
M

J
a

b

c

a

A
R
R
2
A
A

K
S
M
P

1

W
s
o
i
p
t
1
e
a
p

d
i
T
d
i

C

(
(

0
h

The Journal of Systems and Software 86 (2013) 1153– 1171

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

DE software process lines in small companies

ulio Ariel Hurtadoa,b,∗, María Cecilia Bastarricaa, Sergio F. Ochoaa, Jocelyn Simmondsc

Computer Science Department, Universidad de Chile, Chile
IDIS Group, Systems Department, Universidad del Cauca, Colombia
Informatics Department, Universidad Técnica Federico Santa María, Chile

 r t i c l e i n f o

rticle history:
eceived 28 November 2011
eceived in revised form
0 September 2012
ccepted 25 September 2012
vailable online 20 November 2012

eywords:
oftware process lines

a b s t r a c t

Software organizations specify their software processes so that process knowledge can be systematically
reused across projects. However, different projects may require different processes. Defining a sepa-
rate process for each potential project context is expensive and error-prone, since these processes must
simultaneously evolve in a consistent manner. Moreover, an organization cannot envision all possible
project contexts in advance because several variables may be involved, and these may also be combined
in different ways. This problem is even worse in small companies since they usually cannot afford to
define more than one process. Software process lines are a specific type of software product lines, in the
software process domain. A benefit of software process lines is that they allow software process cus-
odel-driven engineering
rocess asset reuse

tomization with respect to a context. In this article we propose a model-driven approach for software
process lines specification and configuration. The article also presents two industrial case studies carried
out at two small Chilean software development companies. Both companies have benefited from apply-
ing our approach to their processes: new projects are now developed using custom processes, process
knowledge is systematically reused, and the total time required to customize a process is much shorter

than before.

. Introduction

Software development life cycles, from traditional models like
aterfall, to more modern ones like RUP, Scrum and XP, suggest

pecific activities that need to be carried out as part of the devel-
pment process, as well as the order of these activities. Moreover,
f a company wants to certify or evaluate its software development
rocess, this process must be rigorously defined as prescribed by
he most popular models and standards (e.g., CMMI, 2006; ISO/IEC
2207, 2008). Specifying an organizational process requires an
normous amount of effort, and the resulting process must still be
dapted in order to satisfy the specific characteristics of different
roject settings (Mirbel and Ralyté, 2006).

There is no optimal software process since appropriateness
epends on various organizational, project and product character-

stics and, even worse, these characteristics evolve continuously.

herefore, a one-size fits-all approach does not work for software
evelopment (Firesmith, 2004). Each project has its own character-

stics and requires a particular range of techniques and strategies

∗ Corresponding author at: IDIS Group, Systems Department, Universidad del
auca, Colombia.

E-mail addresses: jhurtado@dcc.uchile.cl (J.A. Hurtado), cecilia@dcc.uchile.cl
M.C. Bastarrica), sochoa@dcc.uchile.cl (S.F. Ochoa), jsimmond@inf.utfsm.cl
J. Simmonds).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.09.033
© 2012 Elsevier Inc. All rights reserved.

(Laplante and Neill, 2004). The process of selecting a set of prac-
tices and then integrating them into a coherent process must also be
aligned with the business context (Cusumano et al., 2009). Based on
the findings presented in Dörr et al. (2008), we support the idea that
a project’s context must be taken into account when deciding which
process variant best fits the project. Additionally, the specific pro-
cess applied should not vary dramatically from project to project,
so that the process knowledge acquired by the development team
can be reused.

The process through which a general software process is con-
figured in order to adapt it to a project’s particular setting is
known as tailoring (Pedreira et al., 2007). In other areas, like
Situational Method Engineering, this process is also known as con-
figuration. In this work, we consider configuration and tailoring as
synonyms. Empirical studies show that process tailoring is difficult
because it involves intensive knowledge generation and deploy-
ment (Rolland, 2009), and it is also time-consuming (Ocampo et al.,
2005). Moreover, the expertise required to produce a good process
tailoring may be lost from one project to the next. Therefore, the
tailoring process itself is hard to replicate and does not scale if done
manually.

We apply two complementary approaches to process tailoring:

model-driven engineering and software process lines. Model-driven
engineering (MDE) is a software development approach that advo-
cates the creation of abstract models, which are then systematically
transformed into more concrete models, and eventually into source

dx.doi.org/10.1016/j.jss.2012.09.033
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jhurtado@dcc.uchile.cl
mailto:cecilia@dcc.uchile.cl
mailto:sochoa@dcc.uchile.cl
mailto:jsimmond@inf.utfsm.cl
dx.doi.org/10.1016/j.jss.2012.09.033

1154 J.A. Hurtado et al. / The Journal of Systems

F
s

c
g
e
t

s
o
o
p
r
o
i
n
m

T
l
e
p
e
i
i
s
d

p
e
d
o
d
i

a
o
a
i
p
a
r

t
f
c
d
T
a
p

ig. 1. The product line engineering framework (Pohl et al., 2005), adapted to allow
oftware process line development.

ode (Schmidt, 2006). This approach promotes reuse through a
enerative strategy. MDE can also be used in the software process
ngineering domain (Breton and Bézivin, 2001), where transforma-
ions are used as instantiation strategies (Killisperger et al., 2009).

On the other hand, a software product line (SPL) is a set of
oftware-intensive systems that share a common and managed set
f assets satisfying the specific needs of a particular market segment
r mission (Clements and Northrop, 2001). Team productivity and
roduct quality increase as a consequence of the resulting massive
euse of assets. Analogously, software process lines (SPrL) is a set
f software processes, built from a series of shared process assets
n order to reuse process knowledge across projects with different
eeds. According to Rombach, a SPrL is a systematic mechanism for
anaging a process and its variants (Rombach, 2005).
The FAST (Family-Oriented Abstraction, Specification, and

ranslation) process (Weiss and Lai, 1999), which was particu-
arly proposed to define products families, separates product-line
ngineering process into two main stages: domain engineering and
roduct engineering. In domain engineering, common and variable
lements are identified, as well as how these may be combined
n order to generate particular products. Each of these elements is
mplemented as a reusable asset. During the product engineering
tage, members of the product family are built using the previously
efined assets.

Each stage of the SPL definition is further subdivided into other
hases: analysis, design, implementation and verification (Pohl
t al., 2005). In Fig. 1, we show how the analysis and design phases of
omain and product engineering were adapted to allow the devel-
pment of SPrLs. The activities involved in these SPrL phases are
escribed in the rest of the article. We also show their application

n two industrial case studies.
Thus, the main contribution of this article is an MDE-based

pproach to software process line analysis and design, focusing
n process tailoring with respect to a context. There are multiple
dvantages to combining MDE and SPrL: by explicitly specifying
mplicit tailoring knowledge as tailoring transformations (as pro-
osed by MDE), and by creating a general library of reusable process
ssets (as proposed by SPrL), we can systematically tailor general,
eusable processes with respect to a specific project context.

Small Software Organizations (SSO) has particular characteris-
ics that affect their software processes and make them different
rom medium-size and large organizations. Only some of these
ompanies have a rigorous organizational structure and a formally

efined development process (von Wangenheim et al., 2006a,b).
hey usually work on small projects, involving small groups (Batista
nd De Figueiredo, 2000; Harris et al., 2007), and basing their com-
etitiveness on being specialized (Aranda et al., 2007). Therefore,
and Software 86 (2013) 1153– 1171

a successful SSO is usually linked to a particular niche (Aranda
et al., 2007; Jantunen, 2010) which makes the development context
rather stable and thus reduces the required variability of the orga-
nizational software process. These companies typically consider a
few project context variables (Hofer, 2002), but different configu-
rations of these variables require different development processes
(Hurtado et al., 2011). We have validated our approach in two small
companies: KI Teknology and Amisoft. These organizations are con-
sidered small according to European Commission (2005) because
they both have around 50 employees, and their annual turnover
does not exceed 10 million Euros. The selected companies develop
software for niche markets (Aranda et al., 2007; von Wangenheim
et al., 2006b), so the domain and technology do not change dra-
matically from project to project. KI Teknology develops web-based
applications and Amisoft focuses on judiciary information systems.
The rest of the paper is structured as follows. Section 2 presents
the related work. In Section 3, we describe the tailoring process, as
well as the models and transformations required by our approach,
illustrating these with a running example. In Sections 4 and 5, we
describe two case studies where we applied the proposed tailoring
approach. Finally, Section 6 presents the conclusions and future
work.

2. Related work

In this section, we first give a brief overview of software prod-
uct lines and software process lines. We then discuss several
approaches to software process tailoring, and finally, we review
various proposals for representing and using context information.

2.1. Software product lines and software process lines

Given that software processes are software too (Osterweil,
1987), a software process line (SPrL) can be considered as a special
software product line (SPL) in the software process engineering
domain. Processes in a SPrL share common features and exhibit
variability (Stanley and Osterweil, 1996). Consequently, a SPrL is
an ideal way to define, tailor and evolve a set of related processes,
an opinion that is supported by the work on process variability
representation (Simidchieva et al., 2007), process families (Rolland
and Nurcan, 2010), SPrL architectures (Washizaki, 2006), process
domain analysis (Ocampo et al., 2005), and SPrL scoping (Armbrust
et al., 2009). A classic tailoring approach reactively integrates unan-
ticipated variability in the process model (Armbrust et al., 2009),
while a SPrL approach facilitates planned reuse. Nevertheless, as
stated in Deelstra et al. (2005), deriving products (processes) in the
context of a SPL (SPrL) is a challenging task.

SPEM 2.0 (OMG, 2007) is the OMG standard for modeling soft-
ware and systems development processes and their components.
Various small Chilean software development companies, as part of
the Tutelkán project (Valdés et al., 2010), formalized their processes
using SPEM 2.0. This standard defines four primitives for specifying
variability, which must be specified between two process elements
of the same type:

1. Contributes: a source variability element contributes its proper-
ties to the target variability element without directly altering
any of the target element’s properties. The target element takes
on any extra attributes and associations defined by the source
element, except for those already defined by the target element.
2. Replaces: a source variability element replaces its target variabil-
ity element. In this case, only the incoming associations of the
target element are preserved, both the target’s attributes and
outgoing associations are replaced by the source element’s. The

stems

3

4

i
t
a
p
w
(

2

d
a
t
r
m
a
s
a
p
a
w

p
p
a
o
(
v
c
c
(
t
a
l
p
s
s
c
a
(
b
e
S
t
p
i
t
i
g
c

u
i
a
t
fi

J.A. Hurtado et al. / The Journal of Sy

target of multiple replaces relations can only be replaced by one
source element in a configuration.

. Extends: a source variability element extends the definition of
its target variability element, possibly overriding the target’s
attributes and associations.

. Extends-Replaces: in this relationship, a source variability ele-
ment first extends its target variability element, and then replaces
it.

Instances of these relations may override each other, so variabil-
ty relations must be resolved in the presented order. The process
ailoring step is successful if the process engineer can resolve away
ll variability in a non-conflicting manner. A priori, it is hard to
redict how variability relations interact with each other, which is
hy the SPEM 2.0 variability mechanisms are rarely used in practice

Martínez-Ruiz et al., 2011).

.2. Tailoring approaches

There are several approaches to process tailoring, which mainly
iffer in terms of expected process formality, size of the company,
nd available tool support (Pedreira et al., 2007). For example,
he assemble approach presented in Dai and Li (2007) provides a
educed set of process modification actions (add, delete, split and
erge operation), which are used to “assemble” a new process from

 previous version. The underlying formalism is Petri nets, and as
uch, process models only consider process activities, ignoring roles
nd work products, and there are no variable elements. Also, the
roject context is not formally used to guide the adaptation process,
s tailoring is done in an ad hoc manner by the process engineer,
ho selects what action to apply and when.

The situational method engineering (SME) approach focuses on
roject-specific process construction (Ralyté et al., 2003), where
re-existing pieces of methods are selected and combined in
n attempt to produce the most appropriate process for an
rganization or a project. This is an active research area, see
Henderson-Sellers and Ralyté, 2010; Tolvanen et al., 1996) for sur-
eys on these techniques. SME techniques can be used not only to
ustomize a software development process to a particular project
ontext, but also to perform a continuous improvement process
Bajec et al., 2007a,b). Nevertheless, in most cases the effort for
ailoring the process is still huge, especially when an assemble
pproach is adopted (Mirbel and Ralyté, 2006). This is a big prob-
em because process tailoring is normally the responsibility of the
roject manager, but it requires the experience and knowledge of a
oftware process engineer, so it is difficult to achieve a reasonable
eparation of their tasks (Bai et al., 2012). The two most signifi-
ant challenges for the SME community are the rate of industry
doption and how to automate the method construction process
Henderson-Sellers and Ralyté, 2010). Provided that SME follows a
ottom-up approach, it is a creative task and requires the knowl-
dge and experience of a method engineer; thus, automation in
ME is very complex if possible at all. Instead, our approach uses a
op-down strategy, where a process structure including variation
oints and their variants are defined. In our approach, the flexibil-

ty is controlled and only some process could be defined according
o the variation points. However, this limited variation allows us to
mplement a practical transformational strategy for automatically
enerating each process. Hence, our approach follows a trade-off
riterion between flexibility and practicality.

Some processes like the Unified Process (Jacobson et al., 1999)
se an adjustment guide approach, where tailoring rules are spec-
fied as general guidelines about how to adapt phases, iterations
nd disciplines according to project-specific situations. This was
he approach originally followed by KI, the company subject of our
rst case study (see Section 4). The successful application of this
and Software 86 (2013) 1153– 1171 1155

approach highly depends on the process engineer, who must be
careful to be consistent with how these guidelines are applied to
different projects (each one with a potentially different context).

Agile methods such as XP (Beck and Andres, 2004) use an
auto-adaptable approach, where the project- and team-adapted
process emerges from the set of principles, values and practices
that define the agile methodology. Other processes such as Crystal
Methodology (Cockburn, 2000) follow a template-based approach,
where a family of methodology templates are defined (Clear, Yel-
low, Orange and Red), and each template is more detailed than
the last. Commercial processes, such as RUP (Kruchten, 2003), use
a framework-based approach (Belkhatir and Estublier, 1996) (also
known as a configuration approach), where a general process is
defined and a specific configuration is created for each specific
project. Processes developed using this approach tend to be large
and complex, and a high level of process engineering knowledge
is required to produce valid configurations, whereas the difficulty
of the template strategy is that it is hard to define an adequate set
of templates that satisfy all the possible project scenarios (Bustard
and Keenan, 2005).

Killisperger et al. (2009) propose an instantiation-based
approach; it consists of defining a general process that is instan-
tiated for each project up to the enactment level. This approach
requires an enormous amount of process formalization in order to
obtain all of the expected benefits. In our work, we tailor the general
process according to the characteristics of the project context, and
the resulting SPEM process serves as a process guide. However, we
do not reach the enactment level as this is not supported by SPEM. In
this article, we represent process model variability using a process
feature model, similar to a software product feature models (Kang
et al., 1990), and the organizational software process is modeled
using eSPEM, a metamodel including the core SPEM concepts and
relations required by our proposed tailoring mechanism. The MDE
strategy we apply helps achieve a separation between the process
modeling stakeholders and process enactment (project) stakehol-
ders (Bai et al., 2012), and it hides the complexity by intensively
reusing tailoring knowledge.

2.3. Context modeling

Context representation in software development has gained rel-
evance lately, particularly because of its use in software process
tailoring. However, its definition and scope differ in almost every
proposal. The literature reports the use of the context to address
several challenges, e.g., estimating project costs, selecting the soft-
ware process to be used in a particular project, or characterizing
a SPrL. Most context representations involve specifications in text
(Kettunen and Laanti, 2005; Xu, 2005), tables (Killisperger et al.,
2009; Koolmanojwong and Boehm, 2012) or some kinds of check-
lists (Ma and Wang, 2006; Park et al., 2006), which are not always
in easy-to-process formats.

The work of Pérez et al. (1995) presents a set of context char-
acteristics related with processes. Such context characteristics
support the customization of software process models. Armbrust
et al. (2009) define three dimensions (or context variables) to define
the context characteristics in the SPrL scope definition: product,
project and process. The COCOMO II model (Boehm et al., 1995)
defines a set of attributes and dimensions that help estimate project
metrics. Such context variables are also useful for representing con-
text models. The Incremental Commitment Model (ICM) process
(Koolmanojwong and Boehm, 2012) defines four process patterns
for rapid process deployment using contextualized information,

processes for new projects are derived from these patterns. Zowghi
et al. (2005) propose a strategy to define an appropriate require-
ments engineering method that is well-suited for the particular
system or application development endeavor under consideration.

1156 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

ategy

T
i

v
d
a
t
i
s
s
i
t
a
m
a
i
a
t
c
i
p
a

t
a
p

d
i
b
d

3

c
l
s
i
p
t
d
e
t

Fig. 2. Generative str

he context information used to perform this activity is embedded
n a set of guidelines used as support.

Kornyshova et al. (2010) describe the context dimensions and
ariables affecting the tailoring process in the information systems
omain. They also present a process for contextualizing methods
nd selecting method components based on the project charac-
eristics. The context model described in Kornyshova et al. (2010)
s focused on the contextualization of method components for
electing and reusing method components instead of tailoring the
oftware process to a specific situation. The component selection
s carried out using queries on the values of the characteristics of
he available method components. If the query does not provide

 conclusive result, the method engineer could considerer other
ethods, modify the required characteristics’ values, or rank char-

cteristics by their order of importance. Our approach uses context
nformation to identify the relationship between the process vari-
bility and context attributes, and at tailoring time also to define
he specific situation (context attribute values) where the pro-
ess model will be applied. Whereas method components context
s oriented to method reuse following a bottom-up approach,
roject-specific context is oriented to process adaptation following

 top-down approach.
Hurtado et al. (2011) present a survey of context representations

hat can be used for tailoring software development processes, and
lso a simple language to represent the project contexts. Our pro-
osal uses this language to represent software context models.

In order to help organizations to determine their relevant
imensions and context attributes to perform the tailoring activ-

ties, we have defined a Software Process Context Metamodel,
ased on the ideas presented in Hurtado and Bastarrica (2009). We
escribe this metamodel in Section 3.2.

. Tailoring the software process

Defining an organizational software process is necessary if a
ompany wants to improve its development process, and abso-
utely necessary in order to achieve an evaluation or certification
uch as CMMI or ISO/IEC 12207. Although defining and document-
ng a general process requires a significant amount of work, this
rocess is not necessarily appropriate for all projects, even within

he same organization. Moreover, an organization that usually
evelops certain types of projects using a particular process may
ventually become involved in a different type of project, and thus
he process that worked well before becomes inadequate. Defining
 for process tailoring.

a customized process for each project is too expensive due to the
amount of resources this effort would consume, resources which
could be used by the project instead. Having a set of predefined pro-
cesses for a series of different contexts implies a high maintenance
cost, and it still does not ensure that all possible contexts are taken
into account. Therefore, tailoring the organizational process seems
to be a good trade-off.

Fig. 2 presents an overview of our proposed tailoring approach,
which uses two models as input: the software process model and the
context model for a specific project. Then, using a set of transforma-
tion rules (embedded in the tailoring transformation component),
the software process is tailored according to the project context
model in order to generate the adapted software process model. This
tailoring proposal was briefly introduced in Hurtado et al. (2012b),
and is illustrated with an example in the rest of this section.

The input software process model is an eSPEM model that repre-
sents the general organizational process that will be tailored. This
model must be customized at the beginning of each new project.
eSPEM models consist of task, work product and role definitions,
as well as a specification of how these process elements interact in
order to accomplish the process’s goals. The initial software process
model includes the specification of its variability, which is resolved
through the tailoring process in order to achieve the adapted soft-
ware process model.

In our tailoring approach, the organization must also define
the context model, which is used to describe the different types of
projects that the company handles. This context model specifies rel-
evant project variables (e.g., the project type), their possible values
(e.g., development or maintenance), as well as how these variables
are classified along different dimensions.

The tailoring transformation component, that involves the set of
transformation rules expressed in ATL (Jouault et al., 2006), indi-
cates under which conditions the general process model should
change, and how. Rule conditions are expressed using the context
variables and values, and valid process changes include task, work
product and role inclusion/elimination, as well as choosing from a
set of possible alternatives. In the case of organizations with mature
development processes, these rules can usually be deduced from
(semi-)formal general process adaptation guidelines. In other cases,
these rules must be formalized from scratch or reverse-engineered

from existing projects. This formalization is one of the most diffi-
cult steps in the proposed approach, but once the transformation
rules are formalized and validated, tailoring becomes simpler, more
consistent, and less error-prone.

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1157

the pr

e
e
w
t
i
E

i
t
i

3

w
S
p
S
a
r
(
p
p

2
b
w
i
a
o
i

b
w
b
a
w

(
e
i
c

senior students, in groups of 5–6, to a real-life work environment,
developing real applications for real clients. The process itself is
simple because students only have four months to complete their
projects. Fig. 5 shows the eSPEM specification of this process.
Fig. 3. The experimental SPEM (eSPEM) metamodel, where

We have developed a proof-of-concept tool chain to support our
mpirical work. This tool chain is built on top of the Eclipse Mod-
ling Framework – EMF 3.41 and the ATL plug-in 2.0.2 Metamodels
ere defined as ecore metamodels in EMF and the transforma-

ions were implemented as ATL rules. Models were implemented as
nstances of defined metamodels and edited using Exeed (Extended
MF Editor), the EMF reflective editor.

In this section, we first define the models and metamodels
nvolved in the proposed tailoring approach, and then the ATL
ransformations that implement the tailoring process. All steps are
llustrated using a simple example.

.1. Organizational process model

SPEM 2.0 (OMG, 2007) is the OMG standard for modeling soft-
are and systems development processes and their components.

PEM 2.0 is defined both as a MOF metamodel and as a UML 2.0
rofile, and takes an object-oriented approach to process modeling.
PEM diagrams are used to model two different views of a process:

 static view, where process components (tasks, work products and
oles) are defined; and a dynamic view, where interaction diagrams
like UML activity diagrams) are used to model how process com-
onents interact in order to accomplish the goals of the modeled
rocess.

In order to encourage process maintenance and reuse, SPEM
.0 makes a difference between the definition of process building
locks and their later use. Process components, like tasks, roles and
ork products, are defined and stored in a Method Library. An activ-

ty is a “big-step” grouping of role, work product and task uses, and
ctivity diagrams are used to model the workflow between tasks
f the activity. Roles perform tasks, and work products serve as
nput/output artifacts for tasks.

In SPEM, a process is a set of activities, where the relationship
etween these activities is also specified as a workflow. Task, role,
ork product and activity definitions are recommendations made

y a process engineer, so these can be overridden when creating
 new process, e.g., by adding/removing the association between a
ork product and a task.

In our approach, process models are defined using eSPEM
Hurtado et al., 2012b), a SPEM 2.0 subset, which is expressive

nough for our experimental purposes. The metamodel for eSPEM
s shown in Fig. 3. Task-, Role- and WorkProductDefinition are sub-
lasses of the MethodContentElement metaclass, which in turn is

1 EMF website http://download.eclipse.org/tools/emf.
2 ATL website http://www.eclipse.org/downloads/.
ocess element metaclasses that can vary have been marked.

a subclass of the VariabilityElement metaclass. On the other hand,
Activity, Task-, Role- and WorkProductUse are subclasses of the
WorkBreakDownElement metaclass. A VariabilityElement is a process
element that can be modified or extended by other VariabilityEle-
ments of the same kind through a variability relationship (defined
by the VariabilityType enumeration).

We use VariabilityElements to implement alternatives (labeled
with an alternative symbol similar to that used in feature models).
A set of alternatives can be defined from the same VariabilityElement
(which may be abstract). So, when a ProcessElement is linked to the
VariabilityElement, one of these alternatives could be selected. For
example, a TaskUse can be linked to one of many available and con-
sistent TaskDefinitions. Additionally, each WorkBreakDownElement
can be considered as optional or not according to the isOptional
attribute. Optional elements are labeled with an empty circle.

For example, the general requirements engineering process
shown in Fig. 4 is a part of the overall development process followed
by students taking CC51A, an advanced software development
course taught at the University of Chile. This process consists of
three activities: Exploration, User Requirements Specification and
Validation, and Software Requirements Specification and Validation,
carried out in sequence. The main goal of this course is to expose
Fig. 4. The CC51A requirements engineering process.

http://download.eclipse.org/tools/emf
http://www.eclipse.org/downloads/

1158 J.A. Hurtado et al. / The Journal of Systems

m
s
e
b
r
t
m
u
s
t
a
a

a

Fig. 5. eSPEM model of the CC51A requirements engineering process.

During the Exploration activity, the client, analyst and project
anager meet in order to define the project. Occasionally, a client

hows up with a clearly defined project and this activity is not nec-
ssary, which is why it is marked as optional (enclosed in a yellow
ox). This notation is ad hoc, since the SPEM standard does not
ecommend how to visually indicate element optionality. During
he User Requirements Specification and Validation activity, the team

embers specify the goals and scope of their project in terms of
ser requirements. Performing this activity may involve the use of
imple prototypes that help clients and team members to validate
he user requirements and conceive the high-level solution. This

ctivity takes as input a project definition, and produces as output

 user requirements specification.
During the Software Requirements Specification and Validation

ctivity, each user requirement is translated into one or more

Fig. 6. Feature model corresponding to the CC
and Software 86 (2013) 1153– 1171

software requirements. The resulting list represents the software
requirements specification for the project (which must be validated
by the users and clients). If the team members are familiar with the
project domain, this validation can be done internally; otherwise,
the team must create an operational prototype and validate it with
the client.

Following a general approach for specifying variability in
Domain Engineering, we use feature models (Kang et al., 1990)
to formally specify process variability at a high level of abstrac-
tion (Simmonds and Modeling, 2011). Features represent activities,
tasks, roles and work products, and we allow cross-tree constraints
between features of any kind.

For example, the feature model in Fig. 6 shows both the com-
mon and variable elements of the CC51A RE process. This model
shows the Software Requirements Specification and Validation activ-
ity in more detail, breaking it down into three parts: a Software
Requirements Specification task, an (optional) Operational Proto-
typing activity, and a Software Requirements Validation task. The
Software Requirements Validation is further broken down, repre-
senting the two validation alternatives mentioned previously. If
the team is familiar with the project domain, they can carry out
an Internal Validation, otherwise, they must do a Prototype Based
Validation (but in order to do this, the team must have first carried
out the Operational Prototyping activity).

3.2. Context model

The context of a project may vary according to different project
variables along specific dimensions such as: size, duration, com-
plexity, development team size, knowledge about the application
domain, or familiarity with the technology involved. Formalizing
these characteristics as a model enables us to automatically tai-
lor the organizational process according to them. We have defined
SPCM (Software Process Context Metamodel) for specifying the
context model for each project. The metamodel for SPCM is shown

in Fig. 7.

SPCM is based on three basic concepts: ContextAttribute, Dimen-
sion and ContextAttributeConfiguration. Every element in SPCM
extends a ContextElement that has a name and a description. A

51A requirements engineering process.

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1159

ss Context Metamodel – SPCM.

C
c
o
A
t
p
a
t
L
t
m
w
C

d
p
d
t
d
e
t

t
T
a
e
T
C
i

v
k
p
t
k
t

T
P

Fig. 7. The Software Proce

ontextAttribute represents a relevant characteristic of the process
ontext required for tailoring. The ContextAttribute includes a pri-
rity (used when a trade-off among context attributes is required).

 ContextAttribute can take one of a set of values defined as Contex-
AttributeValue. An example of a ContextAttribute is the size of the
roject (Size). ContextAttributeValue represents a type for qualifying

 ContextAttribute. Examples of ContextAttributeValues for the Con-
extAttribute Size are the ContextAttributeValues {Small, Medium,
arge}. Dimension represents a collection of related ContextAt-
ributes. By grouping ContextAttributes by Dimension, the context

odel is easier to understand. An example of a Dimension is Team,
hich can be used to group team attributes like Team Size and Team
apabilities. A Context model is a collection of Dimensions.

For example, the context model of the CC51A RE process is
epicted in Fig. 8. This context model has three dimensions: project,
roduct and team. This model also has six context attributes:
omain knowledge, complexity, project type, duration, size and
raining. The first three attribute types are associated with pre-
etermined context attribute values (through enumeration) for
ach project, while the last three attributes are constants provided
hat this process is followed by students as part of a course.

A ContextConfiguration is a set of ContextAttributeConfigura-
ions, where each ContextAttributeValue is a valid ContextAttribute.
herefore, each ContextAttributeConfiguration is associated with

 ContextAttribute and to one unique ContextAttributeValue. For
xample, a possible ContextAttributeConfiguration is the Project-
ypeConfiguration for a development project, where one of its
ontextAttributes is Project Type and its associated AttributeValue

s “Development”.
Table 1 shows how the different context attributes affect the

ariable elements of the CC51A RE process. If the team’s domain
nowledge is Medium to High, then the team can avoid doing a

rototype-based validation of the software requirements, skipping
he Operational Prototyping activity. The team’s level of domain
nowledge does not affect the optional Exploration activity, since
he realization of this activity depends solely on the project type.

able 1
rocess scoping according to CC51A context model.

Context attribute Attribute value Exploration

Domain knowledge High –

Medium –

Low –

Complexity High –

Medium –

Low –

Project type Development True

Extension False

Reengineering True
Fig. 8. Context model for the CC51A requirements engineering process.

However, the type of project does affect whether or not the Explo-
ration activity is carried out. Complexity does not affect the process.

3.3. Tailoring by model transformation

We use ATL (Jouault et al., 2006) for defining the tailoring trans-
formation rules. Rules about tailoring the general process model
according to the values of different context attributes can be com-

posed incrementally. In this way we can configure new process
models through a generative strategy by recombining partial tail-
oring transformation rules, and thus reusing the knowledge they
embody. Matched rules constitute the core of an ATL declarative

Operational prototyping Software requirements validation

False Requirements validation
False Requirements validation
True Prototype based validation
– –
– –
– –
– –
– –
– –

1160 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

ring t

t
m
g
m

H
a
t
A
e
g
o
p
t

i
g
p
r
O
F
r
c
m
a
l
t
r
h
a
v
w
a
s

on small improvements in productivity. This is not the case for SSO,
where inefficiency may lead them to failure. Moreover, even large
companies tend to organize their development in smaller entities
Fig. 9. ATL tailo

ransformation since they allow us to specify: (i) which target ele-
ents should be generated for each source element and (ii) how

enerated elements are initialized from the matched source ele-
ents.
Our tailoring transformation is endogenous (Czarnecki and

elsen, 2006) because its output conforms to the same metamodel
s the input. However, it is not in place since we want to preserve
he organizational process model for future configurations. We use
TLCopier3 as a basic template, and we modify it so that only those
lements whose rules evaluate to true are actually copied to the tar-
et model. All common elements of the eSPEM model are copied
ver to the adapted model, and we specify rules for the variation
oints. Each variation point has an associated helper called from
he matched rule.

Fig. 9 shows the rule TaskUse. The source pattern MM!TaskUse
s defined after the keyword from, meaning that the rule will
enerate target elements for each source element matching the
attern. In order to select only those source elements that are
elevant for the specific project, an extra condition is added: an
ptionality rule implemented as a helper function (not shown in
ig. 9) that makes of the context configuration. When this rule
eturns false, the element needs to be removed from the pro-
ess. Attribute initialization uses the values in the source process
odel element. However, and provided that we use eSPEM vari-

bility mechanisms, a process element (e.g., TaskUse) could be
inked to several variants of method elements (e.g., Task Defini-
ion). Therefore, we define an AlternativeTailoringRule as a selecting
ule that returns the method element chosen according to the
elper rule. The AlternativeTailoringRule chooses the appropri-
te TaskDefinition variant, according to the Domain Knowledge
alue in the context (in the figure, this value is “Low”). If there
ere more variability points, a conjunction of rules would be
pplied, also specifying priorities to make trade-offs, if neces-
ary.

3 http://www.eclipse.org/m2m/atl/atlTransformations/.
ransformation.

3.4. Project adapted process model

The project adapted process model also conforms to the eSPEM
metamodel, but it cannot have variabilities, so all variabilities iden-
tified as part of the organizational process model are resolved by
the tailoring transformation. Fig. 10 shows the adapted process
after applying the rules in Fig. 9 to an extension project with a low
domain knowledge.

3.5. Discussion

This proposal is only applicable in companies that have their
software process formalized. Large companies are more likely to
have their process formalized, but their survival does not depend
Fig. 10. Adapted process for an extension project in a non-familiar domain.

http://www.eclipse.org/m2m/atl/atlTransformations/

stems and Software 86 (2013) 1153– 1171 1161

(
O
s
h
a

a
m
a
c
m
t
o
a
d

T

S
t
t
m
d
n

a
m
i
c
u

4

p
c
p
(

l
n
p
l
s
t
b

c
g
a
c
r
a
O
c
a

4

t
D
o

broken down into three sub-activities that are carried out in paral-
lel: Requirements Specification, Requirements Analysis and Validation
J.A. Hurtado et al. / The Journal of Sy

Anon., 2011) that can also benefit from our approach. According to
ECD (2005), most software companies around the world are small,

o the proposal has the potential of having a big impact. In Chile, we
ave seen that there is a growing interest in process formalization
mong small software companies (Ruiz et al., 2012).

Software development in small entities may vary according to
 small set of variables: there is only a small group of people that
ay be assigned to a project, there are only one or a few customers,

nd the projects are always short in duration. Even more, not all the
ombinations of these variables are valid, e.g., if the type of project is
aintenance the customer must be known, if the project is incident

he project duration cannot be long, thus there is a limited amount
f valid context configurations. Our proposal allows to determine

 unique process to be followed once the context configuration is
efined, i.e., it is a function:

ailoring : Context → Process

o, for each context configuration there is a unique process that is
he most appropriate one, and for two identical context configura-
ions, the process is exactly the same. Moreover, different contexts

ay lead to the same process. Therefore, the number of potentially
ifferent processes that may be generated is at most equal to the
umber of context configurations.

When the number of context variables grows, then the number
nd complexity of the tailoring rules also grows. This makes the
odeling activity more difficult, and programming the rules, that

s already the most sophisticated part of the approach even more
omplex. These issues challenge the proposal’s adoption, at least
ntil we develop tools for supporting modeling and rule generation.

. Tailoring the requirements engineering process at KI

We have formalized the general requirements engineering (RE)
rocess used by KI,4 a small-sized Chilean software company. This
ompany is CMMI Level 2 certified, and its organizational software
rocess is based on RUP. Its process is part of the Tutelkán project
Valdés et al., 2010), and is publicly available.

This RE process is accompanied by a set of adaptation guide-
ines. These guidelines indicate which artifacts should or should
ot be included as part of the adapted process, according to certain
roject context values. This is the way KI has addressed the prob-

em of manually tailoring a general process to a small, predefined
et of project types: large development, small development, main-
enance and incident. Each project type has been clearly identified
y the company’s process engineer as a valid project context.

In this section, we first describe the input organizational pro-
ess and the context model. We then illustrate how the adaptation
uidelines are turned into rules. Finally, we show the results of the
utomated tailoring process, which produced the expected pro-
ess for each predetermined project type. We also present the
esults of applying our approach to an unexpected project context:

 maintenance-enhancement project for an unknown customer.
ur approach successfully generated an adequate process for this
ontext. The results presented in this section have been analyzed
nd validated by the company’s process engineer.

.1. Organizational RE process model
The studied requirements engineering process consists of
wo activities, which are carried out in parallel: Requirements
evelopment and Requirements Management. Fig. 11 shows the
rganizational process, and Fig. 12 shows its formalization in

4 http://www.kiteknology.com.
Fig. 11. KI general requirements engineering process.

eSPEM. This process includes the Requirements Engineering and
Management activities, and is part of a larger process.

The Requirements Development activity is depicted in more detail
in Fig. 13. This activity may take on two different forms, depending
on whether or not the project is in its inception phase. In the first
case, the Requirements Development activity consists of two optional
sub-activities that can be carried out in parallel: Problem Analysis
and Environment Specification. In all other phases, this activity is
Fig. 12. KI – eSPEM specification of the general requirements engineering process.

http://www.kiteknology.com

1162 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

a
r

a
C
t
a
s
i
R
R
R
c
f
c
p

Fig. 13. KI – the Requirements Development activity.

nd Early Change Management; only the last one is optional. Yellow
ectangles are used to visually indicate process element optionality.

The Requirements Management activity consists of four sub-
ctivities: the Requirements Understanding and Requirements
ommitment activities are first carried out sequentially, after which
he Requirements Tracking and Requirements Change Management
ctivities are carried out in parallel (see Fig. 14). None of these
ub-activities are optional. The Requirements Understanding activ-
ty is further subdivided into three sequential sub-tasks: Identify
equirements Providers, Requirements Review and Ensuring Common
equirements Understanding (see Fig. 15). Note that the Identify
equirements Providers task is marked as optional. This task is only

arried out if the project is a new development project. Finally, the
eature model in Fig. 16 shows both the common and variable pro-
ess elements of the General Requirements Engineering process
resented in this section.

Fig. 14. KI – the Requirements Management activity.
Fig. 15. KI – the Requirements Understanding activity.

4.2. Context model

The General Requirements Engineering process presented in the
previous subsection is applied to different types of projects. We
have defined a context model for KI, shown in Fig. 17. This context
model has three dimensions: Domain, Team and Management. For
example, the Domain dimension has three attributes: Application
Domain, Development Environment and Source of Documentation.
The first two attributes can take on two possible values: “known”
or “unknown”, whereas the Source of Documentation has three pos-
sible values: “exist”, “does not exist” and “expert” (an expert is
the source of information). The other two dimensions are similarly
disaggregated into attributes, each with its own possible values.

We show the context characterization of two typical projects
in Table 2. The parts of the context model that are relevant to the
tailoring process are listed in the first two columns, and each of the
remaining columns represents a particular project context charac-
terization. For example, the third column lists the context attribute
values that characterize a small, new development project, within
an unknown application domain. In this type of project there is
no preexisting documentation, both the development environment
and customer type are unknown, the provider is in-house, and the
project duration is small (short). We expect that the RE process
tailored to such a project includes all optional tasks, roles and work
products, as this is one of the most complex types of project that KI
develops.

On the other hand, the attribute values listed in the fourth col-
umn of Table 2 describe a simple corrective-maintenance project,
where the application domain, development environment and
customer type are known, documentation exists, the provider is in-
house and the project duration is medium. In this case, we expect

that the resulting tailored process will be much simpler than the
one for small development projects: during the Inception phase,
the Requirements Development activity just includes the Problem
Analysis sub-activity (in addition to the mandatory sub-activities),

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1163

ts Dev

w
i
S

s

T
K

Fig. 16. KI – feature model corresponding to: (a) the Requiremen

hile in the rest of the phases, the Requirements Development activ-

ty just consists of the two mandatory sub-activities Requirements
pecification and Requirements Analysis and Validation.

The Requirements Understanding activity for both types of project
hould consist of just two sequential activities: Requirements

able 2
I – context characterizations of two typical projects.

Dimension Context attribute

Domain Application domain

Development environment

Source of documentation

Management Project type

Provider

Customer type
Project duration
elopment activity and (b) the Requirements Management activity.

Review and Ensuring Common Requirements Understanding. This is

because the requirements provider is “in-house”. Fig. 18 shows the
resulting Requirements Development and Requirements Understand-
ing workflows, when tailored to the Simple Maintenance project
context.

Small development Simple Maintenance

Unknown Known
Unknown Known
Does not exist Exists

New development Maintenance-correction
In-house In-house
Unknown Known
Small Medium

1164 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

Fig. 17. KI – context model.

rstand

4

t
t
g
“
F
c
P
m

T
K

Fig. 18. KI – the Requirements Development and Requirements Unde

.3. Tailoring

KI has a set of adaptation guidelines, which they use to manually
ailor their process. Table 3 is a partial listing of the adapta-
ion guidelines provided by KI. These guidelines are expressed as
uarded actions, where the process elements that appear in the
Action” column are those variation points indicated in Fig. 16.

or example, if we want to tailor the general requirements pro-
ess to a maintenance-enhancement project, then the Problem and
roject Scope Definition task is required, i.e., the tailored process
ust include this task.

able 3
I – adaptation guidelines (partial listing).

Context attribute Value

Project type Maintenance-enhancement

Project type Maintenance-correction

Provider In-house

Provider Outsource

Source of documentation Does not exist

Source of documentation Exists
ing activities, tailored to the Simple Maintenance project context.

The adaptation guidelines for common contexts tend to be clear
enough so that there is no ambiguity about what to expect in the
adapted process. For example, the Early Change Management activ-
ity should never be carried out during a maintenance-correction
project. However, certain attribute combinations are not fully docu-
mented in these guidelines. For example, if the Provider is in-house,
then the Problem and Project Scope Definition task may or may not

be required, depending on the values of other context attributes.
In other situations, like the case in which there is a Source of Doc-
umentation (“Exist”), no specific action has been specified. Fig. 19
presents, as an example, the ATL implementation of Rule 2, which

Action

Problem and Project Scope Definition task required
Early Change Management activity not required
Problem and Project Scope Definition task may be required
Problem and Project Scope Definition task required
Environment Specification activity may be required
No action suggested

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1165

Fig. 19. ATL rule, determines whether the Environment Specification activity is required.

ent p

d
i
i

v
p
m
T
(
t
t
c
d
c

T
K

Fig. 20. KI – the Requirements Developm

etermines when the Environment Specification activity is included
n the tailored software process. If the rule returns “true”, the activ-
ty must be included in the process.

Let us now consider the case of an unexpected context, i.e., a
alid context configuration that was not recognized by the com-
any as a typical project context. For example, KI could receive a
aintenance-enhancement request from an unknown customer.

his project context is similar to Simple Maintenance context
fourth column, Table 2); however, no documentation exists for
his project (source of documentation does not exist). Therefore,
his type of maintenance-enhancement represents a new project

ontext for the organization. Although the adaptation guidelines
o not contemplate this case, the guarded actions listed in Table 3
an be used to make some decisions about the variation points.

able 4
I – maintenance-enhancement without documentation.

Context attribute Attribute value

Application domain Known
Development environment Known
Source of documentation Does not exist
Project type Maintenance-enhancement
Provider In-house
Customer type Known
Project duration Medium
rocess when no documentation exists.

The context configuration for this new type of project is shown in
Table 4. We can now apply the tailoring rules.

Fig. 20 shows the result of applying our tailoring rules to this new
context. This process includes the Environment Specification activ-
ity, which was not included in the process configured to Simple
Maintenance (see Fig. 18), since Rule 2 indicates that this activity
must only be included when no documentation exists. According
to the company’s process engineers, this is the expected result,
even though it was not explicitly stated in the original adaptation
guidelines.

4.4. Evaluation

Our MDE-based tailoring solution was validated during a 4-
h workshop that we organized at KI. Participants included the
company’s CEO, process engineer, and project managers. At this
workshop, we presented the technical aspects of our proposal, as
well as a demonstration of our tool chain. We efficiently generated
each possible adaptation of the process, and validated each one in
conjunction with the organization’s process engineer. The tailored

processes we produced were correct and suitable for each particu-
lar project context according to the company’s stakeholders. Also,
since the tailoring process is now replicable and fast, the company
is considering to include this as the first step of any new project.

1166 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

nizati

5

d
c
a
w
i

m
o
p
m
c
s
F
t
c

5

p
z
i
s
s
a

m
F
o
S
r
w
u
m
t
b
p
d
r

r
v
s

(
r
C
i
w
D

nents Design and Database Design are mandatory tasks. The first
one addresses the modeling of components that have yet to be
designed, while the second one focuses on the database or datas-
pace model. Since this company typically develops information

Fig. 22. Amisoft – the Analysis activity.
Fig. 21. Amisoft – orga

. Tailoring the software process at Amisoft

In this section, we present the application of our approach to the
evelopment process of Amisoft,5 another small Chilean software
ompany. This company defined its organizational process in 2009,
nd it is currently implementing the ISO9001:2008 standard, as
ell as certifying CMMI Level 2. This software development process

s based on the OpenUP process model.
In order to apply the proposed tailoring approach, we first for-

alized the organizational software process in EMF, with the help
f the company’s process engineer. As in the previous case study,
rocess variability was modeled in a feature model. We then for-
alized the context model for Amisoft, as well as two context

haracterizations. After that, we defined the tailoring rules that
pecify how the process must change according to the context.
inally, we describe how our proposed approach was used to tailor
he organizational software process to one of the project context
haracterizations.

.1. Organizational process model

Amisoft’s organizational process considers two predefined
roject types: development and maintenance. Since this organi-
ation typically addresses small software projects, particularly
nformation systems, its development process is simple. Fig. 21
hows the specification of this process, which consists of four
equential activities: Analysis, Architectural Design, Detailed Design
nd Implementation.

The Analysis activity involves four tasks: Elicitation, Require-
ents Analysis, Prototyping and Requirements Specification (see

ig. 22). The Elicitation and Requirements Analysis tasks focus
n determining the users’ requirements, while the Requirements
pecification task focuses on identifying the project’s software
equirements. If the project involves the development of a new soft-
are product the Prototyping task is carried out, helping validate
sers’ requirements and translate them into software require-
ents. However, this task is not required for maintenance projects,

hus it is optional. The Requirements Specification task should always
e carried out; however, a formal requirements document is only
roduced when a new system is being developed, or when the
evelopment team does not have a lot of experience. For these
easons, the organization also considers this task as optional.

The Architectural Design activity is optional, because it is not
equired for maintenance projects. This activity does not have any
ariability in its workflow, and thus we do not show the corre-
ponding model.

The Detailed Design activity starts with two sequential tasks
Design Conception and Design Reuse) and ends with three concur-
ent tasks (Components Design, Database Design and Interfaces and

ommunication Design). The specification of this activity is shown

n Fig. 23. During the Design Conception task, designers determine
hich components must be part of the solution and during the
esign Reuse task, they identify which component designs can be

5 http://www.amisoft.cl.
onal software process.

reused from previous projects. These two initial tasks are optional,
since they are not required during maintenance projects. Compo-
Fig. 23. Amisoft – the Detailed Design activity.

http://www.amisoft.cl

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1167

s
n
t
g
i
t
a
b

t
I
t
p

c
C
t
m
o
t

5

e
P
T

Fig. 24. Amisoft – the Implementation activity.

ystems, the Database Design task is mandatory. Some mainte-
ance projects do not require database changes, but even then this
ask is carried out, since changes made to the software may trig-
er some database adjustments, e.g., requiring the creation of new
ndexes. The Interfaces and Communication Design task deals with
he Human–Computer Interaction aspects of the software product
nd also communication with other systems. This task is optional
ecause it is not required during maintenance projects.

Finally, the Implementation activity consists of three concurrent
asks: Components Implementation, Database Implementation and
nterfaces and Communication Implementation (see Fig. 24). During
hese tasks, the roles responsible for them implement the designs
roduced during the Detailed Design activity.

Fig. 25 is the feature model associated to this software pro-
ess. There are two requires constraints between the Interfaces and
ommunication Design and Interfaces and Communication Implemen-
ation tasks: (1) from the implementation to the design task, which

odels that the design task must be carried out before coding can
ccur and (2) from the design to the implementation task, which is
o ensure that the design is not a waste work product.

.2. Context model
Four dimensions were identified by the organization as rel-
vant for characterizing its projects: Team, Project, Business and
roduct. The corresponding context model is shown in Fig. 26.
he Team dimension has two attributes: Technical Knowledge and

Fig. 25. Amisoft – feature model associated t
Fig. 26. Amisoft – context model.

Development Skills, which model the team’s required level of tech-
nical knowledge and development skills, respectively. The Project
dimension also has two attributes: Project Type, which can take
on one of two values (“Maintenance” or “Development”), and the
Resources Availability that models the level of availability of human
resources. The Business dimension considers just one attribute:
Type of Deliverable, which can be “process-oriented” or “product-
oriented”. When this attribute is set to “process-oriented”, a
deliverable must be generated by each phase of the process (e.g., a
requirements specification, a software architecture document, and
so on). When the attribute value is “product-oriented”, only the
source code of the product must be delivered to the client organiza-
tion. Finally, the Product dimension considers just an Integration Req

attribute, which indicates whether the project must be integrated
to an existing solution.

o the organization’s software process.

1168 J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171

Fig. 27. Amisoft – tailoring decisions.

her th

5

t
t
t
c
o
i
(
t
v
c
f
t
t
a

s
e
i
t
o
F
S
s
w

with, while the second one is a bit more demanding.
As in the first case study, we tailored the general process using

the ATL rules derived from the tailoring decisions specified in
Fig. 27. The resulting processes are shown in Fig. 29. In the first

Table 5
Amisoft – two project characterizations.

Context attribute Simple
Maintenance

Complex
Maintenance

Technical knowledge Medium/low High
Development skills Medium/low High
Fig. 28. ATL tailoring rule, determines whet

.3. Tailoring rules

The tailoring rules for this process were specified using a table
hat relates the context dimensions and attributes to process fea-
ures. Fig. 27 shows a partial view of this tailoring table. Since all
he rules are specified in a single graphical representation, the pro-
ess of validating when to apply each rule becomes easy to carry
ut. The intersection between each row and column character-
zes the relationship between the corresponding attribute value
row) and process variation point (column). A cell is left empty if
here is no relation between the referenced context attribute and
ariation point. Otherwise, we use the values True and False to indi-
ate whether the referenced task must be included or removed
rom the tailored process, respectively. We additionally extend
hese values with +and − symbols, indicating whether a con-
ext attribute has a higher or lower priority with respect to other
ttributes.

For example, the Requirements Specification task is weakly
elected when the team has medium/low Development Skills. How-
ver, this task will be strongly omitted from the tailored process
f the project is product-oriented, i.e., the Requirements Specifica-
ion task will not be included in the tailored process for this type
f project. These tailoring guidelines were formalized using ATL.

ig. 28 shows a helper rule that determines when the Requirements
pecification task must be included in this organization’s tailored
oftware process. Here, the +and − values determine the order in
hich the context attributes are evaluated: Type of Deliverable is
e Requirements Specification task is required.

evaluated first (True+), while the Development Skills and Project Type
attributes are evaluated last.

5.4. Context-adapted processes

Table 5 presents two examples of project characterizations:
Simple and Complex Maintenance. Both are maintenance projects
(Project Type is “Maintenance”), but the first one does not require
a high-level of technical knowledge or development skills, while
the second one does. In both cases, the only deliverable is the code
(Type of Deliverable is set to “Product-oriented”). The first context
is probably the simplest type of project that this company deals
Project type Maintenance Maintenance
Resources availability Low Low
Type of deliverables Product-oriented Product-oriented
Integration req No No

J.A. Hurtado et al. / The Journal of Systems and Software 86 (2013) 1153– 1171 1169

Maint

o
w
m

e
s
d
o
c
s

6

i
u

p
s
r
i
a
m
p

a
a
a
n
a
e
a
a
o
a
r

b
p
a
g
f
o

This work has been partly funded by project Fondef D09I1171
Fig. 29. Amisoft – the tailored process model for (a) a Simple

ne, all optional process elements have been removed, as expected;
hereas the second one is similar, but also includes the Require-
ents Specification task.

The adapted processes were analyzed by Amisoft’s process
ngineer, who considered that they are appropriate for the corre-
ponding contexts, and they are also consistent with the guidelines
efined by the organization. In his opinion, the most valuable aspect
f our proposed tailoring methodology is its usability, since he
ould quickly adjust the context attribute values and immediately
ee how these changes affect the tailored processes.

. Conclusions and future work

In this article, we present an MDE-based approach for automat-
cally tailoring software processes, where transformation rules are
sed to adapt a general process model to a specific context.

The tailoring strategy takes as input two models, a general
rocess model and a project context model, and produces a context-
pecific process. This is done by applying a set of transformation
ules that define how the general process model varies depend-
ng on the context. These rules are specified by a process engineer
nd validated by the organization’s project managers. The project
anager is afterwards only responsible for specifying the specific

roject’s context.
This approach has a number of advantages. Tailoring is done in

 systematic way because the transformation rules are uniformly
pplied according to a context model. The total time required to
dapt a process is much shorter than before, so the process engi-
eer can quickly see the effect of changing a rule or a context
ttribute value. We can also check the consistency of the process
ngineer’s tailoring know-how. In practice, we also expect to see
n improvement in productivity in projects that follow processes
dapted using our approach. This is because the tailored process
nly includes the process elements that are strictly required by

 project’s context configuration, so only the essentially required
esources should be invested in the project.

The case studies presented in this paper showed that it is possi-
le to apply tailoring transformations built for adapting a general
rocess to different project contexts in a planned manner. Being

ble to validate the transformations for particular known cases has
iven us confidence of their validity in the general case. There-
ore, whenever unanticipated scenarios happen, a combination
f already built and validated tailoring transformations can be
enance and (b) a Complex Maintenance project, respectively.

applied, and as a consequence, an appropriate context adapted
process can be obtained quickly and easily.

The experience has allowed us to conclude that: (1) the pro-
posed technique is an effective tool to achieve process tailoring, (2)
the approach is useful and practical because it was easily imple-
mentable by the process group, and (3) it allows to represent and
evolve the tailoring knowledge of an organization. However, (4)
the prototypical tool must be more usable, in particular to define
the transformation rules. Additionally, the process engineers at one
of the companies suggested that the triplet (Context Configuration,
Tailored Process and Results) should be used to empirically validate
and improve the context model and the tailoring decisions.

Although the case studies were conducted in niche companies
with small processes where the number of the context variables
and the number of process variation points is small, we expect that
the approach could be successfully applied for larger processes as
well. Generally, large companies are organized in smaller entities
which behave much like small companies (Hamilton, 1999). Never-
theless, when a large company is managed as a whole, the number
of processes from the process line grows exponentially according
to the number of variation points and context configurations, and
this adds complexity. Performance in process tailoring is not an
issue since it is done automatically, but writing the rules and evolv-
ing them consistently may become difficult and expensive. Further
validation with big process models is required to evaluate the actual
scalability of the MDE approach.

We are currently experimenting with this approach in four other
Chilean software companies, as part of the ADAPTE project,6 a large,
government-funded initiative. This will allow us to continue vali-
dating the feasibility of the proposed approach. Since the quality
of the input models is important, we are currently integrating our
tool chain with some process quality analysis tools we have already
developed (Hurtado et al., 2012a). Moreover, we are now work-
ing on also improving methodological and usability issues of the
proposed tailoring approach.

Acknowledgement
of Conicyt, Chile.

6 http://www.adapte.cl.

http://www.adapte.cl

1 stems

R

A

A

A

B

B

B

B

B

B

B

B

B

C

C

C
E

C

C

D

D

D

F

H

H

H

H

H

H

H

H

J

J

170 J.A. Hurtado et al. / The Journal of Sy

eferences

non., 2011. Software Engineering – Lifecycle Profiles for Very Small Entities (VSEs)
– Part 5-1-2: management and engineering guide: generic profile group: basic
profile. Technical Report ISO/IEC TR 29110-5-1-2:2011, International Organiza-
tion for Standardization, Geneva.

randa, J., Easterbrook, S., Wilson, G.,2007. Requirements in the wild: how small
companies do it. In: Proceedings of the 15th IEEE Requirements Engineering
Conference. IEEE CS Press, pp. 39–48.

rmbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Ocampo, A., 2009.
Scoping software process lines. Software Process: Improvement and Practice 14
(3), 181–197.

ai, X., Huang, L.G., Zhang, H., 2010. On scoping stakeholders and artifacts in software
process. In: Münch, J., Yang, Y., Schäfer, W. (Eds.), Proceedings of the 2010 inter-
national conference on New modeling concepts for today’s software processes:
software process (ICSP’10). Springer-Verlag, Berlin, Heidelberg, pp. 39–51.

ajec, M., Vavpotic, D., Furlan, S., Krisper, M.,2007a. Software process improvement
based on the method engineering principles. In: Situational Method Engineer-
ing: Fundamentals and Experiences, Proceedings of the IFIP WG 8.1 Working
Conference, Volume 244 of IFIP. Springer, pp. 283–297.

ajec, M., Vavpotic, D., Krisper, M., 2007b. Practice-driven approach for creat-
ing project-specific software development methods. Information and Software
Technology 49 (4), 345–365.

atista, J., De Figueiredo, A.D., 2000. SPI in a very small team: a case with CMM.
Software Process: Improvement and Practice Journal 5 (4), 243–250.

eck, K., Andres, C., 2004. Extreme Programming Explained: Embrace Change, 2nd
ed. Addison-Wesley Professional.

elkhatir, N., Estublier, J., 1996. Supporting reuse and configuration for large
scale software process models. In: Software Process Workshop, 1996. Pro-
cess Support of Software Product Lines, Proceedings of the 10th International,
pp. 35–39.

oehm, B.W., Clark, B., Horowitz, E., Westland, J.C., Madachy, R.J., Selby, R.W., 1995.
Cost models for future software life cycle processes: COCOMO 2.0. Annals of
Software Engineering 1, 57–94.

reton, E., Bézivin, J., 2001. Model driven process engineering. In: Computer Soft-
ware and Applications Conference, 2001. COMPSAC 2001, pp. 225–230.

ustard, D.W., Keenan, F.,2005. Strategies for systems analysis: groundwork for pro-
cess tailoring. In: Proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS’05). IEEE
Computer Society, Washington DC, USA, pp. 357–362.

lements, P., Northrop, L., 2001. Software Product Lines: Practices and Patterns, 3rd
ed. Addison-Wesley Professional.

MMI Product Team CMMI for Development, Version 1.2, 2006. Technical Report
CMU/SEI-2006-TR-008, Software Engineering Institute.

ockburn, A., 2000. Selecting a project’s methodology. IEEE Software 17 (4), 64–71.
uropean Commission, 2005. The New SME Definition: User Guide and

Model Declaration. http://ec.europa.eu/enterprise/policies/sme/files/
sme definition/sme user guide en.pdf

usumano, M.A., Cormack, A.M., Kemerer, C.F., Crandall, W.(B.), 2009. Critical deci-
sions in software development: updating the state of the practice. IEEE Software
26 (5), 84–87.

zarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (3), 621–645.

ai, F., Li, T., 2007. Tailoring software evolution process. In: 8th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, vol. 2, pp. 782–787.

eelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software product
families: a case study. Journal of Systems and Software 74 (2), 173–194.

örr, J., Adam, S., Eisenbarth, M., Ehresmann, M., 2008. Implementing requirements
engineering processes: using cooperative self-assessment and improvement.
IEEE Software 25 (3), 71–77.

iresmith, D., 2004. Creating a project-specific requirements engineering process.
Journal of Object Technology 3 (5), 31–44.

amilton, M., 1999. Software Development: Building Reliable Systems. Enterprise
Computing Institute Series. Prentice Hall.

arris, M., Aebischer, K., Klaus, T., 2007. The whitewater process: software product
development in small IT businesses. Communications of the ACM 50 (5), 89–93.

enderson-Sellers, B., Ralyté, J., 2010. Situational method engineering: state-of-the-
art review. Journal of Universal Computer Science 16 (3), 424–478.

ofer, C., 2002. Software development in Austria: results of an empirical study
among small and very small enterprises. In: Proceedings of the 28th Euromicro
Conference, pp. 361–366.

urtado, J.A., Bastarrica, M.C., 2009. Process model tailoring as a mean for process
knowledge reuse. In: 2nd Workshop on Knowledge Reuse, KREUSE, Falls Church,
Virginia, USA.

urtado, J.A., Bastarrica, M.C., Bergel, A., 2012a. Analyzing software process models
with AVISPA. In: Raffo et al. (2011), pp. 23–32.

urtado, J.A., Bastarrica, M.C., Quispe, A., Ochoa, S.F., 2012b. An MDE approach to
software process tailoring. In: Raffo et al. (2011), pp. 43–52.

urtado, J.A., Ochoa, S.F., Quispe, A., Bastarrica, M.C., 2011. A context modeling
language to support tailoring of software processes. Technical Report TR/DCC-

2011-14, Computer Science Department, University of Chile.

acobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Development Pro-
cess. Addison-Wesley Longman Publishing Co. Inc.

antunen, S.,2010. Exploring software engineering practices in small and medium-
sized organizations. In: Proceedings of the 2010 ICSE Workshop on Cooperative
and Software 86 (2013) 1153– 1171

and Human Aspects of Software Engineering (CHASE’10). ACM, South Africa, pp.
96–101.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.,2006. ATL: a QVT-like
transformation language. In: Companion to the 21th Annual ACM SIGPLAN Con-
ference on OOPSLA’2006. ACM, pp. 719–720.

JTC 1 Information technology /SC 7, 2008. ISO/IEC 12207:2008 systems and soft-
ware engineering – software life cycle processes. Technical Report, International
Organization for Standarization ISO.

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S., 1990. Feature-Oriented
Domain Analysis (FODA). Feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute.

Kettunen, P., Laanti, M., 2005. How to steer an embedded software project: tactics
for selecting the software process model. Information and Software Technology
47, 587–608.

Killisperger, P., Stumptner, M., Peters, G., Grossmann, G., Stückl, T., 2009. Meta model
based architecture for software process instantiation. In: Trustworthy Software
Development Processes, International Conference on Software Process, ICSP
2009, LNCS 5543, pp. 63–74.

Koolmanojwong, S., Boehm, B.W., 2012. The incremental commitment model pro-
cess patterns for rapid-fielding projects. In: Münch et al. (2010), pp. 150–162.

Kornyshova, E., Deneckère, R., Claudepierre, B.,2010. Contextualization of method
components. In: Proceedings of the Fourth International Conference on Research
Challenges in Information Science (RCIS). IEEE CS Press, pp. 235–246.

Kruchten, P., 2003. The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing Co. Inc., Boston, MA, USA.

Laplante, P.A., Neill, C.J., 2004. Opinion: the demise of the waterfall model is immi-
nent. ACM Queue 1 (10), 10–15.

Ma, J., Wang, Y.,2006. A quantitive context model of software process patterns and
its application method. In: Proceedings of the Sixth International Conference on
Quality Software. IEEE Computer Society, pp. 243–250.

Martínez-Ruiz, T., García, F., Piattini, M., Münch, J., 2011. Modelling software process
variability: an empirical study. IET Software 5 (2), 172–187.

Mirbel, I., Ralyté, J., 2006. Situational method engineering: combining assembly-
based and roadmap-driven approaches. Requirements Engineering 11 (1),
58–78.

Münch, J., Yang, Y., Schäfer, W. (Eds.), 2010. International Conference on Software
Process, ICSP 2010. Proceedings, Volume 6195 of LNCS. Paderborn, Germany,
July 8–9, 2010. Springer.

Ocampo, A., Bella, F., Münch, J., 2005. Software process commonality analysis. Soft-
ware Process: Improvement and Practice 10 (3), 273–285.

OECD, 2005. Small and medium enterprise (sme) outlook report. Technical Report,
Organisation for Economic Co-operation and Development.

OMG, 2007. Software process engineering metamodel SPEM 2.0 OMG beta specifi-
cation. Technical Report ptc/07-11-01, OMG.

Osterweil, L.J., 1987. Software processes are software too. In: 9th International Con-
ference on Software Engineering, ICSE’1987, pp. 2–13.

Park, S., Na, H., Sugumaran, V., 2006. A semi-automated filtering technique for soft-
ware process tailoring using neural network. Expert Systems with Applications
30, 179–189.

Pedreira, O., Piattini, M., Luaces, M.R., Brisaboa, N., 2007. A systematic review of
software process tailoring. SIGSOFT Software Engineering Notes 32 (3), 1–6.

Pérez, G., El Emam, K., Madhavji, N.H., 1995. Customising software process models.
In: 4th European Workshop Software Process Technology, EWSPT’95, Volume
913 of LNCS, Springer, pp. 70–78.

Pohl, K., Böckle, G., van der Linden, F.J., 2005. Software Product Line Engineering:
Foundations, Principles and Techniques, 1st ed. Springer.

Raffo, D., Pfahl, D., Zhang, L. (Eds.), 2011. International Conference on Software and
Systems Process, ICSSP 2011. Proceedings. ACM, Honolulu, HI, USA, May 21–22,
2011.

Ralyté, J., Deneckère, R., Rolland, C.,2003. Towards a generic model for situational
method engineering. In: CAiSE 2003, LNCS 2681. Springer-Verlag, pp. 95–110.

Rolland, C.,2009. Method engineering: state-of-the-art survey and research pro-
posal. In: Proceeding of the 2009 Conference on New Trends in Software
Methodologies, Tools and Techniques. IOS Press, Amsterdam, The Netherlands,
pp. 3–21.

Rolland, C., Nurcan, S.,2010. Business process lines to deal with the variability. In:
Proceedings of the 2010 43rd Hawaii International Conference on System Sci-
ences, HICSS’10. IEEE Computer Society, pp. 1–10.

Rombach, H.D., 2005. Integrated software process and product lines. In: Interna-
tional Software Process Workshop, SPW 2005, Beijing, China, pp. 83–90.

Ruiz, P., Quispe, A., Bastarrica, M.C., Hurtado Alegría, J.A., 2012. Formalizing the soft-
ware process in small companies. Technical Report TR/DCC-2012-2, Computer
Science Department, Universidad de Chile.

Schmidt, D.C., 2006. Model-driven engineering. IEEE Computer 39 (2), 25–31.
Simidchieva, B.I., Clarke, L.A., Osterweil, L.J., 2007. Representing process variation

with a process family. In: Wang, Q., Pfahl, D., Raffo, D.M. (Eds.), International
Conference on Software Process, ICSP’2007, LNCS 4470. Springer, Minneapolis,
USA, pp. 109–120.

Simmonds, J., Bastarrica, M.C., 2011. Modeling variability in software process lines.
Technical Report TR/DCC-2011-10, Universidad de Chile, Departamento de Cien-
cias de la Computacion.
Sutton, S.M., Osterweil, L.J.,1996. Product families and process families. In: ISPW
’96: Proceedings of the 10th International Software Process Workshop. IEEE
Computer Society, Washington, DC, USA, p. 109.

Tolvanen, J.P., Rossi, M., Liu, H.,1996. Method engineering: current research
directions and implications for future research. In: Proceedings of the IFIP

http://ec.europa.eu/enterprise/policies/sme/files/sme_definition/sme_user_guide_en.pdf
http://ec.europa.eu/enterprise/policies/sme/files/sme_definition/sme_user_guide_en.pdf

stems

V

v

v

W

W

X

Z

J
v
a
t
c

J.A. Hurtado et al. / The Journal of Sy

TC8, WG8.1/8.2 Working Conference on Method Engineering: Principles of
Method Construction and Tool Support. Chapman & Hall Ltd., London, UK,
pp. 296–317.

aldés, G., Astudillo, H., Visconti, M., López, C.,2010. The Tutelkán SPI framework
for small settings: a methodology transfer vehicle. In: Proceedings of the 17th
EuroSPI, vol. 99. Communications in Computer and Information Science, Greno-
ble, France, pp. 142–152.

on Wangenheim, C.G., Weber, S., Hauck, J.C.R., Trentin, G., 2006a. Experiences on
establishing software processes in small companies. Information and Software
Technology Journal 48 (9), 890–900.

on Wangenheim, C., Varkoi, T., Salviano, C., 2006b. Standard based software process
assessments in small companies. Journal of Software Process: Improvement and
Practice 11 (3), 329–335.

ashizaki, H., 2006. Building software process line architectures from bottom up. In:
Münch, J., Vierimaa, M. (Eds.), Product-Focused Software Process Improvement,
LNCS 4034. Springer, Amsterdam, The Netherlands, pp. 415–421.

eiss, D.M., Lai, C.T.R., 1999. Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Professional.

u, P., 2005. Knowledge support in software process tailoring. In: Proceedings of the
38th Annual Hawaii International Conference on System Sciences, HICSS’05.

owghi, D., Firesmith, D., Henderson-Sellers, B., 2005. Using the OPEN process frame-
work to produce a situation-specific requirements engineering method. In:
Ralyté, J., Agerfalk, P.J., Kraiem, N. (Eds.), Proceedings of SREP05. Paris, France,
pp. 59–74.
ulio Ariel Hurtado is an Associated Professor at the Systems Department, at the Uni-
ersidad del Cauca. He is member of the IDIS group (Software Engineering Research
nd Development) since 2005. He received his Ph.D. in Computer Science from
he Universidad de Chile in 2012 and a Bachelor in Electronic and Telecommuni-
ations Engineering from the Universidad Del Cauca in 1997. His main research
and Software 86 (2013) 1153– 1171 1171

topics are software engineering, software process models, software architecture,
model-driven engineering, and software product lines. Lately, his work has focused
on applying using MDE techniques and SPL approaches for designing and analyzing
software process models.

María Cecilia Bastarrica is an Assistant Professor at the Computer Science Depart-
ment, at the Universidad de Chile. She coordinates the MaTE group (Model and
Transformation Engineering) since 2007. She received her Ph.D. in Computer Science
and Engineering from the University of Connecticut in 2000, a Master of Science from
the Pontificia Universidad Católica de Chile in 1994, and a Bachelor in Engineering
from the Catholic University of Uruguay in 1991. Her main research topics are soft-
ware engineering, software architecture, model-driven engineering, and software
product lines. Lately, her work has focused on applying using MDE techniques for
modeling software processes.

Jocelyn Simmonds is a Lecturer at the Departmento de Informatica at the Universi-
dad Técnica Federico Santa María, Chile. She received her Ph.D. from the University of
Toronto in 2011. Her main research area is software engineering, with specific inter-
ests in software testing, behaviour analysis, requirements engineering, and mobile
and web development.

Sergio Ochoa is an Associate Professor of Computer Science Department at
the Universidad de Chile. He received his Ph.D. in Engineering Science from
Pontificia Universidad Católica de Chile in 2002 and a Bachelor in Software
Systems Engineer from UNICEN, Argentina in 1996. His main research topics
are Mobile/Ubiquitous/Social Computing (particularly context awareness, loosely-

coupled work, positioning, ad hoc networking, systems modeling) and Software
Engineering (software systems modeling, development in small software enter-
prises: requirements engineering, communication and coordination and software
process tailoring). He is active member of the CARL and LACCIR networks; the SCCC
conference, and the IEEE CS, ACM and CLEI journals.

	MDE software process lines in small companies
	1 Introduction
	2 Related work
	2.1 Software product lines and software process lines
	2.2 Tailoring approaches
	2.3 Context modeling

	3 Tailoring the software process
	3.1 Organizational process model
	3.2 Context model
	3.3 Tailoring by model transformation
	3.4 Project adapted process model
	3.5 Discussion

	4 Tailoring the requirements engineering process at KI
	4.1 Organizational RE process model
	4.2 Context model
	4.3 Tailoring
	4.4 Evaluation

	5 Tailoring the software process at Amisoft
	5.1 Organizational process model
	5.2 Context model
	5.3 Tailoring rules
	5.4 Context-adapted processes

	6 Conclusions and future work
	Acknowledgement
	References

