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SUMMARY

We derive a smoothed particle hydrodynamics (SPH) approximation for anisotropic dispersion that only
depends upon the first derivative of the kernel function and study its numerical properties. In addition, we
compare the performance of the newly derived SPH approximation versus an implementation of the parti-
cle strength exchange (PSE) method and a standard finite volume method for simulating multiple scenarios
defined by different combinations of physical and numerical parameters. We show that, for regularly spaced
particles, given an adequate selection of numerical parameters such as kernel function and smoothing length,
the new SPH approximation is comparable with the PSE method in terms of convergence and accuracy and
similar to the finite volume method. On other hand, the performance of both particle methods (SPH and
PSE) decreases as the degree of disorder of the particle increases. However, we demonstrate that in these
situations the accuracy and convergence properties of both particle methods can be improved by an adequate
choice of some numerical parameters such as kernel core size and kernel function. Copyright © 2012 John
Wiley & Sons, Ltd.
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Solute transport in natural porous media is usually modeled using an advection–dispersion equation
(ADE). Under normal field conditions, the transport process is advection-controlled and the result-
ing parabolic partial differential equation exhibits more of a hyperbolic character. On the other hand,
the natural heterogeneity of geological formations results in rapid changes of the magnitude and
direction of the flow velocity. Those features make the numerical solution of the resulting transport
equation with traditional mesh-based methods very challenging. The numerical solution is further
complicated by the fact that the dispersion coefficient that appears in the ADE is a second-order
tensor with principal axes that are oriented parallel and perpendicular to the flow velocity [1], so
that the spreading of a contaminant plume is anisotropic: faster in the longitudinal direction than in
the transverse direction.

Particle methods offer advantages for the simulation of solute transport in natural porous media
because of their natural ability to adapt to the flow velocity and to simulate advection-controlled
transport without introducing numerical dispersion and artificial mixing. Thus, there has been a
long dated interest in the use of particle methods to simulate solute transport in the subsurface
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(e.g., [2] and references therein). The main challenge for the use of particle methods has been in
deriving robust approximations for simulating solute dispersion, which is key to represent solute
mixing and dilution.

Recent approaches to incorporate diffusion, dispersion, or viscous effects in particle simulations
are based on an integral approximation of second-order derivatives [3–5]. Particle locations are
used as quadrature points to discretize integral approximations of second-order derivatives. When
used to simulate solute transport, these methods approximate the local dispersion operator by using
concentration values at a set of scattered particles or nodes [6, 7]. The effects of dispersion are
incorporated, modifying concentration values of individual particles as to simulate the result of
mass exchange between neighboring particles or fluid regions. Therefore, important physical mech-
anisms to understand solute transport in porous media such as dilution and solute mixing can be
directly simulated.

There have been two studies that have evaluated the use of particle methods on the basis of
integral representations of second derivatives to simulate solute transport in natural aquifers [6, 7].
First, Zimmermann et al. [6] investigated the use of the particle strength exchange (PSE) method
[3, 8] to simulate solute transport in homogeneous porous media considering anisotropic dispersion
and uniform and nonuniform flow conditions. Their results showed that the PSE approximation
provides accurate results for a set of benchmark problems if a remeshing procedure was used to
control the irregular particle distribution due to the flow velocity. Later, Herrera et al. [7] com-
pared a smoothed particle hydrodynamics (SPH) approximation to simulate conservative transport
in heterogeneous porous media with a high-order finite volume (FV) and a hybrid method of
characteristics solvers assuming isotropic dispersion only. Herrera et al. [7] used an SPH approx-
imation for second derivatives, first introduced by Cleary and Monaghan [4] to simulate thermal
conduction, that only involves the first derivative of the kernel in contrast to other SPH formu-
lations for second derivatives that depend upon the second derivatives of the kernel function [9].
The formulation based on the first derivative of the kernel is less sensitive to particle disorder
than the one based on the second derivatives that, in general, require a remeshing procedure to
control the effect of the irregular particle distribution [9]. The results presented in [7] confirm
this by showing that the SPH formulation of Cleary and Monaghan [4] without a remeshing step
can be used to simulate isotropic dispersion in the presence of nonuniform velocity fields, which
distort the particle distribution, while providing solutions that compare favorably with other cal-
culated with standard numerical techniques. In addition, these results clearly show the advantages
of the SPH approximation for simulating advection-dominated solute transport in heterogeneous
porous media.

Another challenge for the correct simulation of reactive transport in porous media has been related
to developing robust numerical algorithms (particle-based or mesh-based) to avoid numerical oscil-
lations that plague most traditional numerical approximations of parabolic or elliptic equations that
include mixed derivatives or cross-terms [10–16].

Because of the good performance of particle methods to simulate solute transport in porous media
[6, 7], we are interested in extending these methods to simulate other situations and to test how
they compare for simulating different scenarios. The first objective of this manuscript is to derive
an SPH expression to approximate anisotropic dispersion to extend our previous work presented
in [7] and to test whether this new approximation could avoid the use of a remeshing procedure
required by other particle approximations [6,9]. The second objective is to test and compare the SPH
and PSE methods to simulate isotropic and anisotropic dispersion under different conditions. As
reference, we also compare both particle methods versus a standard FV formulation. In particular,
we are interested in understanding the convergence properties of both particle methods, the factors
that control their accuracy, and their relative performance in comparison with a well-established
mesh-based solver. We believe that this is the first direct comparison between the SPH and PSE
methods for the simulation of dispersive processes reported in the literature. The third objective
is to study the monotonicity properties of the proposed SPH and the PSE approximations for dif-
ferent degrees of anisotropy of the dispersion tensor, to evaluate whether they could be used in
situations when numerical oscillations of the solution cannot be tolerated, for example, in reactive
transport simulations.
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1. MATHEMATICAL FORMULATION

In what follows, we will focus on the numerical solution of an ADE that describes the migration
of passive solutes in porous media. The Lagrangian formulation of this transport equation can be
written as

dr
dt
D v.r, t / (1)

dC.r, t /

dt
Dr � .D.r/rC.r, t // (2)

where r is the position of a fluid particle, C.r, t / is the solute concentration [ML�3], D.r/ is the
hydrodynamic dispersion coefficient [L2T�1], and v is the pore water velocity [LT�1]. The first
equation describes the movement of a fluid particle due to the flow velocity, whereas the sec-
ond one describes the change in concentration due to hydrodynamic dispersion. In what follows,
we will consider that the flow field is computed externally, and it is an input parameter for the
transport simulation.

In isotropic porous media, the components of the tensor D are given by [1]

Dij D .˛Tjvj CDm/ıij C .˛L � ˛T/
vivj

jvj
(3)

where ˛L and ˛T are the longitudinal and transverse dispersivity [L], respectively, and Dm is
the molecular diffusivity [L2T�1]. In general, the longitudinal dispersivity is at least one order of
magnitude larger than the transverse dispersivity, ˛T=˛L� 1.

The solution of (1) can be easily evaluated using a semi-analytical particle tracking or an explicit
time integration schemes [17, 18]. Therefore, in the rest of this manuscript, we will focus our atten-
tion on the numerical solution of (2), which represents a much more challenging problem in the
context of particle methods. In the next two sections, we will present two particle-based formulations
to discretize (2).

2. SPH APPROXIMATION

In the standard SPH formulation, the smoothed interpolation AS.r/ of a variable A.r/ is defined as
the integral [19, 20]

AS.r/D
Z
A.r0/W.r� r0, h/ dr0 (4)

where W.r� r0, h/ is a kernel function with smoothing length h that satisfies [21]Z
W.r� r0, h/dr0 D 1 (5)

lim
h!0

W.r� r0, h/D ı.r� r0/ (6)

Because of their practical advantages, spline polynomials with compact support are usually used
as kernel functions [21].

The numerical approximation of the integral in (4) is evaluated as

A.ra/D
X
b

1

pb
A.rb/W.jra � rbj/ (7)

where pb is a measurement of the spatial particle density around rb . In most cases, it is
approximated as

pb D
X
a

W.jra � rbj/ (8)
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When computing approximations for first-order and second-order derivatives, it is also useful to
introduce the scalar function F.r/ such that the gradient of a spherically symmetric kernel can be
evaluated as [4, 22]

rW.r/D rF.r/ (9)

2.1. SPH approximation for tensorial diffusion

To derive an SPH expression to evaluate (2), we use the following identity

X
i

X
j

@

@xi
Dij

@C

@xj
D
1

2

X
i

X
j

�
@2

@xi@xj
.DijC/�C

@2Dij

@xi@xj
CDij

@2C

@xi@xj

�
(10)

which is valid for any symmetric tensor D. This expression is the generalization of the identity used
by Jubelgas et al. [22] to derive an SPH approximation for thermal conduction. Second derivatives
of a scalar field A can be evaluated using [23, 24]

@2A

@xi@xj

ˇ̌̌
ˇ
a

D
X
b

1

pb
.Aa �Ab/F.ra � rb/

�
�
.r0 � r/i .r0 � r/j
jr0 � rj2

� ıij

�
(11)

where � D 4 in two dimensions and � D 5 in three dimensions.
Finally, substituting (11) into (10), we arrive at our SPH approximation for (2),

dCa

dt
D
1

2

X
b

1

pab
.Ca �Cb/F.jra � rbj/D.ra, rb/ (12)

with

D.ra, rb/D
X
i

X
j

.Da
ij CD

b
ij /

�
4
.rb � ra/i .rb � ra/j

jrb � raj2
� ıij

�

D
X
i

X
j

Dab
ij ‚ij .rb � ra/ (13)

where Da is the dispersion tensor at position ra, and we have replaced the density pb by a symmetric
expression pab D f .pa,pb/, for example, the arithmetic average of pa and pb , to ensure a sym-
metric approximation [7]. This expression reduces to the standard SPH approximation for diffusion
[7, 25] or thermal conduction [4, 22], if D D DI, where I is the identity matrix. In simulations that
consider variable coefficients, the term Dab

ij D .D
b
ij CD

a
ij / can be substituted by an effective coef-

ficient of the form Dab
ij D 2D

a
ijD

b
ij =.D

a
ij CD

b
ij / , which has given more robust results in thermal

conduction simulations [4, 22].
The approximation (12) has two sources of error. First, the SPH integral interpolant (4) introduces

an error that grows with the smoothing length. Second, the numerical discretization of the integral
introduces an error that depends on the number and position of the particles that contribute to the
summation in (7). This source of error is related to the ratio between the average number of parti-
cles per kernel smoothing length � D h=�x, where�x is the average particle spacing. In general, a
larger number of particles per kernel support volume (larger �) and result in a better approximation
of the integral. However, the use of large � values while controlling h to minimize the interpolant
error requires an increasingly small particle spacing and hence a large number of particles. There-
fore, one must make a trade-off between � and h to obtain reasonable error while controlling the
number of particles and computational effort [4].

2.2. Monotonicity

It is well known that traditional numerical approximations of parabolic or elliptic equations of the
form (2) that consider the off-diagonal terms of the dispersion tensor do not satisfy the monotonicity
properties of the solution (e.g., see [26] and references therein for details). The development
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of numerical approximations that overcome those numerical issues is still the object of intense
research [11, 13, 14, 16, 27]. Here, we study the monotonicity properties of the SPH approximation
derived previously.

First, we notice that (12) has the form

dCi

dt
D
X
j¤i

ˇij .Cj �Ci /D
X
j

Ǒ
ijCj (14)

with Ǒi i D�
P
j¤i ˇij ; thus,

P
j
Ǒ
ij D 0.

Then, we can use the local extremum diminishing (LED) criteria [28] to study the monotonicity
of this numerical discretization. A numerical approximation such as (14) satisfies the LED criteria
if ˇij > 0, i ¤ j [29], which is a sufficient condition to obtain monotonic solutions, as can be
easily demonstrated by the following rationale. If the concentration at node i , Ci , is a minimum,
the temporal derivative of the concentration at that node is positive or zero. Therefore, a minimum
concentration can only increase or stay constant. Similar arguments can be used to prove that a
maximum value cannot increase.

In the case of (12), we have that

ˇab D�
1

2

1

pab
F.jra � rbj/D.ra, rb/ a¤ b (15)

with F.r/6 0 because of the kernel properties.
Then, the LED criteria requires that D.ra, rb/> 0. This condition cannot be demonstrated for the

general case of an irregular node distribution or nonuniform flow, but it can be studied for the simple
case of equispaced nodes in a square lattice in a uniform flow field. To make the analysis simpler,
we use a polar coordinate system such that � is the angle formed by the vector connecting two nodes
located at ra and rb and the x-axis. Then, we obtain that ‚xx D 4 cos2 � � 1, ‚yy D 4 sin2 � � 1,
and ‚xy D 4 sin � cos � . In a square lattice, � D Œ0, �=4, �=2� or a multiple of those numbers. For
� D 0 or � D �=2, there is only one term that is not zero, and it is positive. If � D n�=4 with n
integer, we have that D.ra, rb/ D Dab

xx CD
ab
yy C 4D

ab
xy , which can be positive or negative because

of the change in sign of Dxx , Dyy , and Dxy with the flow orientation according to (3). Figure 1
shows the value of D.ra, rb/ as a function of the velocity direction for � D n�=4. This figure shows
that it is possible that D.ra, rb/ ‹ 0 depending upon the flow orientation. This implies that the
SPH discretization with nodes distributed in a square lattice does not satisfy the LED criteria and
that the numerical solution of (12) might exhibit negative concentrations depending upon the flow
orientation. This is confirmed by the results of numerical simulations presented later.

Figure 1. Coefficient D.ra, rb/ D Dxx CDyy C 4Dxy for jvj D 1 and such that rDrb � ra forms an
angle of 45ı with the x-axis as function of the angle ˇ formed by the flow velocity and the x-axis.
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3. PARTICLE STRENGTH EXCHANGE APPROXIMATION

The PSE discretization of (2) is also based on an integral approximation [3]. Here, we present the
approximation for anisotropic diffusion derived in [8] and used in [6] that reads

dCa

dt
D
.�x/2

"6

X
b

2
4.Cb �Ca/K.rab , "/

X
i

X
j

Mij .ra, rb/.ra � rb/i .ra � rb/j

3
5 (16)

where �x is the representative inter-particle spacing, K.rab , "/ is a cutoff function that satisfies the
so-called moment conditions, " is known as the core size that defines the size of the area of influence
of each particle, and the components of the matrix M.ra, rb/ are given by

Mij .ra, rb/D
1

2
.mij .ra/Cmij .rb// (17)

where

m.r/D D.r/�
1

4
tr.D.r//I (18)

with tr.D/ D
P
i Di i . Zimmermann et al. [6] provided expressions for second-order, fourth-order,

and sixth-order cutoff kernels. Eldredge et al. [5] provided expressions to compute kernels that are
up to eighth order in one and two dimensions and discussed their properties.

The same analysis used in the previous section to study the monotonicity properties of the SPH
approximation can be used to demonstrate that (16) does not guarantee the monotonicity of the solu-
tion when the full dispersion tensor is considered [8], which was also confirmed through numerical
simulations by Zimmermann et al. [6].

Because of the similarities between the SPH and the PSE methods, it is possible to establish a
direct parallel between the kernel and the cutoff functions and between the smoothing length and
core size in SPH and PSE, respectively. In the rest of this manuscript, we will use the terms kernel
or cutoff function to refer to the function K and the terms core size or smoothing length to refer to
". We will also use W to refer to the cutoff K and h instead of " to refer to the core size whenever
such change helps to simplify notation.

4. NUMERICAL TESTS

4.1. Setup

We next evaluate the accuracy of our SPH anisotropic dispersion approximation and the PSE method
from [6, 8]. We simulate the instantaneous release of a solute mass �M in an unbounded two-
dimensional domain with a temporally and spatially constant velocity to study the accuracy and
controls on error of the SPH and PSE approximations. We also use a standard nine-point FV scheme
in a Cartesian grid [26,30] to define a base case to compare the relative performance of both particle
methods. A similar problem has been previously used to study the convergence properties of the
PSE [6] and diffusion velocity methods [31].

Because we are interested in numerical approximations of dispersion, we simplify the problem
and neglect the contribution of advection. In this case, the transport process depends on the flow
only through the relation of the dispersion tensor and the flow velocity given by (3). Because advec-
tion can be easily incorporated within a particle framework without introducing additional errors,
the results of our analysis can be directly extrapolated to more realistic situations.

The analytical solution for the solute concentration as function of position and time is given
by [32]

c.x, t /D
C1

C4
exp

�
�X2.2tDyy Cw

2/� Y 2.2tDxx Cw
2/C 4XY tDxy

8t2C2C 4w2tC3C 2w4

�
(19)

where X D x � x0 and Y D y � y0 .x0,y0/ is the position of the initial solute release, w is a mea-
sure of the size of the initial input, the constant C1 is related to the initial mass �M , and the other
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Table I. Parameters used in numerical tests.

Parameter Symbol Value Unit

Released mass �M 107 g
Initial plume width w 44 m
Maximum initial concentration C0 320 mg/L
Length numerical domain L 2000 m
Longitudinal dispersivity ˛L 10 m
Time step �t 1 day
Total time T 300 day

constants are C2 D DxxDyy �D
2
xy , C3 D Dxx C Dyy , and C4 D

p
4t2C2C 2twC3Cw4.

To simplify the presentation of the results, we choose C1 D C0w
2 such that the maximum ini-

tial concentration is equal to C0. Table I shows a summary of the parameters used to set up the
test problem.

The three solutions are computed using an explicit fourth-order Runge–Kutta solver to integrate
in time. The use of an explicit solver imposes restrictions on the size of the time step to obtain stable
solutions. The three methods have stability limits of the form

�t 6 CT
�2

Dxx CDyy
(20)

where � is the grid size for the FV, core size for the PSE [6], and smoothing length for the SPH
approximations [4], respectively. The constant CT is equal to 0.5 for the FV approximation, and
it depends upon the kernel or cutoff functions for the SPH and PSE. Higher-order cutoff functions
result in slightly more restrictive stability conditions, for example, Zimmermann et al. [6] found
that CT � 2.5 and CT � 1.2 for second-order and fourth-order cutoff functions, respectively. Addi-
tionally, the stability limits of both particle methods depend upon the particle distribution. We found
through numerical experiments that the SPH solution is stable ifCT D 0.1 and use this value to com-
pute a time step that satisfies the stability restrictions of three methods for the case of equispaced
particles.

The PSE and SPH approximations require that the area of influence or support of particles over-
lap. Thus, one must use a core size for PSE or smoothing length for SPH that is larger than the
average particle spacing. Additionally, the error of the solution given by both methods depends
upon the ratio of the smoothing length to the average particle spacing. In our simulations, we used
different ratios to test the influence of that parameter on the error of the solution. On the other hand,
higher-order kernels and cutoff functions have larger support volume as shown in Figure 2, which
results in larger areas of influence and number of neighboring particles for a given smoothing length
or core size.

Efficient implementations of the PSE and SPH solvers require a fast algorithm to identify near
neighbor particles. The SPH implementation is based on kernels that have compact support, so a
particle interacts only with particles that are within the kernel support volume. In that case, it is
easy to use a background grid to classify particles in space. The cell size of that grid is related to
the kernel smoothing length such that neighboring particles are always, at most, one cell apart [33].
Kernels used in the PSE approximation are modified Gaussian functions that have infinite support.
Therefore, in theory, all particles interact with each other. However, PSE kernels fall rapidly with
distance, and one can assume that they have an effective compact support that is few times the core
size as shown in Figure 2. In our implementation, we have assumed that the effective compact sup-
port of the PSE kernels is equal to five times the kernel core size, and we have applied the same
strategy as in SPH to search for neighbor particles.

4.2. Simulation cases

To test the performance of the three numerical methods, we define different scenarios on the basis of
the values of parameters such as dispersivity ratio (˛T=˛L), smoothing length over particle spacing

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:634–651
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Figure 2. Cubic, quartic, and quintic SPH kernels, W , with finite compact support [34] and second-order,
fourth-order, and sixth-order cutoff functions,K, used in PSE simulations [6] as function of the ratio between

distance and kernel core size or smoothing length, h.

(h=�x), velocity direction (angle ˇ), or SPH kernel or PSE cutoff function. The range of values of
those parameters are similar to the ones used in previous studies or were selected on the basis of rea-
sonable physical assumptions. For example, we use ˛T=˛L in the range [0.001, 1.0] with ˛L D 10m
and ˇ D Œ0ı, 45ı, 53ı�, which are similar to the values reported in [6, 31]. We use values for h=�x
and 4"=�x in the range [1.0, 1.6], which is similar to values used in other numerical studies to study
the convergence properties of the SPH approximation for thermal conduction [4] and PSE for solute
dispersion [6].

We define a set of runs with different numbers of cells or particles as summarized in Table II to
study the convergence of the three methods with respect to the particle or grid spacing. To assign the
position of particles and cells, we assume a large square domain with side L. We assign the same
number of particles and cells in each direction, Nc, for simulations that consider equispaced parti-
cles. For simulations that consider random or quasi-random particle distributions, the total number
of particles, N , is calculated such that the average number of particles in each direction is equal to

Nc. To measure the accuracy of the numerical solutions, we compute the errors E2 D
qP

j e
2
j =N

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:634–651
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Table II. Definition of different runs used to study
convergence properties according to number of cells
or average number of particles in each direction, Nc,

and grid or average particle spacing, �x.

Run Nc �x

R1 40 50.0
R2 60 33.3
R3 80 25.0
R4 100 20.0
R5 120 16.7
R6 140 14.3
R7 160 12.5

andE1 Dmax.jej j/, where ej is the difference between analytical and numerical solutions at node
j . For some simulations, we also look at the temporal evolution of the difference between the max-
imum concentration values of the numerical and analytical solutions. In the discussion that follows,
we report errors after 200 time steps and flow direction given by ˇ D 45ı unless explicitly indicated.

4.3. Equispaced particles

We first consider the case of equispaced particles in a square lattice. This scenario is useful because
it allows the direct comparison of the particle methods and the FV approximation. Besides, the accu-
racy of both particle methods is expected to be optimal for this configuration; thus, the results of
this section provide the best case estimate of the error of the SPH and PSE methods.

Unless explicitly specified, all the results reported for equispaced particles are computed using a
cubic spline SPH kernel and second-order PSE cutoff functions.

4.3.1. Effect of particle spacing. Figure 3 shows the error E2 versus the particle or grid spacing.
For isotropic dispersion (˛T=˛L D 1.0), the convergence rate of the three methods is similar, but the
mesh-based FV approximation has, on average, an error that is one order of magnitude smaller than
the SPH approximation and almost two orders of magnitude smaller than the PSE approximation
for the range of particle or grid spacing considered.

For ˛T=˛L D 0.01 (anisotropic case), the analysis is more complicated. For all the cases, the
mesh-based FV solver is more accurate than both particle methods, but the difference is smaller than
for the isotropic case. The PSE and FV methods exhibit good convergence in all cases, whereas the
SPH approximation is very sensitive to the ratio h=�x. The SPH solution converges much faster for
larger number of particles per kernel support volume (larger h=�x). Nevertheless, the convergence
rate of the SPH solution for small �x is lower than for the other two methods.

4.3.2. Maximum concentrations. Figure 4 shows the difference between the maximum concentra-
tion values of the analytical and numerical solutions as function of the number of time steps. For
the isotropic and anisotropic cases, the difference increases at early time until reaching a maxi-
mum value. For later times, as the initial plume smooths out, the error decreases to an asymptotic
value. The SPH solution with h=�x D 1.2 is the exception to this pattern because the error grows
unboundedly with time. The difference between the numerical and the analytical solutions after 300
time steps is less than 1% for the FV and the best SPH run and around 1% for the PSE solution.

4.3.3. Negative concentrations. Figure 5 shows a comparison of the analytical and numerical solu-
tions after 300 days for run R7 and ˛T=˛L D 0.01. The three numerical solutions are similar to the
analytical solution; however, they exhibit negative concentrations in bands that tend to be aligned
with the main direction of the flow. Minimum simulated concentration values are �1.8 � 10�2 mg/L
for FV, �6.9 � 10�4 mg/L for SPH, and �3.2 � 10�1 mg/L for PSE.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:634–651
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Figure 3. Error E2 as function of particle spacing for equispaced particles and grid spacing for FV solution.

4.3.4. Effect of ratio between smoothing length and particle spacing. As discussed previously, the
error of the SPH approximation for the integral in (4) depends upon the number of particles per sup-
port volume, that is, � D h=�x. Previous numerical studies have shown that the SPH approximation
for scalar diffusion (isotropic case) provides accurate results even for small values of � in the case
of reasonably distributed particles [4]. On the other hand, the stability of the PSE approximation
requires that particles overlap, that is, the core size must be always larger than the representative
particle spacing. However, the accuracy of the approximation decreases as the core size increases;
thus, it provides optimal solutions for small h that satisfy h=�x > 1. Figure 6 shows the errors
E2 for run R6 of the SPH and PSE solutions as function of � . We observe that, as expected, the
error of the PSE solution increases monotonically with � for the isotropic and anisotropic cases. In
contrast, the SPH solution exhibits a more interesting behavior. The error of the SPH solution for
the anisotropic case decreases with � , which indicates that the error of the integral approximation
controls the overall error in that case.

4.3.5. Effect of anisotropy ratio. Figure 7 shows error E2 versus the anisotropy ratio for run R7.
The error of the SPH and FV approximations is larger for smaller ˛T=˛L ratio, whereas the error of
the PSE method is almost constant for the range of dispersivity ratios considered. The FV approx-
imation has the smallest error in all the cases, whereas the PSE solution is more accurate than the
SPH solution for all the situations that consider anisotropic dispersion (i.e., ˛T=˛L ¤ 1). We note
that these results consider � D 1.2 and that according to our previous discussion, one would expect
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Figure 4. Difference between maximum concentration values of numerical and analytical solutions as func-
tion of time for equispaced particles and run R7. Top and bottom plots show results for the isotropic and

anisotropic cases, respectively.

that the SPH solution would behave better if a larger � is used. However, the results of our sim-
ulations indicate that the trend of increasing error for larger anisotropy ratios of the SPH and FV
methods is independent of the other parameters considered in this study.

4.3.6. Effect of kernel function. Table III presents a summary of the E2 error for run R5 for sce-
narios that consider different SPH kernels and PSE cutoff functions. For the isotropic case, the use
of higher-order SPH kernels does not have a clear impact on the accuracy of the solution, whereas
the use of higher-order PSE cutoff functions results in smaller errors. In particular, the difference
between the second-order and the fourth-order cutoff functions is quite important, and it confirms
that the error of the PSE approximation can be effectively controlled using higher-order cutoff func-
tions as discussed by Eldredge et al. [5]. For the anisotropic case, the use of higher-order SPH
kernels improves the solution, but the effect is less important than the one observed using different
cutoff functions in the PSE case. Moreover, the use of higher-order cutoff functions improves the
PSE approximation and makes it more accurate than the FV method for the anisotropic case.

One would expect that higher-order polynomials used as SPH kernels have the advantage of
smoother derivatives, which in combination with the increased size of the support volume, would
decrease the sensitivity of the kernel to the degree of particle disorder [34]. However, the results of
our simulations show that the use of higher-order kernels does not provide a significant improvement
of the numerical solution when particles are equispaced.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:634–651
DOI: 10.1002/fld



PARTICLE METHODS FOR APPROXIMATING ANISOTROPIC DISPERSION 645

Figure 5. Concentration distribution after 300 days for run R7, ˛T=˛L D 0.01, and ˇ D 45ı . All three
methods exhibit negative concentrations (dark bands). Minimum concentration values are �1.8 � 10�2 for

FV, �6.9 � 10�4 for SPH, and �3.2 � 10�1 for PSE. Concentration values are expressed as mg/L.
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Figure 6. Error E2 for run R6 versus the ratio between smoothing length or core size and particle spacing,
� D h=�x.

4.3.7. Effect of velocity orientation. It is well known that the error of numerical mesh-based meth-
ods used to solve (2) that include the off-diagonal terms of the dispersion tensor exhibits numerical
artifacts that depend upon the flow orientation with respect to the grid axes [26]. Therefore, it is
interesting to test if the error of the two particle methods changes for different flow orientations.
Table IV summarizes the results for run R6, assuming different flow orientations. As expected,
all three methods are not sensitive to the flow direction for the isotropic case. However, for the
anisotropic case, the mesh-based FV method exhibits differences of up to two orders of magnitude
in the E2 error depending upon the flow direction. The error of the SPH solution also depends upon
the flow direction, but it only shows small differences for different velocity directions. On the other
hand, the error of the PSE solution is almost independent of the flow direction.
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Figure 7. Error E2 as function of the anisotropy ratio ˛T=˛L for run R7 and h=�x D 1.2 for FV (squares),
PSE (triangles), and SPH (circles) solutions.

Table III. Error of the SPH and PSE numerical solutions divided
by the error of the FV solution for run R5 and h=� x D 1.2

considering different SPH kernels and PSE cutoff functions.

SPH PSE

˛T=˛L Kernel E2 E1 Kernel E2 E1

1 Cubic 7.0 2.7 second order 103.4 11.1
1 Quartic 4.1 2.1 fourth order 4.1 2.1
1 Quintic 7.6 2.9 sixth order 2.6 1.5
0.01 Cubic 17.4 3.9 second order 5.2 2.5
0.01 Quartic 7.1 2.6 fourth order 0.2 0.5
0.01 Quintic 4.7 2.2 sixth order 0.1 0.3

Table IV. Error versus flow velocity direction for run R6 and h=�x D 1.2.

SPH PSE FV

˛T=˛L ˇı E2 E1 E2 E1 E2 E1

1 45 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964
1 0 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964
1 53 0.0061 1.8051 0.0728 6.6221 0.0007 0.5964
0.01 45 0.5062 10.4855 0.0880 5.1519 0.0172 2.1333
0.01 0 0.6919 14.9257 0.0880 5.0957 0.0006 0.5552
0.01 53 0.4495 9.7445 0.0880 5.2464 0.0154 1.9997

4.4. Irregularly spaced particles

It is well known that the accuracy and stability of the PSE and SPH methods depend upon the spatial
distribution of particles [4,6,9]. In general, at the beginning of a simulation, particles are distributed
in a uniform fashion, for example, rectangular lattice. As particles move carried by the flow, high
velocity gradients result in the distortion of the initial regular distribution as shown in Figure 8. This
figure shows a simulated flow velocity field in a heterogeneous porus media, where large contrasts
in hydraulic conductivity produce large variations of the direction and magnitude of the flow veloc-
ity. Although the initial particle distribution is disturbed because of the nonuniform velocity field,
the continuity property of the flow prevents particles from moving randomly and the particle set
maintains some regularity [24].

To evaluate the effect of the particle disorder on the accuracy and stability of the SPH and PSE
solutions, we set up a set of simulations that evaluate the numerical solution using randomly and
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Figure 8. Particle distortion due to flow velocity. High gradients in fluid velocity (arrows) result in distor-
tion of the initial (top figure) regular particle distribution (black circles). However, the continuity property
of the flow prevents that particles become randomly distributed after some time since the beginning of the

simulation (bottom figure).

Figure 9. Particle locations for run R1 considering random (left) and quasi-random (right) distributions.
The random distribution has large contrasts in particle density, whereas the quasi-random distribution has an

irregular but uniform spatial particle density.

quasi-randomly distributed particles. An example of the difference between the distributions is
shown in Figure 9. A random distribution results in large contrasts in the spatial density of par-
ticles in different areas of the domain. On the other hand, a quasi-random distribution results in an
irregular but uniform spatial particle density. On the basis of our experience, particle distributions as
result of real flow fields fall between these two extreme cases. Therefore, simulations that consider
these two spatial distributions allow us to estimate upper and lower bounds for the performance of
the PSE and SPH approximations for more realistic simulations.

For the simulations that consider irregularly distributed particles, we used a cubic SPH kernel
and a sixth-order PSE cutoff function. The decision to use these kernel functions was based on the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:634–651
DOI: 10.1002/fld



648 P. A. HERRERA AND R. D. BECKIE

results summarized in Table III, which indicate that the impact of using different cutoff functions
on the PSE solution is significant. On the other hand, the effect of the use of different kernel func-
tions on the quality of the SPH solutions seems limited; therefore, we decided to continue using
the cubic spline kernel for this new set of simulations. Despite this explanation, it is important to
highlight that the comparison between the PSE and the SPH solutions presented in this section is a
worst-case scenario for the SPH approximation, because better results could be achieved by using
higher-order kernels.

4.4.1. Isotropic case. Figure 10 shows the errorE2 versus the average particle spacing for the same
scenario but different particle spatial distribution. As seen by the slope of the curves in Figure 10, the
convergence rate of the two methods decreases as particles become more disordered. Both methods
converge very slowly and in a nonmonotonic fashion for the case of randomly distributed particles.
It is interesting to notice that although a larger ratio h=�x results in a larger error for the case
of equispaced particles, it actually helps in controlling the error in the case of random and quasi-
random particle distributions. Overall, the PSE method is less sensitive to the disorder of the nodes
than the SPH approximation.

4.4.2. Anisotropic case. Both particle approximations proved to be much more sensitive to particle
disorder when simulating anisotropic dispersion than for the isotropic case. SPH simulations with
random and quasi-random distributions and h=�x D 1.2 became unstable after a few time steps.
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Figure 10. E2 error of (a) SPH and (b) PSE numerical solutions versus average particle spacing for
˛T=˛L D 1.0 using equispaced, random, and quasi-random particle distributions.
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Figure 11. Error as function of average particle spacing for ˛T=˛L D 0.01 using randomly and
quasi-randomly distributed particles.

Figure 12. Concentration distribution after 300 time steps for run R7, ˛T=˛L D 0.01 and quasi-randomly
distributed particles. Dark bands indicate areas of negative concentrations. Minimum concentration values

are �16.86 for SPH and �0.28 for PSE. Concentration values are expressed as mg/L.

For the other scenarios, the errors of both methods stay almost constant as the average parti-
cle spacing decreases, as shown in Figure 11. The use of larger smoothing lengths or core sizes
results in lower errors, but it does not significantly improve the convergence rate of the numerical
approximations.

Figure 12 shows the concentration field at the end of the simulation for run R7 and quasi-randomly
distributed particles. Both solutions exhibit negative concentrations (dark bands) that, as for equis-
paced particles, are located in regions almost parallel to the flow direction. Although the maximum
magnitude of the negative values in the PSE solution (�0.28) is very similar to the one observed
for equispaced particles (�0.32), it is five orders of magnitude larger for the SPH solution, �16.86
for quasi-random, and �6.9 � 10�4 for equispaced particles. This may indicate that both solutions
become unstable.

5. CONCLUSIONS

We derived an SPH approximation for anisotropic dispersion that only depends upon the first deriva-
tive of the kernel function. We studied some of its properties analytically and through numerical
simulations. In addition, we compared the performance of the newly derived SPH approximation
versus another particle method (PSE) and a standard FV scheme for the simulation of isotropic and
anisotropic dispersion considering multiple scenarios defined by different combinations of physical
and numerical parameters.
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The analytical and numerical results presented previously show that scenarios that include tenso-
rial dispersion are troublesome for any of the three numerical methods tested (SPH, PSE, and FV).
In particular, numerical solutions for SPH and FV simulations that include tensorial dispersion
exhibit larger error and lower convergence rate than scenarios that only consider isotropic disper-
sion. The effect of the anisotropy ratio on the error of the PSE solution is more limited; even in
some cases, PSE solutions considering anisotropic dispersion have lower error than for the equiva-
lent scenario with isotropic dispersion. However, the numerical solutions computed with any of the
three methods exhibit artificial oscillations and negative concentrations if the off-diagonal terms of
the dispersion tensor are nonzero. These numerical oscillations could be particularly troublesome
if these methods are used to solve nonlinear transport equations, for example, multiphase flow or
reactive transport. In that case, oscillations could be amplified by nonlinear terms. We conclude that
this last point represents an obstacle for the use of this kind of methods for simulations that include
nonlinear terms and where the anisotropic nature of the dispersion tensor cannot be neglected.

For equispaced particles, the convergence rate of both particle methods is similar to that of the
standard nine-point FV scheme. However, in contrast to the FV scheme, the convergence rate and
the overall quality of the SPH and PSE methods does not only depend on the number of particles
or average particle spacing used but also on other additional parameters such as kernel function and
smoothing length. Because of the large number of combinations of numerical parameters that are
possible, it is difficult to make an absolute statement with respect to the relative performance of both
particle methods as discussed in detail in Section 4.2. We conclude that these results should moti-
vate further numerical studies to guide the selection of the numerical parameters that are required in
particle simulations.

The spatial distribution of particles is the most important factor that controls the accuracy of the
numerical solutions computed with the PSE or SPH approximations. The accuracy of the solution
decreased as the degree of disorder of the particles increases, which is in accordance with previ-
ous studies (e.g., [9] and references therein) that considered only isotropic dispersion. In addition,
the simulations discussed previously demonstrate that this effect is more important for simulations
that include anisotropic dispersion than for those that include only isotropic dispersion. However,
to a certain extent, the loss of accuracy of the numerical solution can be controlled by using larger
ratios between smoothing length or core size to average particle spacing. For the set of simulations
analyzed, the PSE method proved to be less sensitive to particle disorder than the SPH method.
Previous studies [6,9] demonstrated that the periodic remeshing of particles can help control the loss
of accuracy of particle formulations due to the particle disorder caused by nonuniform flow velocity
fields. Our numerical results seems to indicate that using a remeshing step is likely beneficial in
simulations that consider tensorial dispersion. However, one could argue that the loss of accuracy of
the particle methods for isotropic dispersion or scalar diffusion is less important; thus, the benefits
of remeshing could be counterbalanced by the additional computational cost and artificial diffusion
that it introduces. Yet, further studies are required to prove this hypothesis.
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