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ABSTRACT

In this work, we present combined statistical indexes for evaluating air quality monitoring networks based on

concepts derived from the information theory and Kullback�Liebler divergence. More precisely, we introduce:

(1) the standard measure of complementary mutual information or ‘specificity’ index; (2) a new measure of

information gain or ‘representativity’ index; (3) the information gaps associated with the evolution of a

network and (4) the normalised information distance used in clustering analysis. All these information concepts

are illustrated by applying them to 14 yr of data collected by the air quality monitoring network in Santiago de

Chile (33.5 S, 70.5 W, 500 m a.s.l.). We find that downtown stations, located in a relatively flat area of the

Santiago basin, generally show high ‘representativity’ and low ‘specificity’, whereas the contrary is found for a

station located in a canyon to the east of the basin, consistently with known emission and circulation patterns

of Santiago. We also show interesting applications of information gain to the analysis of the evolution of a

network, where the choice of background information is also discussed, and of mutual information distance to

the classifications of stations. Our analyses show that information as those presented here should of course be

used in a complementary way when addressing the analysis of an air quality network for planning and

evaluation purposes.
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1. Introduction

The objectives of a monitoring network are multiple and

usually include: compliance of air quality standards, which

in turn may trigger control procedures, evolution of air

quality and efficiency of curbing measures, and impacts on

human health, ecosystems and climate, and so on (see e.g.

Ainslie et al., 2009). Also, optimal network design must

take into consideration practical constrains related to costs,

security, and so on. Thus, the question of how to best

sample airborne pollutants in a monitoring network is non-

trivial. Over the last two decades or so, an increasing

amount of research has been oriented towards optimal

network design, particularly in the area of air quality, for

example, Caselton and Zidek (1984); Haas (1992); Pérez-

Abreu and Rodrı́guez (1996); Zidek et al. (2000);

Chow et al. (2002); Elkamel et al. (2008); Pesch et al.

(2008); Ruiz-Cárdenas et al. (2010); Zidek and Zimmerman

(2010); Saunier et al. (2011); Wu and Bocquet (2011); Ruiz-

Cárdenas et al. (2012).

Among the multiple statistical approaches to evaluate

and optimise monitoring networks, we apply here statistical

indexes tied to Shannon’s information theory (Shannon,

1948) and Kullback�Leibler divergence (Kullback, 1959),

in particular, those derived from the concepts of informa-

tion gain and mutual information. The novelty is that we

use both concepts in a complementary manner and in a

normalised version considering what we call information

gain or ‘representativity’, and mutual information or

‘specificity’ indexes. The information gain index relates to

the contribution of a station to the total information of a

network (‘representativity’), while the mutual information

index refers to the amount of information provided by a

single station that cannot be retrieved from other stations

in a network (‘specificity’). Using solely one of these
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indexes results in misleading conclusions and they must be

applied in a complementary way. We will illustrate the use

of these concepts by applying them to air quality data

collected in Santiago de Chile (33.5 S, 70.5 W, 500 m a.s.l.)

between 1997 and 2010, where air pollution is an issue

of concern, and where air quality monitoring has taken

place since the late 1980s, and regularly within the frame-

work of an attainment plan since 1997 (e.g. Gallardo et al.,

2012a). The current network configuration is shown in

Fig. 1 and described in Table 1. This air quality network

was primarily conceived to address the compliance of air

quality standards intended to protect the population from

adverse health impacts. Today, it is still largely devoted to

evaluate the compliance or not of air quality standards,

particularly those related to inhalable particulate matter.

Its ability to do so has been partially evaluated on the basis

of statistical tools. Silva and Quiroz (2003) applied mutual

information to classify the stations in Santiago, suggesting

downtown stations as those that could be expendable

if authorities wanted to re-distribute those stations.

Gramsch et al. (2006) used principal component analysis

and clustering techniques to identify groups of stations

with similar behaviour in terms of emission patterns. We

revisit those analyses using more general indexes and

currently available data in a larger set of air quality

network stations.

The article is organised as follows. In Section 2, we

review and define several statistical information indexes in

a general setting. Section 3 describes the data sets

considered in this study along with the main emission

and circulation patterns of Santiago. Section 4 shows the

application of ‘specificity’ and ‘representativity’ indexes.

The evolution of the network between the late 1980s and

the present in terms of information content is shown in

Section 5. We perform clustering analysis using informa-

tion distance in Section 6. Finally, summary and conclu-

sions are presented in Section 7.

2. Statistical information indexes for network

analysis

We present in this section some statistical information

indexes for evaluating air quality monitoring networks

based on the concept of relative information by Kullback

Fig. 1. Location of monitoring stations in Santiago’s air quality network since the 1980’s (for details see text). The symbols correspond

to the names of the stations A: Gotuzzo, B: Providencia (not used in this study, in white), F: Independencia, L: La Florida, M: Las Condes,

N: Parque O’Higgins, O: Pudahuel, P: Cerrillos, Q: El Bosque (seven stations continuously working on the period 1997�2008, in grey),

R: Cerro Navia, S: Puente Alto, T: Talagante, V: Quilicura (four more stations added on the period 2009�2010, in black). The limit of the

current urban area is indicated by a heavy line. Main topographic features of the Santiago basin are also shown.
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and Liebler as described in Kullback (1959). More pre-

cisely, we introduce four indexes: (1) complementary

relative mutual information or ‘specificity index’, (2)

relative information or ‘representativity index’, (3) infor-

mation gaps associated with the evolution of a network and

(4) normalised information distance used in clustering

analysis.

These indexes are all defined for arbitrary probability

densities but we provide the formulas to compute them in

the particular case of normally distributed densities. In fact,

most of the information indexes presented here will be

applied assuming that the underlying statistical densities of

the measurements are log-normal so when we refer to the

measurements in the normal case we implicitly mean the

logarithm of the measurements. Notice that (see Table 2)

other distributions could better fit the measurements, as is

the case of gamma distributions, but no simple expressions

for the Kullback�Liebler divergence for multivariable

gamma densities are known, except for the bivariate case

(see e.g. Chatelain et al., 2008) even if it seems theoretically

plausible (see Nielsen and Nock, 2010). Therefore, we only

consider the log-normal multivariate case in this study.

All the aforementioned indexes can be derived from

the Kullback�Liebler divergence or relative information

of a distribution qX with respect to other reference

distribution pX:

KLðpX k qX Þ ¼
Z

pX ðxÞ ln
pX ðxÞ
qX ðxÞ

dx; (1)

where X represents the multivariate random vector of

measurements and the integral is taken over all the possible

outcomes x. Then, if there are n stations and m species, the

previous integral is in n�m variables and it is difficult to

compute in practice. In the normal case, pX � Nðl0;R0Þ,
qX � Nðl1;R1Þ with mean m0, m1 and invertible covariance

Table 1. Description of the air quality monitoring stations belonging over time to Santiago’s monitoring network and the two periods of

data used in this study.

Period and

data used

Lon Lat Height

Char Name W S m a.s.l. Type Working

Not used A Gotuzzo 70 655 33 444 576 Commerce/services 1988�1997
B Providencia 70 631 33 436 592 Close to main road/medium income 1988�2002

2009�2010
(PM10,

PM2.5, O3)

1997�2008
(CO, PM10,

O3, SO2)

F Independencia 70 649 33 419 565 Commerce/services Since 1988

L La Florida 70 586 33 513 594 Residential/low-medium income Since 1997

M Las Condes 70 523 33 374 775 Residential/high income Since 1988

N P. O’Higgins 70 658 33 461 545 In a park/close to highway Since 1988

O Pudahuel 70 748 33 435 494 Residential/low income Since 1997

P Cerrillos 70 713 33 493 511 Residential/industrial Since 1997

Q El Bosque 70 664 33 544 582 Residential/industrial Since 1997

R Cerro Navia 70 733 33 430 498 Residential/low income Since 2008

S Puente Alto 70 593 33 591 680 Residential/low income Since 2009

T Talagante 70 951 33 673 401 Rural Since 2009

V Quilicura 70 747 33 365 489 Residential/low-medium income Since 2009

Table 2. Relative quadratic error in percentage using different statistical models for fitting the 1997�2008 data for 7 stations and 4

measured species and for the 2009�2010 data for 11 stations and 3 measured species.

Normal Log-normal Gamma

All S W All S W All S W

For fitting the 1997�2008 hourly data

CO 26.9 24.1 18.1 14.9 23.9 10.9 5.17 8.07 4.66

O3 9.76 10.5 8.99 11.1 19.7 8.87 3.93 10.5 2.06

PM10 10.5 6.46 8.96 1.87 1.50 3.94 0.63 0.41 1.17

SO2 37.1 42.7 26.0 41.1 40.2 30.5 21.0 24.2 12.7

For fitting the 2009�2010 hourly data

PM10 16.3 7.63 8.55 1.78 1.08 3.38 2.25 0.70 1.06

PM2.5 9.84 4.69 9.59 1.36 1.49 2.29 0.71 0.48 0.95

O3 10.9 12.6 6.79 9.81 16.9 6.89 3.85 9.78 3.30

All data (All), segregated by summer (S: Dec, Jan, Feb) or winter (W: Jun, Jul, Aug) months.
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matrices S0, S1, the expression for KL(pX NN qX) simplifies

to

1

2
trðR�1

1 R0Þ � nm� ln
jR0j
jR1j
þ R�1

1 ðl0 � l1Þ
2

 !
; (2)

where tr and N �N denote, respectively, the trace and

determinant of the corresponding matrices and Ax2 where

A is a matrix and x is a vector is a short notation for the

inner product xT Ax. Notice that KL(p NN q) is always non-

negative (essentially since a�1�ln a]0 for a�0), invariant

against any invertible transformation, non-symmetric and

it vanishes only if pX�qX.

In the following sections, we consider n monitoring

stations with measurements of m different species given

by the vectors X1,. . ., Xn and complementary measurement

vectors X c
1 ; . . . ;X c

n , where X c
i represents the measurements

of all the stations except for the i-th station. The total

measurement vector of the whole network is then X ¼
ðXi;X

c
i Þ (rearranged in increasing index order) for any

i�1,. . ., n.

2.1. Mutual information and specificity index

The mutual information I i
M between the station i and its

complementary stations is given by

I i
M ¼ KLðpX k pXi

pX c
i
Þ;

where pXi
, pX c

i
are the marginal densities for the measure-

ments of station i and its complement, respectively and pX
is the joint density distribution of all the measurements. If

all the densities are normally distributed, pXi
¼ NðlXi

;RXi
Þ,

pX c
i
¼ NðlX c

i
;RX c

i
Þ, pX ¼ Nðl;RX Þ, with marginal covar-

iance matrices RXi
, RX c

i
and joint covariance SX then the

mutual information can be simply computed from (2) as

follows:

I i
M ¼ �

1

2
ln

jRX j
jRaX c

i
j jRXi

j
:

We define the specificity index si associated with the i-th

station as the complementary relative mutual information

given by (maxj stands for the maximum over j �{1,. . ., n}):

si ¼ 1� I i
M

maxj I
j
M

; i ¼ 1; . . . ; n: (3)

The specificity index measures how difficult it is to

reproduce the measurements of the i-th station from the

measurements of the other stations. We have 05si51 and

the station with highest specificity in the network corre-

sponds to higher si (not necessarily 1) and the station with

lowest specificity to the minimum si (always 0). The

definition si is quite arbitrary since we could replace it by

any other decreasing function of I i
M . For instance si ¼

maxj I
j

M

I i
M

is another choice. We can also consider an index

between 0 and 1 by defining (we use this choice to build

Figs. 4, 5 and 7)

si ¼ 1� I i
M � IM

�IM � IM

; IM ¼ min j I
j
M ; �IM ¼ max j I

j
M :

In any case, we are interested in the ordering induced by

this index which is independent of the decreasing function

of I i
M you may choose.

The definition we have chosen corresponds exactly to the

concept of effectiveness already present in the literature

(e.g. Pérez-Abreu and Rodrı́guez, 1996; Silva and Quiroz,

2003). Nevertheless, we consider that the denomination

‘effectiveness’ could lead to confusion. Indeed, the index si
is a relative measure of information and it does not

consider the total information of the network itself as it

was already noticed in Bocquet (2009). Hence, a comple-

mentary index taking into account this intrinsic informa-

tion of the network should be introduced to better evaluate

if an station is effective or not. Following this remark, we

introduce a new index in the next subsection.

2.2. Information gain and representativity index

If we represent by the densities qX c
i
and pX the situations

before and after the measurements Xi are known, then the

information gain I i
G achieved by the measurements of the

i-th station is defined by

I i
G ¼ KLðpX k qX c

i
Þ:

Notice that, in order to model qX c
i
, we will need some a

priori background information about the measurements at

the i-th station. Let us precise this statement for the normal

case. We take pX ¼ NðlX ;RX Þ as in the previous section

and, if lbi
and Bi are some a priori background mean

and covariance that characterise the situation without

knowledge at the i-th measurement site, we choose

qX c
i
¼ Nðl0i;R0iÞ where l0i ¼ ðlbi

; lX c
i
Þ, R0i ¼ diagðBi; RX c

i
Þ

denote the mean and diagonal by block’s covariance matrix

with increasing ordering of indexes. With this, using that

trððR0iÞ
�1RX Þ ¼ trðB�1

i RXi
Þ þmðn� 1Þ from (2) we obtain

I i
G ¼

1

2
ðtrðB�1

i RXi
Þ �m

� ln
jRX j
jRX c

i
j jBij

þ B�1
i ðlXi

� lbi
Þ2Þ:

(4)

Notice that if lBi
¼ lXi

and Bi ¼ RXi
, then one can

reproduce from the previous formula the expression for

mutual information.
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Notice that in our applications, the interesting case

corresponds to

a ¼ jRX j
jRX c

i
j jBij

B1

(reduction of uncertainty after the i-th-station is gauged)

so we could also define the information gain as I i
G ¼

1
2
ð� ln aþ B�1

i ðlXi
� lbi

Þ2Þ with a similar behaviour. More-

over, we could also select the simpler and classical

definition I i
G ¼ � 1

2
ln a (entropy decrease or Shannon

information increase). Nevertheless, in practice, we found

useful to include the term B�1
i ðlXi

� lbi
Þ2 giving more

representativity to measurements with high averages (lbi

will be taken to be of zero mean value) and this naturally

arises from Kullback�Liebler divergence. In this sense, the

approach chosen in this study based on the definition of

information gain from Kullback�Liebler divergence is near
but not totally equivalent to the so-called entropy-based

network design methods introduced by Zidek and colla-

borators (see Caselton and Zidek, 1984; Le and Zidek,

2006; Ainslie et al., 2009 and references therein).

We define the representativity index ri of the i-th station

as the relative information gain by

ri ¼
I i

G

maxj I
j
G

; i ¼ 1; . . . ; n: (5)

The representativity index ri represents the relative infor-

mation gain after adding the i-th station to the network.

This definition is also arbitrary and can be replaced by

another increasing function of I i
G. For instance, in order to

have an index between 0 and 1 (we use this choice to build

Figs. 4, 5 and 7) we could take

ri ¼
I i

G � IG

�IG � IG

; IG ¼ minj I
j
G; �IG ¼ maxj I

j
G:

In any case, we are interested in the ordering induced by

this index which is independent of the increasing function

of I i
M you may choose.

Concerning the background mean and covariance, in

this work we will simply take

lBi
¼ ðli1; . . . ; limÞ and Bi ¼ diagðr2

b;i1; . . . ; r2
b;imÞ:

where mij and sb,ij are a priori mean and standard

deviations of the measurements of the j-th species in the

i-th station.

Notice that other choices are possible. For instance, one

could take into account the knowledge about the spatial

distribution of the measuring sites by estimating the

background values for the i-th measurement site as the

optimal interpolation obtained from all other stations

where geostatistical or other dispersion space embedding

methods can be introduced (see Ainslie et al., 2009). This

aspect is beyond the scope of this study, and for the sake of

simplicity, we decided to introduce our indexes using

diagonal covariace matrices. Nevertheless, in order to

illustrate the importance of this point, we consider in the

last sections a different choice of a priori covariances

estimated from Barnes-type interpolation for a single

species.

More generally, we can compute the information gain

IK
G associated with a subset of stations Kƒ{1,. . .,n} of

cardinality k by

IK
G ¼ KLðpX k qKcÞ ¼

1

2
ð
X

j2K trðB�1
j RXj

Þ �mk

� ln
jRX j

jRKc j
Q

j2K jBj j
þ
X

j2K B�1
j ðlXj

� lbj
Þ2Þ;

where the density qKc represents the situation of the

network with the complementary stations Kc. In the normal

case, qKc ¼ Nðl0;R0Þ where l0 ¼ ðflbj
gj2K ; lKcÞ and

R0 ¼ diagðfBjgj2K ; RKcÞ, where lKc y RKc are obtained after

eliminating all the components of mX and all the rows and

columns of SX associated with K, and lbj
, Bj are back-

ground mean and covariance matrices associated with each

station in K as before.

2.3. Evolution of total information and

information gaps

Suppose we change the active monitoring stations in the

network from K1 to K2, both subsets of {1,. . .,n} with

cardinalities k1 and k2, and that we represent the situations

before and after this change by the densities qK1
and qK2

.

We define the information gap or change associated with

this evolution by

DIK1 ;K2 ¼ KLðpX k qK1
Þ �KLðpX k qK2

Þ ¼ I
Kc

1

G � I
Kc

2

G : (6)

Notice that the information gap can be positive or negative

and it is additive, that is, DIK1 ;K2 þ DIK2 ;K3 ¼ DIK1 ;K3 . In the

particular case where K1⁄K2 and the measurements are

normally distributed the information gain is exactly the

(non-negative) quantity KLðqK2
k qK1

Þ. This is true if the a

priori information does not change after changing the

configuration of the network, otherwise (6) is more general.

Using this concept, we can compute the successive gaps

or changes in information content over the evolution of a

network on the basis of the data corresponding to the final

configuration of n stations (see Fig. 2). Thus, in order to

compare past and present configurations of the network we

can use current measurements.

ANALYSIS AND EVOLUTION OF AIR QUALITY MONITORING NETWORKS 5



2.4. Normalised information distance and clustering

The mutual information between two stations i and j is

given by

I
ij
M ¼ KLðpXi ;Xj

k pXi
pXj
Þ: (7)

The normalised information distance between two stations

i and j is defined as in Coeurjolly et al. (2007):

dij ¼ 1� I
ij
M

maxðHi;HjÞ
; (8)

where Hi ¼ �
P

x

pXi
ðxÞ ln pXi

ðxÞ is the Shannon entropy of

the measurements Xi. This distance is zero only if pXi

and pXj
are independent and it is equal to one if i�j. Notice

that in the normal case, for one species, we have

I
ij
M ¼ �

1

2
ln

RiiRjj � R2
ij

RiiRjj

¼ � 1

2
lnð1� q2

ijÞ;

where rij is Pearson’s correlation coefficient. Thus, the

normalised information distance dij is strongly related to

Pearson’s distance 1� q2
ij . But, for non-normal distribu-

tions zero correlation does not imply independence and

zero mutual information does. Therefore, since (7) and (8)

are easy to compute without assuming any normality, it is

always better to use the normalised information distance dij
instead of Pearson’s distance for measuring statistical

independence, notably, when performing clustering analy-

sis of the network stations, where the normal or log-normal

fit of data is only approximate.

3. Santiago’s characteristics

The city of Santiago is located in a semi-arid basin (annual

rainfall less than 350 mm) in the central part of Chile

bounded by the Andes Cordillera (4500 m altitude on

average) to the East, a lower parallel mountain range to the

West (1500 m altitude on average), and two east-to-west

mountain chains to the North and South of the basin,

respectively. The climate of Santiago is characterised by the

quasi-permanent influence of the subtropical Pacific high,

and the intrusion of occasional cold fronts, which bring

precipitation in wintertime. The South Pacific high deter-

mines quasi-stagnant anti-cyclonic conditions that are

further intensified, especially in fall and winter by the

presence of sub-synoptic features known as coastal lows

(e.g. Gallardo et al., 2002; Garreaud et al., 2002). There is a

characteristic thermally driven circulation that defines up-

slope south-westerly winds in the afternoon and down-

slope north-easterly winds in the night and morning hours,

more strongly so in summer (e.g. Saide et al., 2011).

The regional office of the Ministry of Health was in

charge of monitoring Santiago’s air quality from the late

1980s until 2011. Nowadays, this activity is continued by

the recently created Ministry for the Environment. A

historic record of the data (1988�2008) is available (as in

September 2012) on the internet via the Chilean Ministry of

Health at http://www.seremisaludrm.cl and http://www.

asrm.cl. A copy of those data and of data collected in

stations currently in operation can be found at the web

page of the Chilean Ministry for the Environment at http://

sinca.mma.gob.cl. Instruments and quality control proce-

dures of the Santiago monitoring network follow recom-

mendations from the Environmental Protection Agency of

the United States of America, and are subject to public

scrutiny and to occasional external review panels.

The specific air quality standards applied over time in

Santiago can be found elsewhere in the literature (e.g. Zhu

et al., 2012) that synthesises the situation in various

megacities, including South American cities and Santiago.

The species measured are so-called criteria pollutants:

carbon monoxide (CO), sulphur dioxide (SO2), ozone (O3)

and partially inhalable particles (PM10). Since 2000, nitro-

gen oxides are measured at three stations, and fully

inhalable particles (PM2.5) at four stations. In the current

configuration all species are measured at all stations. Wind

velocity, temperature, relative humidity are also continu-

ously measured at the monitoring stations. The network’s

configuration is shown in Fig. 1. In sum, there are seven

stations (F, L, M, N, O, P and Q) for which rather

continuous and simultaneous time series are available for

the period between 1997 and 2008 for carbon monoxide

(CO), sulphur dioxide (SO2), ozone (O3) and partially

inhalable particles (PM10). We will restrict the analyses of

‘specificity’ and ‘representativity’ to this set of data.

Evolution and clustering will consider PM10, PM2.5 and

ozone data collected in the current network configuration,

that is, for 11 stations (F, L, M, N, O, P, Q, R, S, T and V)

operating in 2009 and 2010. We provide some basic

I∇

I∇

I∇

Total information

k1

k1

k2

k2

k2

k3

k3

k3

k4

k4

network evolution

Fig. 2. Schematic evolution of the total information of the

network.
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descriptive statistics for each measured species at each

station (see Tables 3 and 4).

We applied various quality control checks to the data.

After a careful visual inspection of the time series, extreme

values were suppressed from the database by excluding the

1 percentile upper and lower tails of the distribution of the

logarithm of the values. The time series were also checked

with respect to the detection limit of the instruments, and

we removed the values lower than twice the lower instru-

ment detection limit, which is nevertheless usually below

the lower 1-percentile cut.

We also replaced isolated missing values by the corre-

sponding average concentration of that hour for that

season of that year and station (in any case this is only

around 0.5% of the data). Table 5 describes the data set

before and after applying the filtering and cleansing

procedures mentioned earlier.

4. Specificity and representativity analysis of the

network (1997�2008)
As discussed before, the definition of the statistical

concepts to be used here does not depend on the statistical

distributions of the data. However, the computation of the

indexes becomes much simpler when normal or log-normal

distributions are assumed. For simplicity, we will calculate

the statistical indexes assuming log-normal distributions

for all data. We explored the actual data distributions by

fitting statistical models to the data. The results are shown

in Table 2 and see also Fig. 3. The log-normal distribution

fits the collected data better than ca. 20% relative quadratic

error for all species except sulphur dioxide. We attribute

this misfit to an unfortunate rounding procedure applied to

the data by the network operators possibly due to the low

absolute values currently measured in Santiago (less than

Table 3. Main statistics (mean, standard deviation and maximum) for each of the 7 monitoring stations working during the period 1997�
2008 based on hourly averages during all the year (All), summer (S: Dec, Jan, Feb) and winter (W: Jun, Jul, Aug).

Species F L M N O P Q

CO (ppb) All 1.2 1.2 0.7 1.6 1.1 1.4 1.2

1.1 1.2 0.5 1.7 1.4 1.4 1.3

5.5 6 2.8 8.6 8.8 6.7 6.9

S 0.5 0.6 0.4 0.6 0.4 0.5 0.6

0.4 0.4 0.2 0.5 0.3 0.5 0.5

4.4 5.1 1.9 5.7 4.1 4 6.7

W 1.8 1.9 1.0 2.2 1.8 1.9 1.9

1.2 1.4 0.6 1.9 1.8 1.6 1.6

5.5 6 2.8 8.6 8.8 6.7 6.9

O3 (ppb) All 19.6 21.2 24.9 23.1 19.0 20.1 20.3

17.0 20.0 24.4 18.6 15.9 16.5 16.3

71 82 106 78 64 69 66

S 23.3 27.1 33.4 27.2 23.3 24.7 24.4

18.4 21.7 27.9 19.3 16.6 17.0 17.2

71 82 106 78 64 69 66

W 12.4 12.5 13.7 14.9 11.8 12.6 12.9

11.4 13.4 13.8 13.9 11.6 12.3 11.6

71 82 106 78 64 69 66

PM10 (mg/m3N) All 72.1 80.9 56.7 74.2 77.8 75.9 80.3

43.5 53.8 36.7 50.6 58.4 52.7 54.9

244 309 197 288 359 293 312

S 57.7 68.5 54.3 57.7 62.6 64.4 66.5

28.2 34.0 29.1 30.8 36.8 38.2 33.7

239 309 196 286 358 293 290

W 88.3 94.4 57.9 92.6 95.9 90.9 94.7

52.6 67.2 43.2 61.9 73.6 63.6 67.8

244 309 197 288 359 293 312

SO2 (ppm) All 4.97 4.46 3.43 5.02 4.1 4.96 5.05

3.4 3.3 2.1 3.7 2.7 3.4 3.8

22 23 14 23 16 21 27

S 4.0 3.6 3.0 3.8 3.2 3.8 4.3

2.6 2.8 1.9 2.8 2.0 2.5 3.6

22 23 14 23 16 21 27

W 6.3 5.2 3.9 6.4 5.1 6.5 5.9

4.0 3.6 2.3 4.3 3.1 3.9 4.0

22 23 14 23 16 21 27
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ca. 5 ppbm annual average). Notice that the data are

generally well described by other statistical models as it is

the case of gamma distributions, but, to our knowledge,

simple expressions for (1) in the multivariate gamma case

are not known, although mutual information (7) and

distance (8) can still be easily computed for arbitrary

distributions. All in all, the assumption of log-normal

distributions seems justified for all species except for SO2.

From the filtered data, we computed the ‘specificity’ and

‘representativity’ indexes according to their definitions (3)

and (5) for each monitoring station. First, we consider a

univariate analysis per species, per season, year-to-year and

for all years (1997�2008). We then repeat this analysis

considering a multivariate approach for all species at once.

We use hourly averaged data. We explored other averaging

windows finding similar results (not shown).

4.1. Univariate analysis

For species CO, O3, PM10 and SO2 separately (univariate),

we choose for the ‘representativity’ index calculation

(see Section 2.2) background mean lbi
¼ ðli1; . . . ; limÞ,

where mij are chosen such that exp mij:0 (recall we work

Table 4. Main statistics (mean, standard deviation and maximum) for each of the 11 monitoring stations working during the period 2009�
2010 based on hourly averages during all the year (All), summer (S: Dec, Jan, Feb) and winter (W: Jun, Jul, Aug).

Species F L M N O P Q R S T V

O3 All 17.0 18.4 19.2 21.9 15.2 18.6 16.3 16.0 20.1 17.1 16.1

(ppb) 16.0 18.2 20.4 17.0 14.6 15.5 15.0 14.9 16.5 11.7 15.5

66 73 88 69 59 64 60 60 65 51 63

S 21.5 25.3 28.0 26.0 21.0 24.3 21.8 21.3 25.2 18.6 22.1

17.8 20.5 24.1 18.0 16.0 16.6 16.9 15.9 17.6 11.7 16.7

66 73 88 69 59 64 60 60 65 51 63

W 8.6 9.4 8.8 13.0 8.2 10.7 9.0 8.2 12.3 12.6 8.0

8.5 9.6 9.2 10.3 8.5 9.2 8.2 8.3 11.0 9.9 8.9

62 68 67 67 54 63 60 58 64 50 61

PM10 (mg/m3N) All 50.1 57.1 45.7 55.8 48.3 58.9 61.9 52.3 49.5 37.4 73.3

22.8 24.2 22.1 26.5 23.2 28.5 27.4 24.8 21.4 20.5 39.2

161 215 143 206 244 199 210 292 158 142 285

S 50.1 57.1 45.7 55.8 48.3 58.9 61.9 52.3 49.5 37.4 73.3

22.8 24.2 22.1 26.5 23.2 28.5 27.4 24.8 21.4 20.5 39.2

161 215 143 206 244 199 210 292 158 142 285

W 69.3 79.1 46.8 80.7 81.5 74.9 79.4 88.2 55.4 51.7 83.3

36.5 54.6 29.7 49.0 58.9 44.3 53.9 65.2 33.5 34.8 55.5

174 268 146 234 271 204 248 295 164 156 289

PM2.5 (mg/m3N) All 26.5 27.5 21.6 27.4 27.1 27.9 28.5 28.6 24.73 20.4 27.0

14.7 16.1 12.1 17.8 22.2 19.5 21.1 25.9 14.4 16.3 18.5

77 90 66 96 136 108 127 162 79 88 104

S 20.4 24.8 20.4 21.4 20.0 19.7 21.9 18.1 20.7 14.1 21.2

9.2 12.2 10.4 10.8 10.6 9.8 11.1 10.1 10.2 9.5 11.6

60 86 66 92 136 104 100 141 77 87 98

W 35.1 33.5 23.8 37.3 39.9 39.9 37.8 44.7 30.0 31.2 35.9

16.7 19.2 14.2 21.3 29.9 24.2 27.4 35.1 17.2 20.6 22.1

77 90 66 96 136 108 127 162 79 88 104

Table 5. Percentage of available hourly data considering 7

stations (period 1997�2008) and 11 stations (period 2009�2010)
for all years and months (All), summer (S: Dec, Jan, Feb) and

winter (W: Jun, Jul, Aug).

Species All S W

Period 1997�2008

CO % original data 95 92 98

% after filtering 70 52 87

O3 % original data 96 94 97

% after filtering 68 79 55

PM10 % original data 96 94 99

% after filtering 94 93 94

SO2 % original data 91 90 92

% after filtering 70 62 78

Period 2009�2010

PM10 % original data 98 99 99

% after filtering 96 98 95

PM2.5 % original data 98 98 99

% after filtering 96 97 94

O3 % original data 93 93 90

% after filtering 79 86 72
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with the log of the data) and background covariance Bi ¼
diagðr2

b;i1; . . . ; r2
b;imÞ with rb;ij ¼ 2maxi

ffiffiffiffiffiffiffiffi
Rii;j

p
, where R�;j is

the j-th block of the full covariance matrix corresponding

to the j-th species. Again, this choice is subject to

improvement by considering other a priori information

such as spatial distribution of pollutants and stations

obtained by linear interpolation, kriging, dispersion mod-

els, and so on. The ‘specificity’ index calculation (see

Section 2.1) does not need any background information.

Furthermore, we split the analysis by considering only

summer (Dec, Jan, Feb), winter (Jun, Jul, Aug) or the

whole year for all hourly data for the period 1997�2008.
The resulting ‘specificity’ and ‘representativity’ indexes for

the univariate case considering all data for the 1997�2008
period are illustrated for the summer and winter periods in

Figs. 4 and 5. For all species and seasons, station M shows

the highest ‘specificity’. This is consistent with the location

of the station in a high-income area of the city where

emissions patterns are different from elsewhere in Santiago

and they consist of mostly residential sources and light

duty vehicles (e.g. Gallardo et al., 2012b). Furthermore,

this station is located at higher altitude (ca. 700 m a.s.l.)

than other stations of the network in a relatively narrow

canyon to the north-east of the basin. These characteristics

make this station rather unique and thereby ‘specific’.

Station El Bosque (Q) and other west located stations

(O, P) are the second most specific stations at least with

respect to sulphur dioxide in winter and PM10 in summer.

Around station Q there are industries including smaller

smelters that co-exist with a low-income area of the city,

which explains the specific behaviour in terms of sulphur

dioxide.

The ‘representativity’ index is linked, on the one hand, to

the precision of the measurements (quantified by the

inverse of the variance), and, on the other hand, by the

magnitude of the measured values. Hence, in summer,
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Fig. 3. Example of some statistical fitting. PM10 in winter for station N and O3 for stations M for normal (top line), log-normal (middle

line) and gamma (bottom line) fitting. The relative quadratic error is indicated on each case.
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ozone shows highest ‘representativity’ at M where magni-

tudes and variances are persistently large, and at P and N

where magnitudes and variances are persistently small.

Notice that M shows high ‘representativity’ only for ozone

in summer when the signal’s magnitude dominates over its

lack of precision (large variance). Other species show no

clear pattern in summer since the measured values have

small magnitudes and large variances. In winter, the highest

‘representativity’ indexes for all species are found in

downtown stations, mainly N and F, located in a relatively

flat area of the Santiago basin. Here, signals show high

magnitude and variance for tracers largely associated with

mobile sources.

We also compute the evolution of the ‘specificity’ and

‘representativity’ indexes from year-to-year, performing the

calculations for successive summers, winters and for every

year. The results for PM10 in winter and O3 in summer are

depicted in Fig. 6. Notice that, for PM10, the north-eastern

peripheral station M shows the highest ‘specificity’ for both

species in all years whereas downtown stations display the

highest ‘representativity’. Similar results are found for

other species CO and SO2 (not shown). The situation is
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Fig. 4. Specificity (left) and representativity (right) for the univariate case for CO, O3, PM10, and SO2 for summer for seven stations

during 1997�2008. The larger the circle, the larger the index.
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only different for O3 in summer: downtown stations and

station M share high ‘representativity’ indexes. In other

words, the classification is robust, stable in time and

consistent with the east�west gradients in emissions and

the east�west circulation pattern characteristic of Santiago.

It is worth pointing out that these indexes can be viewed as

dynamic indicators of the network since they continuously

change according to each pollutant, temporal and spatial

distribution of emissions and precursors, and circulation

patterns. This could be relevant when using these indexes

for analysing a network within the framework of defining

long-term policies and curbing measures.

4.2. Multivariate analysis

The corresponding results for the multivariate case are

shown in Fig. 7. Again, station M has the highest

‘specificity’. In general, downtown stations show highest

‘representativity’ indexes in winter. In summer, stations L

and M are displayed as most representative of the overall

behaviour of the network. We attribute this to the fact that

the most prominent summer pollutant is the photochemi-

cally driven ozone, which maximises in the afternoon hours

in the easter-bound stations. In winter, changes in bound-

ary layer height are primarily driven by solar radiation

affecting the development of the mixing layer with nearly-

collapsed conditions in nighttime that result in extremely

high concentrations of particles and primary pollutants in

the stations to the west of the basin (see Saide et al., 2011).

Photochemical pollutants are also present in winter but to a

lesser extent than in summer. Hence the ‘representativity’

of the stations is strongly modulated by emission and

insolation cycles. Notice that station N, located in a

relatively flat area of the basin, shows persistently a high

‘representativity’ index in the multivariate case. In this

sense, this is the least expendable station of all contrary to

what a pure mutual information analysis would suggest

(e.g. Silva and Quiroz, 2003).

5. Evolution analysis

First, we analyse the evolution of the total information of

the network by computing the information gaps given by

(6) for the network by 1988 consisting of three stations (F,

N and M), then considering seven stations when the largest

expansion of the network occurred in 1997. We then

estimate the changes due to the addition of station R,

and finally we address the expansion to peripheral stations

V, S and T by 2009. We do the same choice of background

mean and covariances as in Section 4. The results are

shown for fully inhalable particles in Fig. 8 using the hourly

data of PM2.5 from the network of 11 stations for the

period 2009�2010. The increase in total information

estimated for the network is roughly proportional to the

number of monitoring stations added, and does not take

into account their spatial distribution. This feature follows

from the simple choice of a priori background mean and

covariances. A different choice based on more sophisti-

cated interpolation techniques such as kriging or air quality

modelling (e.g. Wu and Bocquet, 2011) may improve the

way in which the evolution of the network is quantified.

This is beyond the scope of this study, but we give some

insights about these techniques in the next sections.

In order to have an idea of the influence of the choice of

the a priori variables in the calculations we used a very

simple interpolation technique [more precisely what is

called the first step of Barnes interpolation, Barnes, 1964]

as an alternative method to estimate the a priori mean lbi

and covariances Bi at each step of the evolution of the

network. More precisely, from measurements zk at points
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Fig. 6. Evolution of ‘specificity’ (upper panels) and ‘representativity’ (lower panels) indexes for PM10 in winter and O3 in summer

respectively. See text for details.
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(xk, yk) we infer measurements ẑi at site (xi, yi) by the

weighted mean

ẑi ¼
P

k wik zkP
k wik

; wik ¼ exp �ðxi � xkÞ
2 þ ðyi � ykÞ

2

L

 !
;

where L is a characteristic length related to the dis-

cretisation step d. Using the data of the network corre-

sponding to some given year, we interpolate values at other

potential network sites and we can easily compute the

corresponding a priori mean and covariances from

the interpolated data. More precisely, if mk and Skl are

the mean at point (xk, yk) and covariances between points

(xk, yk) and (xl, yl) of the current network, the mean at

point (xi, yi) and covariances between points (xi, yi) and (xj,

yj) of the interpolated network can be obtained by

l̂i ¼
P

k wik zkP
k wik

; bRij ¼
P

k

P
‘ wikwi‘Rk‘P

k wik

P
‘ wj‘

:

From this we extract the background information lbi
and

Bi. This is a simple and easy to implement method that

takes into account the spatial distribution of the stations

(see Fig. 9 computed with L�10,104 d2/p and d�0.01338
in a 50�50 grid). Notice also that Barnes interpolation

converges to the nearest neighbour interpolation for small

values of L when it is compared with the domain size.

To simplify the analysis, in a first approximation we can

neglect covariances and we compute the new mean and just

the new variances given by bRii ¼
P

k w2
ik
Rkk

ð
P

k wikÞ
2 . With this, we can

obtain the information gaps directly using (2) where m1, S1

and m0, S0 correspond to the mean and variances estimated
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Fig. 8. Evolution of total information content of the air quality

monitoring network in Santiago since the late 1980s relative to the

current situation, considering PM2.5.
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by interpolation before and after a change according to the

new network distribution. As expected, we can see from

Fig. 10, when compared to Fig. 8 that the addition of sta-

tion R to the network has only a small influence on the total

PM2.5 information since the new station R was very close to

the already existing station O in the previous network.

A similar situation can be verified for PM10 (not shown).

Further analysis concerning the choice of a priori

information without neglecting covariances requires apply-

ing other interpolation techniques such as kriging or

dispersion modelling, which is beyond the scope of this

work. We are currently working on this as this provides a

way to select new observational sites.

For example, in Fig. 11, we see the total information gain

obtained at each point of a spatial grid surrounding the

stations, if we add a new virtual station with Barnes’s

interpolated measurements at this point, and we recompute

the total information after considering this new station. So

we could try to add stations in the regions with highest

information gain. Of course, these type of analysis are

limited, and the use of more sophisticated dispersion and

Fig. 9. Simulated interpolation of the measurements at some sites (�) from the available network (�) using Barnes interpolation (here

for some typical log concentrations of PM10 in greyscale, lighter�higher). To localise, we put 12 phantom zero measurement stations

around the boundary. This allows to better estimate the a priori mean lbi
and covariances Bi for the evolution of network total information

taking into account the spatial distribution.
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Fig. 10. Evolution of total information content of the air quality

monitoring network in Santiago since the late 1980s relative to the

current situation, considering PM2.5 using Barnes interpolation a

priori information.
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chemistry modelling is needed, so this should be the subject

of further study.

6. Clustering analysis

We perform hierarchical clustering analysis of the network

for 11 stations of PM2.5 and PM10 hourly data in 2009�2010
and O3 hourly data in 2009 using the normalised informa-

tion distance defined in (8) without any normality assump-

tion. The results of the clustering are depicted in Fig. 12. We

select six clusters that are the same for particulate matter:

M, T, Q, [L, S], [F, N], [V, P, O, R] and different for ozone:

M, T, [L, S], [F, Q], [N, P], [V, O, R]. Similar results for

particulate matter can be obtained by using Pearson’s

distance (see Section 2.4), after taking the logarithm of

data, but they are slightly different for ozone. This is not

surprising since both distances are related in the normal

case, and from Table 2, we see that the log-normal

adjustment is better for particulate matter than for ozone.

This example illustrates that information distance is more

robust than Pearson distance for other data distributions.

Notice that we also checked k-means clustering analysis for

k�5 or 6 clusters with similar results.

Primarily, these clusters reflect the main circulation

pattern of the Santiago basin, namely a thermally driven

circulation with south-westerly winds peaking in the after-

noon and north-easterly winds peaking in the night. Also,

they respond to the east�west gradients in emissions of

primary pollutants. This is clear in the case of the PM2.5

winter clustering that is dominated by the distribution of

traffic sources (e.g. Gallardo et al., 2012b). In the case of

the summer ozone cluster, east�west differences are more

smeared out due to the more intensive mixing. All in all, the

main distinction is between the eastern and western bounds

of the basin for all clusters, independently of season, species

and distance considered. This pattern has been described

elsewhere by various authors, for example, Gallardo et al.

(2002); Gramsch et al. (2006); Saide et al. (2011). Also, a

common feature for all clusters is that stations M and T

show a very specific and distinct behaviour. M is located in

a high-income area of the city where emissions patterns are

different from elsewhere in Santiago and they consist of

mostly residential sources and light duty vehicles (e.g.

Gallardo et al., 2012b). Furthermore, this station is located

at higher altitude (ca. 700 m a.s.l.) than other stations of

the network in a relatively narrow canyon to the north-east

of the basin. T, on the contrary, is the only suburban/rural

station located to the west of the basin, at its south-westerly

outflow. This analysis confirms the utility and importance

of clustering analysis in the detection of common spatial

patterns (see Ignaccolo et al., 2008).

7. Conclusions and outlook

We have introduced statistical concepts to quantify

the information content as well as what we call the

‘representativity’ and ‘specificity’ indexes of air quality

stations in a monitoring network. These indexes stem from

Fig. 11. Information gain map. At each point, the difference in information gain obtained by comparison of the total information gain of

the original network and the total information gain obtained for a new network after adding a new station at this point with Barnes’s

interpolated values is indicated.
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information theory concepts, in particular mutual informa-

tion and information gain. We emphasize that these indexes

must be used concurrently if one wants to address the

‘goodness’ of monitoring network, in accordance with the

international community agreement of multi-objective net-

work design, and that looking at only one of them may

lead to erroneous conclusions. Finally, we use clustering

techniques to identify groups of stations with similar

characteristics. Furthermore, we show how to assess the

temporal evolution of a network in terms of information

content. We analysed 14 yr of data collected by the air

qualitymonitoring network in Santiago de Chile to illustrate

the use of the information indexes.

The ‘representativity’ and ‘specificity’ indexes are shown

to be robust and consistent with known emission and

circulation patterns in Santiago de Chile, namely persistent

east�west gradients in emission patterns and the thermally

driven circulation with up-slope winds in the afternoon and
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Fig. 12. Hierarchical clustering following the (not normal) normalised information distance (left column) defined in (8) compared with

the Pearson correlation function (right column) for PM2.5 (top line) and O3 (bottom line).
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down-slope winds during nighttime. We find that measure-

ments in downtown stations, located in a relatively flat area

of the Santiago basin, generally show, for all seasons and

species, high ‘representativity’ and low ‘specificity’, whereas

the contrary is found for a station located in a canyon to

the east of the basin. Clustering results corroborate the

characteristics identified using the indexes derived from

information theory.

Regarding the evolution of a network, we showed how to

quantify the corresponding changes in information content.

We found that in the case of Santiago, the current network

configuration is four times more informative than the initial

configuration in the late 1980s, and twice as much as that of

1997. If we choose the simplest background a priori infor-

mation, the changes in information content are roughly

proportional to the changes in number of stations and this

follows from a very simple choice for estimating the back-

ground mean and covariances that does not consider the

spatial distribution of the stations. This can be avoided by

using kriging or other interpolation techniques to better

address the changes in information content linked to the

spatial distribution of the monitoring stations in a network

as illustrated by means of Barnes’ interpolation in Figs.

9�11. What seems important is that the indexes presented

here, if used in combination with adequate interpolation

tools, may be used to obtain the optimal location of

new stations by maximising the total information of the

network.

All in all, the statistical indexes presented here provide an

objective manner to analyse monitoring networks in terms

of information content, their evolution, and if used in

combination with adequate interpolation techniques, a way

to infer best locations for new stations.
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