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We use an extended version of the standard tunnelingmodel to explain the anisotropic sound absorption in decagonal quasicrystals.
The glassy properties are determined by an ensemble of two level systems (TLSs), arbitrarily oriented. The TLS is characterized by
a 3 × 3 symmetric tensor, [𝑇], which couples to the strain field, [𝑆], through a 3 × 3 × 3 × 3 tensor of coupling constants, [𝑅]. The
structure of [𝑅] reflects the symmetry of the quasicrystal. We also analyze the probability distributions of the elements of [𝑇] in this
particular model for a better understanding of the characteristics of “isotropic” and “anisotropic” distributions of the ensemble of
TLSs. We observe that the distribution of the elements is neither simple nor intuitive and therefore it is difficult to guess it a priory,
using qualitative arguments based on the symmetry properties.

1. Introduction

Despite almost four decades of study of the glassy properties
materials [1–4], the nature of the two-level systems (TLS),
the ubiquitous hypothetical microscopic entities that are held
responsible for these properties, is still not known. As a gen-
eral picture, it is accepted that they represent dynamic defects,
which are atoms or groups of atoms that tunnel from one
minimum energy configuration to another. But these atoms
are in general not identified, and even in the cases when they
are identified (like in crystals with defects), the TLS spectrum
cannot be obtained based on a microscopic model.

The study of solids with anisotropic glassy properties is
especially interesting since this brings additional information
about the TLSs and requires a critical perspective on the
standard tunneling model (STM).

To identify the origin of the TLS, the thermal and
acoustical properties of a number of crystalline systems with
defects [5–13] and quasicrystals [14–18] at low temperatures
have been investigated thoroughly. As expected, the glass like
properties in both the disordered crystalline system and in
the quasicrystals were revealed. However, a crucial difference

in comparison with ordinary amorphous solids which pos-
sess TLS excitations was detected. Namely, pronounced
anisotropy in internal friction was clearly marked. As a
consequence of that, the baffling physical problem about the
possible origin of the anisotropy appeared. Indeed, there are
two competitive ways for the explanation. First, the effect is
explained by an anisotropy in the distribution over the “orien-
tations” of the TLSs in the ensemble.The interaction between
the TLS and the elastic field is described by the Hamiltonian

𝐻
𝐼
=

1

2

(
𝛿 0

0 −𝛿
) , (1)

where 𝛿 ≡ 2𝛾
𝑖𝑗
𝑆
𝑖𝑗
and [𝑆] is the strain field of the phonon—

we assume everywhere summation over the repeated indices.
The symmetric second rank tensor [𝛾] characterizes the TLS
and its “deformability” under elastic strain. The anisotropy
of the physical properties is a reflection of the values taken
by the elements of [𝛾], which are determined by the lattice
symmetries. Bert et al. made a conjecture regarding these
values to recover the anisotropic sound attenuation rates that
they observed in decagonal quasicrystals [18].



2 Advances in Condensed Matter Physics

In the second approach [19–21]—the one that we will
employ in this paper—the TLS is characterized by a 3 × 3
symmetric tensor [𝑇] and the coupling between [𝑇] and [𝑆]
is made through a forth rank tensor of coupling constants
denoted by [𝑅]. Explicitly, 𝛾

𝑖𝑗
≡ 𝑅
𝑘𝑙𝑖𝑗
𝑇
𝑘𝑙
and 𝛿 ≡ [𝑇]𝑡 : [𝑅] :

[𝑆]. The elements of [𝑇] are determined by a unit vector t̂,
which is the direction of the TLS, whereas the structure of
[𝑅] is determined by the symmetries of the host material. In
this model, even if the TLSs are isotropically oriented, the
anisotropy of the system is imposed by the properties of the
tensor of coupling constants.

We applied the second approach to the crystalline mate-
rials of different symmetries with embedded TLSs, assuming
the isotropy of the orientations of the TLSs [22–25] and we
calculated the attenuation of ultrasound waves of different
polarizations and propagating in different crystallographic
directions. This model describes not only in a simple way
the asymmetries of the glassy properties but also allows us to
make predictions about the relative attenuation rates of sound
propagating in different directions.

In this paper, we apply themodel of [19] to the attenuation
of ultrasound waves in quasicrystals and we obtain the
attenuation rates along different crystallographic directions
expressed in terms of the components of the tensor of cou-
pling constants. We apply our calculations to the experimen-
tal results of [18], which enable us to calculate the relations
between some of the components of the coupling constants
tensor.

In order to better understand the distribution of the TLSs
in isotropic and anisotropic materials, we calculate the distri-
bution of the elements of [𝑇] for an isotropic distribution of
unit vectors t̂.

2. The Anisotropy of the Glassy Properties

Let us introduce the notations by presenting briefly the
model. The Hamiltonian of the free TLS is

𝐻TLS =
Δ

2

𝜎
𝑧
−

Λ

2

𝜎
𝑥
≡

1

2

(
Δ −Λ

−Λ −Δ
) , (2)

where Δ is called the asymmetry of the potential and Λ the
tunnel splitting. The eigenvalues of 𝐻TLS are ±𝜖/2, where 𝜖 ≡
√Δ
2
+ Λ
2 is the excitation energy of this TLS. The ground

state will be denoted by | ↓⟩ and the excited state by | ↑⟩.
The interaction Hamiltonian of the TLS with the strain field
is given by (1).

The parameters Δ and Λ are distributed with the proba-
bility 𝑃(Δ, Λ) = 𝑃

0
/Λ, where 𝑃

0
is a constant. If expressed in

terms of 𝜖 and 𝑢 ≡ Λ/𝜖, the probability distribution becomes
𝑃(𝜖, 𝑢) = 𝑃

0
/(𝑢√1 − 𝑢

2
).

As usual, we work in the abbreviated subscript notations
and write [𝑆] and [𝛾] as six-dimensional vectors: S =

(𝑆
11
, 𝑆
22
, 𝑆
33
, 2𝑆
23
, 2𝑆
13
, 2𝑆
12
)
𝑡 and 𝛾 = (𝛾

11
, 𝛾
22
, 𝛾
33
, 𝛾
23
, 𝛾
13
,

𝛾
12
)
𝑡, where the superscript 𝑡 denotes the transpose of a

matrix or a vector.
As stated before, 𝛾

𝑖𝑗
= 𝑅
𝑘𝑙𝑖𝑗
𝑇
𝑘𝑙
. Assuming that the TLS

is characterized by a direction in space, t̂, the tensor T is
formed of the components of t̂ [19]. In abbreviated subscript

notations T ≡ (𝑡2
𝑥
, 𝑡
2

𝑦
, 𝑡
2

𝑥
, 2𝑡
𝑦
𝑡
𝑧
, 2𝑡
𝑧
𝑡
𝑥
, 2𝑡
𝑥
𝑡
𝑦
)
𝑇, 𝑅
𝑖𝑗𝑘𝑙

becomes
𝑅
𝐼𝐽
, and 𝛾 ≡ [𝑅]𝑡 ⋅T [19].The structure of [𝑅] is determined

by the symmetries of the lattice, since 𝛿 is a scalar and it
should be invariant under coordinates transformations,
whereas [𝑅] should be invariant under the symmetry trans-
formations that leaves the lattice invariant [19].

The absorption rate of a phonon—with wavenumber k
and polarization 𝜎—by a TLS is [19, 21, 22, 24]

Γk𝜎 (̂t) =
2𝜋

ℎ

Λ
2
𝑛k𝜎
𝜖
2

󵄨
󵄨
󵄨
󵄨
󵄨
T𝑡 ⋅ [𝑅] ⋅ Sk𝜎

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝛿 (𝜖 − ℎ𝜔) . (3)

The main characteristic of the TLS-phonon interaction is
contained in the quantity𝑀k,𝜎(̂t) ≡ T𝑡 ⋅ [𝑅] ⋅Sk𝜎, which bears
an intrinsic anisotropy through the matrix [𝑅], on which the
symmetries of the lattice are imposed.

The average scattering rate of a phonon by the ensemble
of TLSs is obtained by averaging Γk𝜎(̂t) over 𝜖,Λ, and t̂. In this
way we get the total phonon absorption rate:

𝜏
−1

k𝜎 =
2𝜋

ℎ

𝑃
0
⟨
󵄨
󵄨
󵄨
󵄨
𝑀k𝜎 (̂t)

󵄨
󵄨
󵄨
󵄨

2

⟩𝑛k𝜎 tanh(
𝜖

2𝑘B𝑇
) , (4)

which may be put into the standard form

𝜏
−1

k,𝜎 =
2𝜋

ℎ

𝑃
0
𝛾
2

k̂,𝜎𝑁
2
𝑘
2
𝑛k𝜎 tanh(

𝜖

2𝑘B𝑇
) , (5)

where 𝑁 = √ℎ/(2𝑉𝜌𝜔) is the normalization constant of the
phononmode and 𝛾k̂,𝜎 ≡ ⟨|𝑀k𝜎(̂t)|2⟩

1/2
/(𝑁𝑘) is the (average)

phonon-TLS coupling constant.Wemake the typical assump-
tion that t̂ is isotropically oriented and the anisotropy is
induced only by the properties of [𝑅].

As shown in [19], the structure of [𝑅] should be similar
to that of the elastic stiffness constants, [𝑐]. The quasicrystal
analyzed in [17] has decagonal symmetry and in this case [𝑅]
should have the form [18, 26–28],

[𝑅] =
(

(

𝑟
11
𝑟
12
𝑟
13
0 0 0

𝑟
12
𝑟
11
𝑟
13
0 0 0

𝑟
13
𝑟
13
𝑟
33
0 0 0

0 0 0 𝑟
44
0 0

0 0 0 0 𝑟
44
0

0 0 0 0 0 𝑟
66

)

)

, (6)

where 𝑟
66
= (𝑟
11
−𝑟
12
)/2—the axis 𝑧 is taken along the tenfold

axis.The structure of both, [𝑅] and [𝑐], is similar in decagonal
quasicrystals and in hexagonal lattices.

Like in hexagonal lattices, in the decagonal quasicrystals,
we can have pure longitudinal and transversal waves propa-
gating in all the three directions, 𝑥, 𝑦, and 𝑧.
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The coupling constants, 𝛾k̂,𝜎 are similar to those calculated
for hexagonal lattices in [24]:

𝛾
2

𝑘 x̂, 𝑙 =
2 (𝑟
2

11
+ 𝑟
2

12
+ 𝑟
2

13
) + (𝑟
11
+ 𝑟
12
+ 𝑟
13
)
2

15

= 𝛾
2

𝑘 ŷ, 𝑙,
(7a)

𝛾
2

𝑘 ẑ, 𝑙 =
8𝑟
2

13
+ 4𝑟
13
𝑟
33
+ 3𝑟
2

33

15

, (7b)

𝛾
2

𝑘 ŷ, x̂,𝑡 = 𝛾
2

𝑘 x̂, ŷ, 𝑡 =
(𝑟
11
− 𝑟
12
)
2

15

=

4𝑟
2

66

15

,
(7c)

𝛾
2

𝑘 x̂, ẑ, 𝑡 = 𝛾
2

𝑘 ŷ, ẑ, 𝑡 = 𝛾
2

𝑘ẑ,x̂,𝑡 = 𝛾
2

𝑘 ẑ, ŷ, 𝑡 =
4𝑟
2

44

15

, (7d)

where by 𝑙 and 𝑡, we refer to longitudinal and transversal
polarizations, respectively.

While for the longitudinal waves, the direction of polar-
ization is obvious, for the transversal waves, the direction
of polarization is indicated by the second unit vector in the
subscript of 𝛾 in (7c) and (7d).

Due to the isotropy condition in the decagonal plane, the
coupling constants of the phonons propagating in this plane
are independent of the direction of propagation if they have
similar polarization.

Comparing (7c) and (7d)with the results of Bert et al. [18],
we obtain

𝑃𝛾
2

‖

𝑃𝛾
2

⊥

≡

𝛾
2

𝑘 x̂, ŷ, 𝑡

𝛾
2

𝑘 x̂, ẑ, 𝑡
= (

𝑟
11
− 𝑟
12

2𝑟
44

)

2

= (

𝑟
66

𝑟
44

)

2

≈ 4.2, (8)

where 𝑃𝛾2
‖
and 𝑃𝛾2

⊥
are obvious notations from [18].

To find the ranges of the coupling constants, we rewrite
(7a) and (7b) as

𝛾
2

𝑘 x̂, 𝑙 = 𝛾
2

𝑘 ŷ, 𝑙 =
𝑟
2

13

80

[(4

𝑟
11

𝑟
13

+ 1)

2

+ (4

𝑟
12

𝑟
13

+ 1)

2

+

2

3

(4

𝑟
11

𝑟
13

+ 1)(4

𝑟
12

𝑟
13

+ 1) +

40

3

] ,

(9a)

𝛾
2

𝑘 ẑ, 𝑙 =
𝑟
2

13

45

[(3

𝑟
33

𝑟
13

+ 2)

2

+ 20] . (9b)

Since the function 𝑓(𝑎, 𝑏) = 𝑎2 +𝑏2 +2𝑎𝑏/3 satisfies 𝑓(𝑎, 𝑏) ≥
𝑓(0, 0) = 0 for any 𝑎 and 𝑏, we find from (9a) and (9b) that

𝛾
2

𝑘 x̂, 𝑙 = 𝛾
2

𝑘 ŷ, 𝑙 ≥
𝑟
2

13

6

, 𝛾
2

𝑘 ẑ, 𝑙 ≥
4𝑟
2

13

9

. (10)

Theminimum values of the coupling constants, 𝛾2
𝑘x̂,𝑙 and 𝛾

2

𝑘ẑ,𝑙,
for given 𝑟

13
(10), are obtained for 𝑟

11
= 𝑟
12
= −𝑟
13
/4 and

𝑟
33
= −2𝑟

13
/3. The ratio between these minimum values is

(𝛾
2

𝑘 x̂ ,𝑙)min

(𝛾
2

𝑘 ẑ, 𝑙)min

=

3

8

(11)

and is independent of 𝑟
11
, 𝑟
12
, 𝑟
13
, and 𝑟

33
.

Another inequality exists for the ratio 𝛾2
𝑘x̂,𝑙/𝛾
2

𝑘ŷ,x̂,𝑡. If we
denote𝑋 = 𝑟

12
/(𝑟
11
− 𝑟
12
) and 𝑌 ≡ 𝑟

13
/(𝑟
11
− 𝑟
12
), then

𝛾
2

𝑘 x̂, 𝑙
𝛾
2

𝑘ŷ,x̂,𝑡
= (3 + 8𝑋

2
+ 3𝑌
2
+ 4𝑋𝑌 + 8𝑋 + 2𝑌) ≥ 1. (12)

The limit value of the inequality (12), 𝛾2
𝑘x̂,𝑙 = 𝛾

2

𝑘ŷ,x̂,𝑡, is reached
for𝑋min = −1/2 and 𝑌min = 0.

Relations (11) and (12) are tests for the model, since they
should be valid independent of the concrete values of the
coupling constants.

3. The Components of the Tensors

The anisotropies of the glassy properties of a disordered sys-
tem are determined by the properties of the tensor 𝛾. In our
model, the “orientations” of the TLSs are defined by the unit
vectors t̂ and the symmetries of the hostmaterial are incorpo-
rated into the coupling constant tensor, [𝑅]. These determine
the distributions of the elements of the tensors T and 𝛾. This
is not possible in the STM. To understand the difficulties to
define by general, qualitative arguments the “anisotropy” of
𝛾 in the STM, we calculate in this section the probability
distribution of the elements of our tensor T, under the
assumption that the unit vectors t̂ are isotropically oriented.
We will see that neither these elements have all the same dis-
tribution of probability, nor the distributions are constant for
the ranges of these variables.

We define t̂ by the Euler angles, 𝜃 and 𝜙: 𝑡
𝑥
= sin 𝜃 cos𝜙,

𝑡
𝑦
= sin 𝜃 sin𝜙, and 𝑡

𝑧
= cos 𝜃. Keeping 𝑡

𝑧
and 𝜙 as variables,

wewriteT𝑡 = [(1−𝑡2
𝑧
)cos2 𝜙, (1−𝑡2

𝑧
)sin2 𝜙, 𝑡2

𝑧
, 2𝑡
𝑧
√1 − 𝑡

2

𝑧
sin𝜙,

2𝑡
𝑧
√1 − 𝑡

2

𝑧
cos𝜙, (1 − 𝑡2

𝑧
) sin(2𝜙)].

The variables 𝑡
𝑧
and 𝜙 are uniformly distributed in the

intervals [0, 1] and [0, 2𝜋], respectively. We denote their
probability distribution by 𝑃t(𝑡𝑧, 𝜙) = 1/(4𝜋). Then the
probability distribution in the variables 𝑇

𝐼
(𝐼 = 1, . . . , 6) and

𝜙 is

𝑃
𝐼,𝜙
(𝑇
𝐼
, 𝜙) =

1

4𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕 (𝑡
𝑧
, 𝜙)

𝜕 (𝑇
𝐼
, 𝜙)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

4𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕 (𝑇
𝐼
, 𝜙)

𝜕 (𝑡
𝑧
, 𝜙)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−1

. (13)

The simplest of all is eventually

𝑃
3,𝜙
(𝑇
3
, 𝜙) =

1

4𝜋√𝑇
3

, (14)

which, if integrated over 𝜙, gives

𝑃
3
(𝑇
3
) =

1

2√𝑇
3

. (15)
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Figure 1: The probability distributions of the components of the
tensor T: 𝑃

1
(𝑇) = 𝑃

2
(𝑇) = 𝑃

3
(𝑇) = 1/(2√𝑇), for 𝑇 ∈ (0, 1] (solid

line), and 2𝑃
4
(|𝑇|) = 2𝑃

5
(|𝑇|) = 2𝑃

6
(|𝑇|), for 𝑇 ∈ [−1, 0) ∪ (0, 1]

(dashed line).

For the components 𝑇
1
and 𝑇

2
, we obtain the probability

distributions

𝑃
1,𝜙
(𝑇
1
, 𝜙) =

1

4𝜋

𝜃 (cos2 𝜙 − 𝑇
1
)

√1 − (𝑇
1
/cos2 𝜙)cos2 𝜙

, (16a)

𝑃
2,𝜙
(𝑇
2
, 𝜙) =

1

4𝜋

𝜃 (sin2 𝜙 − 𝑇
2
)

√1 − (𝑇
2
/sin2 𝜙)sin2 𝜙

, (16b)

where 𝜃(𝑥) is the Heaviside step function. An extra factor
of 2 appears in (16a) and (16b) because 𝑇

1
and 𝑇

2
are even

functions of 𝑡
𝑧
.

For an isotropic distribution of t̂, the components 𝑇
1
, 𝑇
2
,

and 𝑇
3
are equivalent, and using (15) and (16a) and (16b), we

obtain the identity (Figure 1, solid line)

𝑃
1 (
𝑇) = 𝑃2 (

𝑇) =

1

𝜋

∫

1

√𝑇

𝑑𝑥

𝑥√(𝑥
2
− 𝑇
1
) (1 − 𝑥

2
)

≡

1

2√𝑇

.

(17)

The components 𝑇
4
, 𝑇
5
, and 𝑇

6
are also equivalent to

isotropic t̂. For example,

𝑃
6,𝜙
(𝑇
6
, 𝜙) =

1

4𝜋

𝜃 (
󵄨
󵄨
󵄨
󵄨
sin (2𝜙)󵄨󵄨󵄨

󵄨
−
󵄨
󵄨
󵄨
󵄨
𝑇
6

󵄨
󵄨
󵄨
󵄨
)

√1 − 𝑇
6
/ sin (2𝜙) 󵄨󵄨󵄨

󵄨
sin (2𝜙)󵄨󵄨󵄨

󵄨

, (18a)

where 𝑇
6
/ sin(2𝜙) = 1 − 𝑡2

𝑧
≥ 0. From (18a) we get

𝑃
6 (
𝑇) =

1

2𝜋

∫

1

|𝑇|

𝑑𝑥

√𝑥 (𝑥 − 𝑇) (1 − 𝑥
2
)

(18b)

= 𝑃
4 (
𝑇) = 𝑃5 (

𝑇) , (18c)

where 𝑇 ∈ [−1, 1] and 𝑃
4
(|𝑇|) = 𝑃

5
(|𝑇|) = 𝑃

6
(|𝑇|) (Figure 1,

dashed line).
We notice that lim

𝑇→1
𝑃
𝑇6
(𝑇) = 1/(2√2), whereas in 0,

𝑃
𝑇6
(𝑇) has a logarithmic divergence.
The equalities (18c) are obtained using the equivalence

between the components 𝑇
4
, 𝑇
5
, and 𝑇

6
.

We observe that the isotropic distribution of the TLS
orientations does not correspond to a constant distribution of
the values of the components of T, nor to equal distributions
of these values. Therefore it is not straightforward to draw
conclusions regarding the relations between the distributions
of the values of 𝛾

𝐼
, based only on general arguments.

4. Conclusions

In this paper we describe the anisotropy of the glassy
properties of the decagonal quasicrystals in themodel of [19].
We show that the glassy properties of these quasicrystals are
similar to those of hexagonal disordered lattices [24] and
we obtained the TLS-phonon average coupling constants,
𝛾
2

k,𝜎, which are dependent on the phonon’s propagation
direction, k, and polarization, 𝜎. We apply the results to the
experimental data of [18] and we obtain the ratio (𝑟

66
/𝑟
44
)
2
≈

4.2, where 𝑟
44

and 𝑟
66

are components of the tensor of
coupling constants.

In order to better understand the characteristics of
“isotropic” and “anisotropic” distributions of TLSs, we calcu-
lated the probability distributions of the elements of the ten-
sor T—which describes the TLS—under the assumption that
the directions of the ensemble of TLSs, defined by the unit
vectors t̂, are isotropically oriented. We observe that the
distributions of the elements of T are rather complicated and
therefore they cannot be found in the STM, simply based on
qualitative, general arguments.
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