‖E‖Y + ‖∂qE‖Y

)
and this quantity gets smaller as the number δ in (3.3) is reduced, and the functions Zkl are
linearly independent (in fact nearly orthogonal in L2), it follows that the quantity in (6.3) equals
zero for all i, j if and only if cij = 0 for all i, j . The proof is concluded. �

Our task is therefore to find critical points of the functional I (q). Useful to this end is to
achieve expansions of the energy in special situations.

Lemma 6.2. Assume that the numbers δ and R in the definition of Γ in (3.3) is taken so small
that

‖E‖Y + ‖∂qE‖ � τ � 1.

Then

Iε(q) = Jε(Wq) + O
(
τ 2)

and

∂qIε(q) = ∂qJε(Wq) + O
(
τ 2)

uniformly on points q in Γ .

Proof. Let us estimate

I (q) = Jε(vq), vq = Wq + Φ(q).
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We have that

I (ξ) = 1

2

∫
RN

vq(−�)svq + V v2
q − 1

p + 1

∫
v

p+1
q .

Thus we can expand

I (q) = Jε(Wq) +
∫
RN

Φ
[
(−�)svq + V vq − v

p
q

] + 1

2

∫
RN

Φ(−�)sΦ + V Φ2

− 1

p + 1

∫
RN

[
(Wq + Φ)p+1 − W

p+1
q − (p + 1)W

p
q Φ

]
.

Since, ‖E‖Y � τ then ‖Φ‖Y = O(τ), and from the equation satisfied by Φ , also ‖(−�)sΦ‖Y =
O(τ). This implies ∣∣∣∣1

2

∫
RN

Φ(−�)sΦ + V Φ2
∣∣∣∣ � C

∫
RN

ρ2μτ 2 � Cτ 2

and ∣∣∣∣ ∫
RN

[
(Wq + Φ)p+1 − W

p+1
q − (p + 1)W

p
q Φ

]∣∣∣∣ � C

∫
RN

ρ2μτ 2 � Cτ 2.

Here we have used the fact that μ ∈ (N
2 , N+2s

2 ).
On the other hand the second term in the above expansion equals 0, since by definition

(−�)svq + V vq − v
p
q ∈ Z

and Φ is L2-orthogonal to that space. We arrive to the conclusion that

I (q) = Jε(Wq) + O
(
τ 2)

uniformly for q in a bounded set. By differentiation we also have that

∂qI (q) = ∂qJε(Wq) +
∫
RN

∂qΦ(−�)sΦ + V Φ∂qΦ

+
∫
RN

[
(Wq + Φ)p − W

p
q − pW

p−1
q Φ

]
∂qWq + [

(Wq + Φ)p − W
p
q

]
∂qΦ.

Since we also have ‖∂qΦ‖Y = O(τ), then the second and third term above are of size O(ε2).
Thus,



886 J. Dávila et al. / J. Differential Equations 256 (2014) 858–892
∂qI (q) = ∂qJε(Wq) + O
(
ρ2)

uniformly on q ∈ Γ and the proof is complete. �
Next we estimate Jε(Wq) and ∂qJε(Wq). We begin with the simpler case k = 1. Here it is

always the case that

‖E‖Y + ‖∂qE‖Y � τ.

Let us also set ξ = εq . We have now that

Wq(x) = wλ(x − q), λ = V (ξ).

We compute

Jε(Wq) = Jλ(wλ) + 1

2

∫
RN

(
V (ξ + εx) − V (ξ)

)
w2

λ(x) dx

where

Jλ(v) = 1

2

∫
RN

v(−�)sv + λ

2

∫
RN

v2 − 1

p + 1

∫
RN

vp+1.

We recall that

wλ(x) := λ
1

p−1 w
(
λ

1
2s x

)
satisfies the equation

(−�)swλ + λwλ − w
p
λ = 0 in RN,

where w = w1 is the unique radial least energy solution of

(−�)sw + w − wp = 0 in RN.

Then, after a change of variables we find

Jλ(wλ) = 1

2

∫
RN

wλ(−�)swλ + λ

2

∫
RN

w2
λ − 1

p + 1

∫
RN

w
p+1
λ = λ

p+1
p−1 − N

2s J 1(w).

Now since w is radial, we find ∫
N

xiwλ(x) dx = 0.
R
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Thus, ∫
RN

(
V (ξ + εx) − V (ξ)

)
w2

λ(x) dx = ∇V (ξ) ·
∫
RN

xwλ + O
(
ε2) = O

(
ε2).

On the other hand

∂q

∫
RN

(
V (ξ + εx) − V (ξ)

)
w2

λ(x) dx

= ε

∫
RN

(∇V (ξ + εx) − ∇V (ξ)
)
w2

λ(x) dx + 2
∫
RN

(
V (ξ + εx) − V (ξ)

)
wλ∂qwλ dx

= O
(
ε2).

Lemma 6.3. Let θ = p+1
p−1 − N

2s
, c∗ = J1(w) and k = 1. Then the following expansions hold:

I (q) = c∗V θ(ξ) + O
(
εmin(4s,2)

)
,

∇qI (q) = c∗ε∇ξ

(
V θ

)
(ξ) + O

(
εmin(4s,2)

)
.

For the case k > 1 and mini �=j |qi − qj | � R � 1, we observe that, also, ‖E‖Y = O(τ) and
hence we also have

I (q) = Jε(Wq) + O
(
τ 2), ∂qI (q) = ∂qJε(Wq) + O

(
τ 2).

By expanding I (q) we get the validity of the following estimate.

Lemma 6.4. Letting ξ = εq we have that

I (q) = c∗
k∑

i=1

V θ(ξi) −
∑
i �=j

cij

|qi − qj |N+2s
+ O

(
εmin(4s,2) + 1

R2(N+2s−μ)

)
,

∇qI (q) = c∗ε∇ξ

[
k∑

i=1

V θ(ξi) −
∑
i �=j

cij

|qi − qj |N+2s

]
+ O

(
εmin(4s,2) + 1

R2(N+2s−μ)

)

where c∗ and cij = c0(V (ξi))
α(V (ξj ))

β are positive constants.

Proof. It suffices to expand Jε(Wq). We see that, denoting wi(x) := wλi
(x − qi),

Jε(Wq) = Jε

(
k∑

wi

)

i=1
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=
k∑

i=1

Jε(wi) + 1

2

∑
i �=j

∫
RN

wi(−�)swj +
∫
RN

V (εx)wiwj

− 1

p + 1

∫
RN

(
k∑

i=1

wi

)p+1

−
k∑

i=1

w
p+1
i . (6.4)

We estimate for i �= j ,∫
RN

wi(−�)swj +
∫
RN

V (εx)wiwj =
∫
RN

wiw
p
j +

∫
RN

(
V (εx) − λj

)
wiwj

= (
cij + o(1)

) 1

|qi − qj |N+2s
+ O

(
ε2s

RN+2s−μ

)
(6.5)

where cij = c0(V (ξi))
α((V (ξj ))

β) and c0, α,β are constants depending on p, s and N only.
Indeed,

wi(x) = λ
1

p−1
i w

(
λ

1
2s

i (x − qi)
)

and it is known that

w(x) = c0

|x|N+2s

(
1 + o(1)

)
as |x| → ∞.

Then, we have ∫
RN

w
p
j wi = λ

1
p−1 − n+2s

2s

i λ

p
p−1 − n

2s

j

( ∫
RN

wp

)
c0

|qi − qj |N+2s
,

and hence

cij = c0λ
α
i λ

β
j

where

λi = V (ξi), λj = V (ξj ), α = 1

p − 1
− n + 2s

2s
, β = p

p − 1
− n

2s
.

To estimate the last term we note that

∫
N

((
k∑

i=1

wi

)p+1

−
k∑

i=1

w
p+1
i

)p+1
R
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=
k∑

j=1

∫
Ωj

((
k∑

i=1

wi

)p+1

−
k∑

i=1

w
p+1
i

)p+1

=
k∑

j=1

∑
Ωj

(
(p + 1)w

p
j

(∑
i �=j

wi

)
+ O

(
w

min(p−1,1)
j

(∑
i �=j

wi

)2))

=
K∑

j=1

∑
i �=j

(p + 1)

∫
RN

w
p
j wi + O

(
1

R2(N+2s−μ)

)

=
K∑

j=1

∑
i �=j

(p + 1)
cij + o(1)

|qi − qj |N+2s
+ O

(
1

R2(N+2s−μ)

)
. (6.6)

Substituting (6.5) and (6.6) into (6.4) and using the estimate of Jε(wi) in the proof of
Lemma 6.3, we have estimated Jε(wi), and we have proven the lemma.

7. The proofs of Theorems 1–3

Based on the asymptotic expansions in Lemma 6.4, we present the proofs of Theorems 1–3.

Proof of Theorems 1 and 2. Let us consider the situation in Remark 1.1, which is more general
than that of Theorem 1. Then, in the definition of the configuration space Γ (3.3), we can take a
fixed δ and R ∼ ε−1 and achieve that Λ ⊂ εΓ . Then we get

‖E‖Y + ‖∂qE‖Y = O
(
εmin{2s,1}).

Letting

Ĩ (ξ ) := I (εq)

we need to find a critical point of Ĩ inside Λ. By Lemma 6.4, we see then that

Ĩ (ξ ) − c∗ϕ(ξ) = o(1), ∇ξ Ĩ (ξ) − c∗∇ξ ϕ(ξ) = o(1),

uniformly in ξ ∈ Λ as ε → 0, where ϕ is the functional in (1.10). It follows, by the assumption on
ϕ that for all ε sufficiently small there exists a ξε ∈ Λ such that ∇ Ĩ (ξ ε) = 0, hence Lemma 6.1
applies and the desired result follows.

Theorem 2 follows in the same way. We just observe that because of the C1-proximity, the
same variational characterization of the numbers c, for the functional Ĩ (ξ ) holds. This means
that the critical value predicted in that form is indeed close to c. The proof is complete. �
Proof of Theorem 3. Finally we prove Theorem 3. Following the argument in [18], we choose
the following configuration space

Λ =
{
(ξ1, . . . , ξk) / ξj ∈ Γ, min |ξi − ξj | > ε1− s

4

}
(7.1)
i �=j
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with Γ given by (3.3), and we prove the following Claim and then Theorem 3 follows from
Lemma 6.1:

Claim. Letting ξ = εq , the problem

max
(ξ1,...,ξk)∈Λ

I (q) (7.2)

admits a maximizer (ξε
1 , . . . , ξ ε

k ) ∈ Λ.

We shall prove this by contradiction. First, by continuity of I (q), there is a maximizer ξε =
(ξε

1 , . . . , ξ ε
k ) ∈ Λ̄. We need to prove that ξ ∈ Λ. Let us suppose, by contradiction, that ξε /∈ Λ,

hence it lies on its boundary. Thus there are two possibilities: either there is an index i such that
ξk
i ∈ ∂Γ , or there exist indices i �= j such that

∣∣ξε
i − ξε

j

∣∣ = min
i �=j

|ξi − ξj | = ε1−s .

Denoting qε = ξε

ε
, and using Lemma 6.4, we have in the first case that

I
(
qε

)
� c∗V θ

(
ξε
i

) + c∗
∑
j �=i

V θ
(
ξε
j

) + Cε2s

� c∗k max
Γ

V θ (x) + c∗
(

max
∂Γ

V θ (x) − max
Γ

V θ (x)
)

+ Cε2s . (7.3)

In the second case, we invoke again Lemma 6.4 and obtain

I
(
qε

)
� c∗k max

Γ
V θ (x) − c2ε

s
4 + Cε2s

for some c2 > 0. On the other hand, we can get an upper bound for I (qε) as follows. Let us
choose a point ξ0 such that V (ξ0) = maxΓ V (x) and let

ξj = ξ0 + ε1− 1
8 s(1,0, . . . ,0), j = 1, . . . , k.

It is easy to see that (ξ1, . . . , ξk) ∈ Λ. Now, we compute by Lemma 6.4:

I
(
qε

) = max
Λ

I (q) � c∗k max
Γ

V θ (x) − c3ε
s
8 . (7.4)

For ε sufficiently small, a contradiction follows immediately from (7.3)–(7.4). �
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