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Abstract: We develop an exact determinantal formula for the probability that the Airy2
process is bounded by a function g on a finite interval. As an application, we provide
a direct proof that sup(A2(x) − x2) is distributed as a GOE random variable. Both the
continuum formula and the GOE result have applications in the study of the end point of
an unconstrained directed polymer in a disordered environment. We explain Johansson’s
(Commun. Math. Phys. 242(1–2):277–329, 2003) observation that the GOE result fol-
lows from this polymer interpretation and exact results within that field. In a companion
paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics
are used to compute the distribution of the endpoint of directed polymers.

1. Introduction

The Airy2 process A2 was introduced in [PS02] in the study of the scaling limit of a
discrete polynuclear growth (PNG) model. It is expected to govern the asymptotic spatial
fluctuations in a wide variety of random growth models on a one dimensional substrate
with curved initial conditions, and the point-to-point free energies of directed random
polymers in 1 + 1 dimensions (the KPZ universality class). It also arises as the scal-
ing limit of the top eigenvalue in Dyson’s Brownian motion [Dys62] for the Gaussian
Unitary Ensemble (GUE) of random matrix theory (see [AGZ10] for more details).

A2 is defined through its finite-dimensional distributions, which are given by a
Fredholm determinant formula: given x0, . . . , xn ∈ R and t0 < · · · < tn in R,

P(A2(t0) ≤ x0, . . . ,A2(tn) ≤ xn) = det(I − f1/2 Kextf
1/2)L2({t0,...,tn}×R), (1.1)

where we have counting measure on {t0, . . . , tn} and Lebesgue measure on R, f is defined
on {t0, . . . , tn}×R by f(t j , x) = 1x∈(x j ,∞), and the extended Airy kernel [PS02,FNH99,
Mac94] is defined by

Kext(t, ξ ; t ′, ξ ′) =
{∫ ∞

0 dλ e−λ(t−t ′) Ai(ξ + λ) Ai(ξ ′ + λ), if t ≥ t ′

− ∫ 0
−∞ dλ e−λ(t−t ′) Ai(ξ + λ) Ai(ξ ′ + λ), if t < t ′,
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where Ai(·) is the Airy function. In particular, the one point distribution of A2 is given
by the Tracy-Widom largest eigenvalue distribution for GUE.

K. Johansson [Joh03] proved the remarkable fact that

Theorem 1. For every m ∈ R,1

P

(
sup
t∈R

(A2(t) − t2) ≤ m

)
= FGOE(41/3m).

Here FGOE denotes the Tracy-Widom largest eigenvalue distribution for the Gauss-
ian Orthogonal Ensemble (GOE) [TW96]. It also arises as the one point distribution of
the Airy1 process, which governs the asymptotic spatial fluctuations in one dimensional
random growth models with flat initial conditions, and the point-to-line free energies of
directed random polymers in 1 + 1 dimensions.

The proof of Theorem 1 in [Joh03] is indirect, using a functional limit theorem for
the convergence of the PNG model to the Airy2 process, together with the connection
between the PNG process and a certain last passage percolation model for which [BR01]
had proved the connection with GOE. In this article we develop a method to compute
continuum probabilities for the Airy2 process–which is to say, compute the probabil-
ity that the sample paths of the Airy2 process lie below a given function on any finite
interval. This is then used to provide a direct proof of Theorem 1 starting only from
determinantal formulas.

Theorem 1 reflects a universal behaviour seen in a large class of one dimensional
systems (the KPZ universality class starting with flat initial conditions) and therefore
has attracted quite a bit of interest at the physical level. Much of the recent work is
on finite systems of N nonintersecting random walks, the so-called vicious walkers
[Fis84]. [Fei09,RS10,RS11] obtain various expressions for the maximum and position
of the maximum at the finite N level. [FMS11] uses non-rigorous methods from gauge
theory to obtain the GOE distribution in the large N limit, and furthermore connect the
problem to Yang-Mills theory.

Our computation of continuum probabilities starts with the following (earlier) variant
of (1.1) due to [PS02],

P(A2(t0) ≤ x0, . . . ,A2(tn) ≤ xn)

= det
(

I − KAi + P̄x0 e(t0−t1)H P̄x1 e(t1−t2)H · · · P̄xn e(tn−t0)H KAi

)
, (1.2)

where KAi is the Airy kernel

KAi(x, y) =
∫ 0

−∞
dλ Ai(x − λ) Ai(y − λ),

H is the Airy Hamiltonian H = −∂2
x + x and P̄a denotes the projection onto the interval

(−∞, a]. Here, and in everything that follows, the determinant means the Fredholm
determinant in the Hilbert space L2(R). The equivalence of (1.1) and (1.2) was derived
formally in [PS02] and [PS11]. In fact there are some subtleties, because, for example,
it is not apriori obvious that for s, t > 0, e−s H can be applied to the image of P̄ae−t H .
See [QR12] for a discussion of the technical details.

1 The factor 41/3 corrects a minor mistake in Johansson’s statement. See Sect. 2 for a discussion.
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Remark 1.1. The shifted Airy functions are the generalized eigenfunctions of the Airy
Hamiltonian, as H Ai(x − λ) = λAi(x − λ). The Airy kernel KAi is the projection
of H onto its negative generalized eigenspace. This is seen by observing that if we
define the operator A to be the Airy transform, A f (x) := ∫ ∞

−∞ dz Ai(x − z) f (z), then
KAi = AP̄0 A∗.

Fix � < r . Given g ∈ H1([�, r ]) (i.e. both g and its derivative are in L2([�, r ])),
define an operator �

g
[�,r ] acting on L2(R) as follows: �

g
[�,r ] f (·) = u(r, ·), where u(r, ·)

is the solution at time r of the boundary value problem

∂t u + Hu = 0 for x < g(t), t ∈ (�, r),

u(�, x) = f (x)1x<g(�),

u(t, x) = 0 for x ≥ g(t).

The fact that this problem makes sense for g ∈ H1([�, r ]) is easy to prove and can be
seen from the proof of Proposition 3.2 below. By taking a fine mesh in t we obtain a
continuum version of (1.2):

Theorem 2.

P(A2(t) ≤ g(t) for t ∈ [�, r ]) = det
(

I − KAi + �
g
[�,r ]e

(r−�)H KAi

)
. (1.3)

An expression in terms of determinants of solution operators of boundary value prob-
lems may not seem very practical. But in fact one can give an explicit expression for the
kernel of the operator �

g
[�,r ] in terms of Brownian motion. Let b(s) denote a Brownian

motion with diffusion coefficient 2. By the Feynman-Kac formula,

u(r, x) = Eb(�)=x

(
f (b(r))e− ∫ r

� b(s)ds1b(s)≤g(s) on [�,r ]
)

.

The linear potential is removed by a parabolic shift,

�
g
[�,r ] f (x) = Eb(�)=x

(
f (b(r))e− ∫ r

� b(s)ds1b(s)≤g(s) on [�,r ]
)

= Eb(�)=x

(
f (b(r))e�b(�)−rb(r)+(r3−�3)/3+

∫ r
� sdb(s)−∫ r

� s2ds1b(s)≤g(s) on [�,r ]
)

= Eb(�)=x−�2

(
f (b(r) + r2)e�(b(�)+�2)−r(b(r)+r2)+(r3−�3)/31b(s)+s2≤g(s) on [�,r ]

)
,

where in the second equality we used integration by parts and added and subtracted
(r3 − �3)/3 and in the third one we used the Cameron-Martin-Girsanov formula. This
gives

Theorem 3. Let �
g
[�,r ](x, y) denote the integral kernel of �

g
[�,r ]. Then

�
g
[�,r ](x, y) = e�x−r y+(r3−�3)/3 e−(x−y)2/4(r−�)

√
4π(r − �)

· Pb̂(�)=x−�2,b̂(r)=y−r2

(
b̂(s) ≤ g(s) − s2 on [�, r ]

)
, (1.4)

where the probability is computed with respect to a Brownian bridge b̂(s) from x − �2

at time � to y − r2 at time r and with diffusion coefficient 2.
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This gives a formula which can be used in applications. The obvious one is the case
g(t) = t2 +m, in which the probability can easily be computed by the reflection principle
(method of images). A second one is the computation of the joint distribution of the max
and argmax of the Airy2 process minus a parabola, which appears in a companion paper
[MQR11]. The simple result in the case g(t) = t2 + m, setting −� = r = L , is that

�L := �
g(t)=t2+m
[−L ,L] = P̄m+L2 e−2L H P̄m+L2 − P̄m+L2 RL P̄m+L2 , (1.5)

where RL is the reflection term

RL(x, y) = 1√
8π L

e−(x+y−2m−2L2)2/8L−(x+y)L+2L3/3. (1.6)

The first term in �L has been reexpressed in terms of the Airy Hamiltonian by reversing
the use of the Cameron-Martin-Girsanov and Feynman-Kac formulas.

To obtain the L → ∞ asymptotics, decompose �L so as to expose the two limiting
terms, as well as a remainder term �L :

�L = e−2L H − RL + �L , (1.7)

where �L = (
RL − P̄m+L2 RL P̄m+L2

) − (
e−2L H − P̄m+L2 e−2L H P̄m+L2

)
. In Sect. 5 we

will show that

Lemma 1.2. As L goes to infinity,

�̃L := eL H KAi�LeL H KAi → 0

in trace norm.

Referring to (1.3), we have by the cyclic property of determinants and the identity
e2L H KAi = (eL H KAi)

2 that

P(A2(t) ≤ g(t) for t ∈ [−L , L]) = det
(

I − KAi + eL H KAi�LeL H KAi

)
. (1.8)

Since eL H KAie−2L H eL H KAi = KAi and due to Lemma 1.2, one sees that the key point
is the limiting behaviour in L of eL H KAi RLeL H KAi. Remarkably, it does not depend
on L and gives the kernel of FGOE, thus providing a proof of Theorem 1.

Proposition 1.3. For all L > 0,

eL H KAi RLeL H KAi = AP̄0 R̂ P̄0 A∗,

where the A is the Airy transform (see Remark 1.1), and

R̂(λ, λ̃) := 2−1/3 Ai(2−1/3(2m − λ − λ̃)).

Furthermore,

det
(

I − AP̄0 R̂ P̄0 A∗) = FGOE(41/3m). (1.9)
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The last equality is a version of the determinantal formula for FGOE proved by [FS05],
and which essentially goes back to [Sas05]:

FGOE(m) = det(I − P0 Bm P0), where Bm(x, y) = Ai(x + y + m).

This can be seen as follows. Using the cyclic property of the determinant and the reflec-
tion operator σ f (x) = f (−x) we may rewrite the determinant in (1.9) as

det
(

I − P̄0 R̂ P̄0

)
= det

(
I − σ P̄0 R̂ P̄0σ

)
= det

(
I − P0σ R̂σ P0

)
, (1.10)

where we have used that AA∗ = σ 2 = I . On the other hand we have σ R̂σ(λ, λ̃) =
2−1/3 Ai(2−1/3(λ + λ̃ + 2m)). Performing the change of variables λ 
→ 21/3λ,
λ̃ 
→ 21/3λ̃ in the Fredholm determinant shows that the determinants in (1.10) equal
det(I − P0 B41/3m P0).

The rest of the paper is organized as follows. In Sect. 2 we give an overview of the
approach of [Joh03] explaining how Theorem 1 can be obtained indirectly using the
connection of the Airy2 process with last passage percolation. Sect. 3 contains a brief
introduction to relevant ideas of Fredholm determinants and then provides a proof of
Theorem 2. Sect. 4 provides a short proof of Proposition 1.3. Finally, Sect. 5 is devoted
to the proof of Lemma 1.2, which essentially amounts to asymptotic analysis involving
the Airy function.

2. Indirect Derivation of Theorem 1 Through Last Passage Percolation

As we mentioned in the Introduction, [Joh03] presented an indirect proof of Theorem 1
by way of the PNG model. His idea was entirely correct, but in the process of translating
between the available results at the time, a factor of 41/3 was lost. The purpose of this
section is to explain Johansson’s approach and account for the missing 41/3.

We consider the PNG model (which we define below) with two types of initial con-
ditions (droplet and flat), and show that by coupling them to the same Poisson point
process environment we can represent the one-point distribution for the flat case as the
maximum of the interface in the droplet case. Asymptotics of this relationship leads to
the identity in Theorem 1.

Consider a space-time Poisson point process P of intensity 2. Define a height function
above x at time t as

hg(x, t) = max
π :g→(x,t)

T (π),

where g represents a space-time curve (g(x), x)x∈R, π is a Lipschitz 1 function of time
(i.e., |π(s) − π(s′)| ≤ |s − s′| for all s, s′), π : g → (x, t) means that π starts at a
point of the form (g(x), x) and ends at the point (x, t), and T (π) represents the sum
of the number of Poisson points that π touches. We will specialize this definition to
two cases. In the droplet geometry (for which we write hdroplet) we take g = |x |, hence
we only consider paths originating along a wedge. As a result the maximal path will
always originate at the origin (0, 0). In the flat geometry (for which we write hflat) we
take g ≡ 0, hence we consider Lipschitz paths starting in any spatial location at time 0
and ending at x at time t . This are illustrated in Fig. 1.

Couple P to another Poisson point process P̃ via P̃(A) = P(τt A), where for any
Borel set A ∈ R

2, (y, s) ∈ τt A if and only if (−y, t − s) ∈ A (one should think of this
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Fig. 1. The maximization problems coupled to the same Poissonian environment. Paths π must be Lipschitz
1 functions of time and T (π) represents a count of the number of Poisson points encountered by π . Left:
A general function g(x) represents the possible starting space-time starting location. Middle: The droplet
geometry in which g(x) = |x |. Right: The flat geometry in which g(x) ≡ 0

as a time-reversal of the Poisson point process where s 
→ t − s and x 
→ −x). Let h̃flat

represent the flat geometry height function built on the P̃ Poisson point process. Then
the following relation holds

h̃flat(t, 0) = max
x∈R

hdroplet(t, x).

Asymptotic fluctuation statistics have been derived for both the droplet and flat geom-
etries and (up to justification of taking the limit inside the maximum, as done in [Joh03]
for a related model) the limiting statistics also respect the same relationship above. Spe-
cifically [PS02] (see also [BFP08] for the specific choices of scaling used below) shows
that

lim
t→∞

hdroplet(t, t2/3x) − 2t

t1/3 = A2(x) − x2.

This implies that (up to the justifications mentioned above)

lim
t→∞

h̃flat(t, 0) − 2t

t1/3 = max
x∈R

(
A2(x) − x2

)
.

On the other hand, [BFS08] shows that

lim
t→∞

h̃flat(t, 0) − 2t

t1/3 = 21/3A1(0),

where A1 is the Airy1 process. Combining these two identities shows that

P
(

max
x∈R

(A2(x) − x2) ≤ m
) = P

(A1(0) ≤ 2−1/3m
) = FGOE(41/3m),

where the last equality follows from work of Ferrari and Spohn [FS05] which shows
that P(A1(0) < m) = FGOE(2m).

3. Proof of Theorem 2

The operator in (1.2) should be seen as a discrete version of the boundary value problem

operator �
ĝ
[�,r ], where ĝ(t) = g(�+r − t). In particular, for n > 0 let ti = �+ i(r −�)/n,

i = 0, . . . , n, and define the discrete time boundary value problem operator

�
g
n,[�,r ] = P̄g(t0)e

(t0−t1)H P̄g(t1)e
(t1−t2)H · · · e(tn−1−tn)H P̄g(tn).
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The proof of Theorem 2 amounts to showing that, as n goes to infinity, the discrete oper-

ator converges to the limiting operator �
ĝ
[�,r ] (note the order in which the points g(ti )

appear in (3.1), which explains why we need to introduce ĝ). This convergence must
be in a suitably strong sense to ensure the convergence of the Fredholm determinants.
Therefore, before turning to the proof of Theorem 2, let us briefly review some facts
about Fredholm determinants, trace class operators and Hilbert-Schmidt operators (see
Sect. 2.3 in [ACQ11] for more details, a complete treatment can be found in [Sim05]).

Consider a separable Hilbert space H and let A be a bounded linear operator acting on
H. Let |A| = √

A∗ A be the unique positive square root of the operator A∗ A. The trace
norm of A is defined as ‖A‖1 = ∑∞

n=1〈en, |A|en〉, where {en}n≥1 is any orthonormal
basis of H. We say that A ∈ B1(H), the family of trace class operators, if ‖A‖1 < ∞.
For A ∈ B1(H), one can define the trace tr(A) = ∑∞

n=1〈en, Aen〉 and then the Hilbert-

Schmidt norm ‖A‖2 = √
tr(|A|2). We say that A ∈ B2(H), the family Hilbert-Schmidt

operators, if ‖A‖2 < ∞. The following lemma collects some results which we will need
in the sequel, they can be found in Chaps. 1–3 of [Sim05]:

Lemma 3.1. (a) A 
→ det(I + A) is a continuous function on B1(H). Explicitly,

| det(I + A) − det(I + B)| ≤ ‖A − B‖1 exp(‖A‖1 + ‖B‖1 + 1).

(b) If A ∈ B1(H) and A = BC with B, C ∈ B2(H), then ‖A‖1 ≤ ‖B‖2‖C‖2.

(c) If ‖A‖op denotes the operator norm of A in H, then ‖A‖op ≤ ‖A‖2 ≤ ‖A‖1,
‖AB‖1 ≤ ‖A‖op ‖B‖1 and ‖AB‖2 ≤ ‖A‖op ‖B‖2.

(d) If A ∈ B2(H), then ‖A∗‖2 = ‖A‖2. If A has integral kernel A(x, y), then

‖A‖2 =
(∫

dx dy |A(x, y)|2
)1/2

.

The proof of the continuum limit of (1.2) will follow easily from the next proposition.

Proposition 3.2. Assume g ∈ H1([�, r ]) and let ĝ(t) = g(� + r − t). Then the oper-

ators KAi − �
g
n,[�,r ]e(r−�)H KAi and KAi − �

ĝ
[�,r ]e(r−�)H KAi are in B1(L2(R)), with

‖KAi −�
g
n,[�,r ]e(r−�)H KAi‖1 bounded uniformly in n. Furthermore, for any fixed � < r

we have, writing nk = 2k ,

lim
k→∞ ‖(KAi − �

g
nk ,[�,r ]e

(r−�)H KAi) − (KAi − �
ĝ
[�,r ]e

(r−�)H KAi)‖1 = 0. (3.1)

The idea of the proof is the following. Just as done in the Introduction for �
g
[�,r ], it

is possible to use the Feynman-Kac and Cameron-Martin-Girsanov formulas to write
a formula for the kernel of �

g
nk ,[�,r ] in terms of a path integral with a killing potential

enforced only at the dyadic mesh of times {ti }nk
i=1 (as opposed to being enforced at all

times in [�, r ]). If one considers a parabolic barrier g then the kernel for �
g
nk ,[�,r ] is

given in terms of the probability of a Brownian bridge exceeding a fixed value at some

time {ti }nk
i=1. This is compared to the analogous kernel for �

ĝ
[�,r ] given in terms of the

probability of a Brownian bridge exceeding a fixed valued at any time t ∈ [�, r ]. As the
mesh goes to zero, these two probabilities converge and hence so do the kernels. This
proves the proposition for parabolic g, and the extension to g ∈ H1([�, r ]) then follows
readily since H1 is the Cameron-Martin space for Brownian motion.
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Proof of Proposition 3.2. We will first prove the result assuming that g(s) = (s − 1
2 (� +

r))2. Let ϕ(x) = (1 + x2)1/2 and define the multiplication operator M f (x) = ϕ(x) f (x)

(note that the choice of ϕ is not particularly important and any strictly positive, polynomi-

ally growing function would do). To estimate the trace norm of KAi −�
ĝ
[�,r ]e(r−�)H KAi

we use Lemma 3.1 to write∥∥KAi − �
ĝ
[�,r ]e

(r−�)H KAi
∥∥

1 ≤ ∥∥(e−(r−�)H − �
ĝ
[�,r ])M

∥∥
2‖M−1e(r−�)H KAi

∥∥
2.

(3.2)

For the second Hilbert-Schmidt norm above we have by (4.1) that

‖M−1e(r−�)H KAi
∥∥2

2 =
∫

R2
dx dy

∫
(−∞,0]2

dλ dλ̃ ϕ(x)−2e(λ+λ̃)(r−�)

· Ai(x − λ) Ai(y − λ) · Ai(x − λ̃) Ai(y − λ̃)

=
∫ ∞

−∞
dx

∫ 0

−∞
dλ ϕ(x)−2e2λ(r−�) Ai(x − λ)2

≤ c (2(r − �))−1‖ϕ−1‖2
2, (3.3)

where c = maxx∈R Ai(x)2 < ∞.
Now we consider the first norm on the right side of (3.2). Shifting time by −(�+r)/2

in the definition of �
ĝ
[�,r ] it is clear that this operator equals �

g̃
[−L ,L], where L = (r−�)/2

and g̃(s) = s2. Using the formula for �
g̃
[−L ,L](x, y) given in Theorem 3 we get

�
ĝ
[�,r ](x, y) = e−(x−y)2/8L−(x+y)L+2L3/3

√
8π L

Pb̂(−L)=x−L2,b̂(L)=y−L2

(
b̂(s) ≤ 0 on [−L , L]

)
.

Similarly, the kernel of e−(r−�)H = e−2L H equals the above one with the probability
replaced by 1, and hence

(
e−(r−�)H − �

ĝ
[�,r ]

)
M(x, y) = e−(x−y)2/8L−(x+y)L+2L3/3

√
8π L

ϕ(y)

· Pb̂(−L)=x−L2,b̂(L)=y−L2

(
b̂(s) ≥ 0 for some s ∈ [−L , L]

)
. (3.4)

Using a known Brownian bridge formula (see for example p. 67 in [BS02]), the latter
crossing probability equals e−(x−L2)(y−L2)/2L if x ≤ L2, y ≤ L2 and 1 otherwise, and
therefore

‖(e−(r−�)H − �
ĝ
[�,r ])M‖2

2

= 1

8π L

∫
R2\(−∞,0]2

dx dy
[
e−(x−y)2/8L−(x+y)L−4L3/3]2

ϕ(y + L2)2

+
1

8π L

∫
(−∞,0]2

dx dy
[
e−(x+y)2/8L−(x+y)L−4L3/3]2

ϕ(y + L2)2, (3.5)

where we have performed the change of variables x 
→ x + L2, y 
→ y + L2. Both Gauss-

ian integrals can be easily seen to be finite, so we have shown that (e−(r−�)H −�
ĝ
[�,r ])M ∈

B2(L2(R)). Using this with (3.2) and (3.3) it follows that KAi − �
ĝ
[�,r ]e(r−�)H KAi is in

B1(L2(R)).
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Next we observe that we can shift time and apply the Feynman-Kac and Cameron-
Martin-Girsanov formulas directly on �

g
n,[�,r ] (n times) exactly as we did for �

g
[�,r ], and

it is not hard to check that we get a formula analogous to (3.4):(
e−(r−�)H − �

g
n,[�,r ]

)
M(x, y) = 1√

8π L
e−(x−y)2/8L−(x+y)L+2L3/3ϕ(y)

·Pb̂n(−L)=x−L2,b̂n(L)=y−L2

(
b̂n(tn

i ) ≥ 0 for some i ∈ {0, . . . , n}
)

,

where b̂n is now a discrete time random walk with Gaussian jumps with mean 0 and
variance 2L/n, started at time −L at x − L2, conditioned to hit y − L2 at time L , and
jumping at times tn

i = −L + 2i L/n, i ≥ 0. A simple coupling argument (see the next
paragraph) shows that the last probability is less than the corresponding one for the
Brownian bridge, and thus we obtain for ‖KAi − �

g
n,[�,r ]e(r−�)H KAi‖1 the same bound

as the one we get for ‖KAi −�
ĝ
[�,r ]e(r−�)H KAi‖1 from (3.5). This bound is, in particular,

independent of n.
Finally, in order to prove (3.1) we couple the Brownian bridge b̂ and the conditioned

random walk b̂nk by simply letting b̂nk (tnk
i ) = b̂(tnk

i ) for each i = 0, . . . , nk . Since the
Brownian bridge hits the positive half-line whenever the conditioned random walk does,
it is clear that ∣∣∣(e−(r−�)H − �

ĝ
[�,r ]

)
M − (

e−(r−�)H − �
g
nk ,[�,r ]

)
M

∣∣∣(x, y)

= e−(x−y)2/8L−(x+y)L+2L3/3

√
8π L

ϕ(y)qnk (x, y), (3.6)

where qnk (x, y) is the probability that the Brownian bridge b̂(s) hits the positive half-
line for s ∈ [−L , L] but not for any s ∈ {tnk

0 , . . . , tnk
2nk

}. Since every point is regular for
one-dimensional Brownian motion, qnk (x, y) ↘ 0 as k → ∞ for every fixed x, y, and

thus by the monotone convergence theorem we deduce that ‖(e−(r−�)H − �
ĝ
[�,r ])M −

(e−(r−�)H −�
ĝ
nk ,[�,r ])M‖2 → 0 as k → ∞. Using (3.3) and a decomposition analogous

to (3.2) yields (3.1).
To extend the result to g ∈ H1([�, r ]) we note that everything in the above argument

deals with properties of a Brownian motion b(s) killed at the positive half-line. In the
general case we will have by Theorem 3 a Brownian motion b(s) killed at the boundary
ĝ(s)−s2 or, equivalently, a process b̃(s) = b(s)−ĝ(s)+s2 killed at the positive half-line.
Using the Cameron-Martin-Girsanov Theorem we can rewrite the probabilities for b̃(s)
in terms of probabilities for b(s). Since ĝ(s) is a deterministic function in H1([�, r ]),
the Radon-Nikodym derivative of b̃(s) with respect to b(s) has finite second moment,
and thus by using the Cauchy-Schwarz inequality we get the first two statements in
the result from the above arguments. The convergence in (3.1) follows as well from the
above arguments because it only depends on almost sure properties of the corresponding
Brownian motion. ��
Proof of Theorem 2. Using the time reversal invariance of the Airy2 process and the
notation introduced before Proposition 3.2 we have

P
(A2(t0) ≤ g(t0), . . . ,A2(tn) ≤ g(tnk )

) = P
(A2(t0) ≤ ĝ(t0), . . . ,A2(tn) ≤ ĝ(tnk )

)
= det

(
I − KAi + �

ĝ
nk ,[�,r ]e

(r−�)H KAi

)
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where nk = 2k . Since the Airy2 process has a version with continuous paths (see
[Joh03,CH11,QR12]), the probability above converges to P(A2(t) ≤ g(t) for t ∈ [�, r ])
as k → ∞. The result now follows from Proposition 3.2 and Lemma 3.1, which imply
that

lim
k→∞ det

(
I − KAi + �

ĝ
nk ,[�,r ]e

(r−�)H KAi
) = det

(
I − KAi + �

g
[�,r ]e

(r−�)H KAi
)
.

��

4. Proof of Proposition 1.3

Since KAi is the projection onto the negative (generalized) eigenspace of H (see Remark
1.1), we have

eL H KAi(x, z) =
∫ 0

−∞
dλ eλL Ai(x − λ) Ai(z − λ) dλ. (4.1)

Then, recalling that the Airy transform is given by A f (x) = ∫ ∞
−∞ dλ Ai(x − λ) f (λ),

we can write

eL H KAi RLeL H KAi = AP̄0 R̂L P̄0 A∗, (4.2)

where

R̂L(λ, λ̃) = 1√
8π L

∫
R2

dz̃ dz e−(z+z̃−2m−2L2)2/8L−(z+z̃)L+(λ+λ̃)L+2L3/3

· Ai(z − λ) Ai(z̃ − λ̃).

Applying the change of variables 2u = z + z̃, 2v = z − z̃, we get

R̂L(λ, λ̃) = 1√
2π L

∫
R2

dudv e− (u−m−L2)2
2L −2uL+(λ+λ̃)L+ 2

3 L3
Ai(u+v−λ) Ai(u−v−λ̃).

Using the formula∫ ∞

−∞
dx Ai(a + x) Ai(b − x) = 2−1/3 Ai(2−1/3(a + b))

(see, for example, (3.108) in [VS10]), the v integral equals 2−1/3 Ai(2−1/3(2u −λ− λ̃)).
Therefore

R̂L(λ, λ̃)= 2−1/3

√
2π L

∫ ∞

−∞
du e−(u−m−L2)2/2L−2uL+(λ+λ̃)L+2L3/3 Ai(2−1/3(2u − λ − λ̃))

= 2−1/3

√
2π L

1

2π i

∫
�

dt
∫ ∞

−∞
du e−(u−m−L2)2/2L−2uL+(λ+λ̃)L+2L3/3+t3/3−2−1/3t (λ+λ̃−2u),

where in the second equality we have used the contour integral representation of the
Airy function, Ai(x) = 1

2π i

∫
�

dt et3/3−t x with � = {c + is : s ∈ R} and c any positive
real number. The u integral is just a Gaussian integral, and computing it we get

R̂L(λ, λ̃) = 2−1/3

2π i

∫
�

dt et3/3+21/3 Lt2+[41/3 L2+2−1/3(λ+λ̃−2m)]t+2L3/3+(λ+λ̃)L .
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Now we perform the change of variables t = s − 21/3L to obtain

R̂L(λ, λ̃) = 2−1/3

2π i

∫
�′

ds es3/3−2−1/3(2m−λ−λ̃)s = 2−1/3 Ai(2−1/3(2m − λ − λ̃))

(here the contour �′ is simply � shifted by 21/3L , so the integral still gives an Airy
function). Note how all the terms involving L have canceled.

5. Proof of Lemma 1.2

The proof of this result amounts to asymptotic analysis of integrals involving the Airy
function. The following well-known estimates for the Airy function (see (10.4.59-60)
in [AS64]) go a long way in the proof:

|Ai(x)| ≤ Ce− 2
3 x3/2

for x > 0, |Ai(x)| ≤ C for x ≤ 0. (5.1)

However, at one important point the above bounds for x ≤ 0 will prove insufficient, and
it will become necessary to utilize a representation (5.6) for Ai(x) which splits it into
complex oscillations of opposite phase. Then, following standard methods of asymptot-
ics for oscillatory integrals (i.e., shifting real contours up and down to turn oscillations
into exponential decay), we will achieve our bounds needed to complete the proof of
this lemma.

We will use the following version of Laplace’s method, which we state without proof
(see, for instance, [Erd56]):

Lemma 5.1. Let

I (M) =
∫

�

dx f (x)eϕ(x)M ,

where � ⊆ R
n is a (possibly unbounded) open polygonal domain and f and ϕ are

smooth functions defined on �. Assume that the local maxima of ϕ are attained at a
finite subset {x1, . . . , xn} of �. Then there is a constant C > 0 such that

|I (M)| ≤ C
n∑

k=1

M−κi | f (xi )|eϕ(xi )M

for large enough M, where κi = (n + 1)/2 if xi ∈ ∂� and κi = n/2 if xi ∈ �.

We write �̃L = �̃1
L − �̃2

L , where

�̃1
L = eL H KAi

(
RL − P̄m+L2 RL P̄m+L2

)
eL H KAi,

�̃2
L = eL H KAi

(
e−2L H − P̄m+L2 e−2L H P̄m+L2

)
eL H KAi.

The proof of Lemma 1.2 is contained in the next two lemmas.

Lemma 5.2.

‖�̃1
L‖1 −−−→

L→∞ 0.

Proof. We proceed as in (4.2) and factorize �̃1
L as

�̃1
L = A�̂1

L A∗,



358 I. Corwin, J. Quastel, D. Remenik

where

�̂1
L(λ, λ̃) = 1√

8π L

∫
D̃

dz dz̃ e−(z+z̃−2m−2L2)2/8L−(z+z̃)L+2L3/3+(λ+λ̃)L

· Ai(z − λ) Ai(z̃ − λ̃)1λ,λ̃≤0, (5.2)

with D̃ = R
2 \ (−∞, m + L2]2. Using the Plancherel formula for the Airy transform∫

f 2 = ∫
(A f )2, we have ‖A‖op = ‖A∗‖op = 1, so by Lemma 3.1 it will be enough to

show that

‖�̂1
L‖1 −−−→

L→∞ 0. (5.3)

Performing the change of variables z = L2(1 − w) + m, z̃ = L2(1 − w̃) + m in (5.2)
the kernel becomes

�̂1
L(λ, λ̃) = L7/2e(λ+λ̃)L−2mL

√
8π

∫
D

dw dw̃ eL3 f (w,w̃) Ai(L2(1 − w) + m − λ)

· Ai(L2(1 − w̃) + m − λ̃)1λ,λ̃≤0, (5.4)

where D = R
2 \ [0,∞)2 and f (w, w̃) = −(w+w̃)2

8 + (w + w̃) − 4
3 .

We split the region D into the union of three disjoint regions of pairs (w, w̃): D1 =
{w ≤ 1, w̃ ≤ 1} − {0 ≤ w ≤ 1, 0 ≤ w̃ ≤ 1}, D2 = {w ≤ 0, w̃ ≥ 1} and D′

2 = {w ≥
1, w̃ ≤ 0}. By the triangle inequality we can bound ‖�̂1

L(λ, λ̃)‖1 by the sum of the trace
norms of the operators obtained by restricting the integral in (5.4) to each of the regions
D1, D2 and D′

2. We will write �̂1
L1D1 for the operator restricted to D1, with the anal-

ogous notation for the other regions. Notice that, due to the symmetry of our formula,
we do not need to bound ‖�̂1

L1D′
2
‖1, as it satisfies the same bound as ‖�̂1

L1D2‖1.
Let us focus first on the operator restricted to D1, which is the simplest case because

1 − w ≥ 0 and 1 − w̃ ≥ 0. We write �̂1
L = G1G2G3 with

G1(λ,w) = e(λ−m)L Ai(L2(1 − w) + m − λ)1λ≤0,w≤1,

G2(w, w̃) = L7/2

√
8π

eL3 f (w,w̃)1(w,w̃)∈D1 ,

G3(w̃, λ̃) = e(λ̃−m)L Ai(L2(1 − w̃) + m − λ̃)1λ̃≤0,w̃≤1

and use Lemma 3.1 to estimate ‖�̂1
L‖1 ≤ ‖G1‖2‖G2‖2‖G3‖2. We begin with G1 and

assume first that w ≤ 1 + mL−2, so that using (5.1) have

‖G1 P̄1+mL−2‖2
2 =

∫ 0

−∞
dλ

∫ min{1,1+mL−2}

−∞
dw e2(λ−m)L Ai(L2(1 − w) + m − λ)2

≤ Ce−2mL
∫ ∞

0
dλ

∫ ∞

0
dw e−2λ−4/3(L2w+λ)3/2 ≤ C ′e−2mL .

Likewise, using the other bound in (5.1) it is easy to get ‖G1 P1+mL−2‖2
2 ≤ C |m|e−2mL .

Therefore ‖G1‖2 ≤ Ce−mL , and of course the same bound works for G3. On the other
hand, f attains its maximum on D1 at the points (1, 0) and (0, 1), where its value is
− 11

24 . Lemma 5.1 then allows to conclude that
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‖G2‖2
2 =

∫
D1

dw dw̃
L7

8π
e2L3 f (w,w̃) ≤ C L7(L3)−3/2e−11L3/12.

Putting the three bounds together we deduce that

‖�̂1
L1D1‖1 ≤ e−C L3

(5.5)

for some C > 0.
Let us now turn to the trace norm of the operator restricted to D2 (and hence also to

D′
2). This bound is slightly harder owing to the fact that one of the Airy functions is oscil-

latory (rather than rapidly decaying) in this region. As readily derived from the contour
integral representation of the Airy function by deforming the contour and performing a
change of variables, Ai(·) may alternatively be expressed as

Ai(x) = Re

[√−x

2π i

∫
�

ds exp(i(−x)3/2(−s + s3/3))

]
,

where � is the contour {s = a + b(a)i : a > 0} with b(a) = (a − 1)

√
a+2
3a . This con-

tour is the steepest descent contour for f (s) = i(−s + s3/3) and has the property that
Im f (s) = Im f (s0) = −2/3, where s0 = 1 is a critical point of f . Along � we can
write f (s) = −2/3i + g(s), where g(s) is real valued, g(s0) = 0 and g(s) decays to
−∞ monotonically and quadratically with respect to |s − s0|. Thus we may also write

Ai(x) = 1

2
(G(−x) + G(−x)), (5.6)

where

G(x) = exp(−2

3
x3/2i)

√
x

2π i

∫
�

ds exp(x3/2g(s)).

This expansion of the Airy function is the key to our oscillatory asymptotics.
By applying the change of variables w = 0+ L−3/2v and w̃ = 4+ L−3/2ṽ the integral

we wish to bound is given by

�̂1(λ, λ̃) = L1/2e(λ+λ̃)L

√
8π

∫ 0

−∞
dv hL(v)

×
∫ ∞

−3L3/2
d ṽ e− (v+ṽ)2

8 Ai(−3L2 − L1/2ṽ + m − λ̃)1λ,λ̃≤0, (5.7)

where

hL(v) = e
2
3 L3

Ai(L2 − L1/2v + m − λ).

We rewrite this as

�̂1
L = H1 H2 (5.8)

with

H1(λ, v) = L1/2

√
8π

eλL−v2/16hL(v)1λ,v≤0,

H2(v, λ̃) = eλ̃L−v2/16
∫ ∞

−3L3/2
d ṽ e− 2vṽ+ṽ2

8 Ai(−3L2 − L1/2ṽ + m − λ̃)1v,λ̃≤0.
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We will focus on the last integral in ṽ and prove that it is bounded by e−C L3
for some

C > 0. As the Airy function is bounded on the real axis, we readily find that due to the
Gaussian term, we may cut our integral outside of a region Rδ = (−δL3/2, δL3/2) by
introducing an error of order e−C ′L3

. Thus we may restrict our attention to Rδ .
Using the expansion given by Eq. (5.6), the ṽ integral may be written as 1

2 (IL + IL)

with

IL =
∫ δL3/2

−δL3/2
d ṽ e− 2vṽ+ṽ2

8 G(3L2 + L1/2ṽ − m + λ̃).

We wish to show that |IL | = |IL | ≤ e−C L3
. For simplicity we set v = λ̃ = m = 0,

though the argument below does not rely on this assumption and applies equally well
for all λ̃ ≤ 0, v ≤ 0 and m �= 0 as necessary. Under this simplification, and performing
a change of variables from ṽ to r by setting

L3r = (3L2 + L1/2ṽ)3/2,

we obtain

IL = 2

3
L3/2

∫ 33/2+δ′

33/2−δ′
dr r−1/3e− L3

8 (r2/3−3)2
G((L3r)2/3).

Since we can consider an arbitrary δ before the change of variables, we can likewise
consider an arbitrary δ′ > 0 for which to bound IL . Plugging in the expression for G we
get

IL = L5/2

3π

∫ 33/2+δ′

33/2−δ′
dr e

−L3
[

(r2/3−3)2
8 − 2

3 r i

] ∫
�

exp(L3rg(s))ds.

Observe that this integrand is analytic in r . Thus by Cauchy’s theorem, rather than inte-
grating from 33/2 − δ′ to 33/2 + δ′ along the real axis, we may do so along any other
curve between these points. Due to the properties of g(s) along �, as long as Re(r) > 0
we have that ∣∣∣∣

∫
�

ds exp(L3rg(s))

∣∣∣∣ ≤
∫

�

ds exp(L3 Re(r)g(s)),

which is certainly a bounded function of r for Re(r) > 0. The decay of the integrand is
thus controlled by

Re

(
−

[
1

8
(r2/3 − 3)2 − 2

3
r i

])
. (5.9)

Informed by this we may deform the r integration contour to the contour B = B1 ∪ B2 ∪
B3, where B1 = {33/2 − δ′ + iy : y ∈ [0, η]}, B2 = {x + iη : x ∈ [33/2 − δ′, 33/2 + δ′]}
and B3 = {33/2 + δ′ + iy : y ∈ [0, η]}. It is an exercise in basic complex analysis to
see that one can choose η in such a way that, along the contour B, (5.9) stays bounded
below a constant −C for C > 0. This implies that the exponential is bounded by e−C L3

along that curve and hence for the entire integral we get |IL | ≤ e−C L3
for some C > 0.

Going back to the definition of H2 this implies that

‖H2‖2
2 = 1

4

∫
−(∞,0]2

dv dλ̃ e2λ̃L−v2/8(IL + IL)2 ≤ e−C L3
.
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Returning to (5.8), it now suffices by Lemma 3.1 to prove that ‖H1‖2 does not grow
like eC L3

. This follows readily by integration using (5.1), which implies that

log(hL(v)) ≈ 2

3
L3 − 2

3
(L2 − L1/2v + λ)3/2 ≈ C L3/2v (5.10)

for some fixed C > 0. Note how the L3 terms perfectly cancel. This finishes showing that
‖�̂1

L 1D2‖1 ≤ e−C L3
. As noted before, we may likewise develop a bound for ‖�̂1

L1D′
2
‖1.

Putting this together with (5.5) gives (5.3), which finishes the proof. ��
Lemma 5.3.

‖�̃2
L‖1 −−−→

L→∞ 0.

Proof. The proof of this result is the same as that of the previous lemma. Using the
definition of �̃2

L and factorizing as in the above proof we get

�̃2
L = A�̂2

L A∗

with

�̂2
L(λ, λ̃) = e−2mL+(λ+λ̃)L

√
8π L

∫
D

dw̃ dw e−(w−w̃)2/8L+(w+w̃)L−4L3/3

· Ai(−w + L2 − λ + m) Ai(−w̃ + L2 − λ̃ + m)1λ,λ̃≤0.

Applying the change of variables w 
→ L2w and w̃ 
→ L2w̃ the kernel becomes

�̂2
L(λ, λ̃) = L7/2e(λ+λ̃)L/2−2mL

√
8π

∫
D

dw dw̃ eL3 f̃ (w,w̃) Ai(L2(1 − w) + m − λ)

· Ai(L2(1 − w̃) + m − λ̃)1λ,λ̃≤0,

where f̃ (w, w̃) = −(w−w̃)2

8 + (w + w̃) − 4
3 . Note the similarity with (5.4), the only

difference being that in f̃ we have a term −(w − w̃)2/8 instead of −(w + w̃)2/8.
As in the above proof we need to bound ‖�̂2

L‖1, and to that end we split D into the
same three regions D1, D2 and D′

2. The operator restricted to D1 is easy to bound, exactly
as before. On D2 (and thus also on D′

2) we can repeat the same argument as before. The
only diference is that, when we apply the change of variables w = 0 + L−3/2v and
w̃ = 4 + L−3/2ṽ, the function hL(v) in the resulting integral in (5.7) is now multiplied
by e2vL3/2

, coming from the difference between f̃ and the function f defined after (5.4).
This change does not affect the bound on the ṽ integral (IL and IL in the above proof).
It is straightforward to check that the rest of the proof is not affected either (note in fact
that the only place where the definition of hL(v) is used is (5.10), and the approximation
there is still valid). ��
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